首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Replication factor C (RFC) catalyzes assembly of circular proliferating cell nuclear antigen clamps around primed DNA, enabling processive synthesis by DNA polymerase during DNA replication and repair. In order to perform this function efficiently, RFC must rapidly recognize primed DNA as the substrate for clamp assembly, particularly during lagging strand synthesis. Earlier reports as well as quantitative DNA binding experiments from this study indicate, however, that RFC interacts with primer-template as well as single- and double-stranded DNA (ssDNA and dsDNA, respectively) with similar high affinity (apparent K(d) approximately 10 nm). How then can RFC distinguish primed DNA sites from excess ssDNA and dsDNA at the replication fork? Further analysis reveals that despite its high affinity for various DNA structures, RFC selects primer-template DNA even in the presence of a 50-fold excess of ssDNA and dsDNA. The interaction between ssDNA or dsDNA and RFC is far less stable than between primed DNA and RFC (k(off) > 0.2 s(-1) versus 0.025 s(-1), respectively). We propose that the ability to rapidly bind and release single- and double-stranded DNA coupled with selective, stable binding to primer-template DNA allows RFC to scan DNA efficiently for primed sites where it can pause to initiate clamp assembly.  相似文献   

2.
Two non-self-complementary 17-mer double-stranded DNA (dsDNA) with four different central base pairs were designed to systematically investigate the binding affinity and sequence specificity of berberine with dsDNA by capillary zone electrophoresis (CZE). The data analysis with the Kenndler model proved only low affinity between dsDNA and berberine and suggested some weak binding preference of berberine for AATT-containing to GGCC-containing dsDNA. The binding constant, Ka, between berberine and dsDNA(AB) was about (1.0 +/- 0.7) x 10(3) M(-1). In addition, the separation of single-stranded DNA (ssDNA) from dsDNA under simple electrophoretic conditions enabled CZE to be a potentially alternative tool to check the extent of DNA annealing, which is usually done by the time-consuming and labor-intensive slab electrophoresis.  相似文献   

3.
The Fanconi anemia complementation group A (FANCA) gene is one of 15 disease-causing genes and has been found to be mutated in ~60% of Fanconi anemia patients. Using purified protein, we report that human FANCA has intrinsic affinity for nucleic acids. FANCA binds to both single-stranded (ssDNA) and double-stranded (dsDNA) DNAs; however, its affinity for ssDNA is significantly higher than for dsDNA in an electrophoretic mobility shift assay. FANCA also binds to RNA with an intriguingly higher affinity than its DNA counterpart. FANCA requires a certain length of nucleic acids for optimal binding. Using DNA and RNA ladders, we determined that the minimum number of nucleotides required for FANCA recognition is ~30 for both DNA and RNA. By testing the affinity between FANCA and a variety of DNA structures, we found that a 5'-flap or 5'-tail on DNA facilitates its interaction with FANCA. A patient-derived FANCA truncation mutant (Q772X) has diminished affinity for both DNA and RNA. In contrast, the complementing C-terminal fragment of Q772X, C772-1455, retains the differentiated nucleic acid-binding activity (RNA > ssDNA > dsDNA), indicating that the nucleic acid-binding domain of FANCA is located primarily at its C terminus, where most disease-causing mutations are found.  相似文献   

4.
Herpes simplex virus DNA polymerase consists of a catalytic subunit, Pol, and a processivity subunit, UL42, that, unlike other established processivity factors, binds DNA directly. We used gel retardation and filter-binding assays to investigate how UL42 affects the polymerase-DNA interaction. The Pol/UL42 heterodimer bound more tightly to DNA in a primer-template configuration than to single-stranded DNA (ssDNA), while Pol alone bound more tightly to ssDNA than to DNA in a primer-template configuration. The affinity of Pol/UL42 for ssDNA was reduced severalfold relative to that of Pol, while the affinity of Pol/UL42 for primer-template DNA was increased ~15-fold relative to that of Pol. The affinity of Pol/UL42 for circular double-stranded DNA (dsDNA) was reduced drastically relative to that of UL42, but the affinity of Pol/UL42 for short primer-templates was increased modestly relative to that of UL42. Pol/UL42 associated with primer-template DNA ~2-fold faster than did Pol and dissociated ~10-fold more slowly, resulting in a half-life of 2 h and a subnanomolar Kd. Despite such stable binding, rapid-quench analysis revealed that the rates of elongation of Pol/UL42 and Pol were essentially the same, ~30 nucleotides/s. Taken together, these studies indicate that (i) Pol/UL42 is more likely than its subunits to associate with DNA in a primer-template configuration rather than nonspecifically to either ssDNA or dsDNA, and (ii) UL42 reduces the rate of dissociation from primer-template DNA but not the rate of elongation. Two models of polymerase-DNA interactions during replication that may explain these findings are presented.  相似文献   

5.
Interaction of dimeric intercalating dyes with single-stranded DNA.   总被引:5,自引:2,他引:3       下载免费PDF全文
The unsymmetrical cyanine dye thiazole orange homodimer (TOTO) binds to single-stranded DNA (ssDNA, M13mp18 ssDNA) to form a fluorescent complex that is stable under the standard conditions of electrophoresis. The stability of this complex is indistinguishable from that of the corresponding complex of TOTO with double-stranded DNA (dsDNA). To examine if TOTO exhibits any binding preference for dsDNA or ssDNA, transfer of TOTO from pre-labeled complexes to excess unlabeled DNA was assayed by gel electrophoresis. Transfer of TOTO from M13 ssDNA to unlabeled dsDNA proceeds to the same extent as that from M13 dsDNA to unlabeled dsDNA. A substantial amount of the dye is retained by both the M13 ssDNA and M13 dsDNA even when the competing dsDNA is present at a 600-fold weight excess; for both dsDNA and ssDNA, the pre-labeled complex retains approximately one TOTO per 30 bp (dsDNA) or bases (ssDNA). Rapid transfer of dye from both dsDNA and ssDNA complexes is seen at Na+ concentrations > 50 mM. Interestingly, at higher Na+ or Mg2+ concentrations, the M13 ssDNA-TOTO complex appears to be more stable to intrinsic dissociation (dissociation in the absence of competing DNA) than the complex between TOTO and M13 dsDNA. Similar results were obtained with the structurally unrelated dye ethidium homodimer. The dsDNA- and ssDNA-TOTO complexes were further examined by absorption, fluorescence and circular dichroism spectroscopy. The surprising conclusion is that polycationic dyes, such as TOTO and EthD, capable of bis-intercalation, interact with dsDNA and ssDNA with very similar high affinity.  相似文献   

6.
Lao Y  Lee CG  Wold MS 《Biochemistry》1999,38(13):3974-3984
Human replication protein A (RPA) is a heterotrimeric single-stranded DNA-binding protein that is composed of subunits of 70, 32, and 14 kDa. RPA is required for multiple processes in cellular DNA metabolism. RPA has been reported to (1) bind with high affinity to single-stranded DNA (ssDNA), (2) bind specifically to certain double-stranded DNA (dsDNA) sequences, and (3) have DNA helix-destabilizing ("unwinding") activity. We have characterized both dsDNA binding and helix destabilization. The affinity of RPA for dsDNA was lower than that of ssDNA and precisely correlated with the melting temperature of the DNA fragment. The rates of helix destabilization and dsDNA binding were similar, and both were slow relative to the rate of binding ssDNA. We have previously mapped the regions required for ssDNA binding [Walther et al. (1999) Biochemistry 38, 3963-3973]. Here, we show that both helix-destabilization and dsDNA-binding activities map to the central DNA-binding domain of the 70-kDa subunit and that other domains of RPA are needed for optimal activity. We conclude that all types of RPA binding are manifestations of RPA ssDNA-binding activity and that dsDNA binding occurs when RPA destabilizes a region of dsDNA and binds to the resulting ssDNA. The 70-kDa subunit of all RPA homologues contains a highly conserved putative (C-X2-C-X13-C-X2-C) zinc finger. This motif directly interacts with DNA and contributes to dsDNA-binding/unwinding activity. Evidence is presented that a metal ion is required for the function of the zinc-finger motif.  相似文献   

7.
Krylova SM  Musheev M  Nutiu R  Li Y  Lee G  Krylov SN 《FEBS letters》2005,579(6):1371-1375
Tau is a microtubule-associated protein, which plays an important role in physiology and pathology of neurons. Tau has been recently reported to bind double-stranded DNA (dsDNA) but not to bind single-stranded DNA (ssDNA) [Cell. Mol. Life Sci. 2003, 60, 413-421]. Here, we prove that tau binds not only dsDNA but also ssDNA. This finding was facilitated by using two kinetic capillary electrophoresis methods: (i) non-equilibrium capillary electrophoresis of equilibrium mixtures (NECEEM); (ii) affinity-mediated NECEEM. Using the new approach, we observed, for the first time, that tau could induce dissociation of strands in dsDNA by binding one of them in a sequence-specific fashion. Moreover, we determined the equilibrium dissociation constants for all tau-DNA complexes studied.  相似文献   

8.
Sugimoto N 《Biopolymers》2000,55(6):416-424
A novel 24-residue peptide (L2-G), Ile-Arg-Met-Lys-Ile-Gly-Val-Met-Phe-Gly-Asn-Pro-Glu-Thr-Thr-Thr-Gly-Gly-Asn-Ala-Leu-Lys-Phe-Tyr, derived from RecA can discriminate a single-stranded DNA (ssDNA) from a double-stranded DNA (dsDNA) and a new developed support with this peptide recognizes not dsDNA but ssDNA. The 24-mer peptide with L2 and helix G amino acids of Escherichia coli RecA protein showed the ssDNA binding property with more than 1000 times affinity difference for the dsDNA. However, truncated 15-mer peptide showed no ssDNA binding activity. In the ssDNA binding, L2-G changed its conformation with the perturbation of an alpha-helix structure. The ssDNA binding and the DNA discrimination property of this peptide were due to almost all L2 and helix G amino acids, respectively. This result is useful to design synthetic peptides as functional materials for DNA recognition.  相似文献   

9.
We have fabricated double-stranded DNA (dsDNA) microarrays containing unimolecular hairpin dsDNA probes immobilized on glass slides. The unimolecular hairpin dsDNA microarrays were manufactured by four steps: Firstly, synthesizing single-stranded DNA (ssDNA) oligonucleotides with two reverse-complementary sequences at 3' hydroxyl end and an overhang sequence at 5' amino end. Secondly, microspotting ssDNA on glutaraldehyde-derived glass slide to form ssDNA microarrays. Thirdly, annealing two reverse-complementary sequences to form hairpin primer at 3' end of immobilized ssDNA and thus to create partial-dsDNA microarray. Fourthly, enzymatically extending hairpin primer to convert partial-dsDNA microarrays into complete-dsDNA microarray. The excellent efficiency and high accuracy of the enzymatic synthesis were demonstrated by incorporation of fluorescently labeled dUTPs in Klenow extension and digestion of dsDNA microarrays with restriction endonuclease. The accessibility and specificity of the DNA-binding proteins binding to dsDNA microarrays were verified by binding Cy3-labeled NF-kappaB to dsDNA microarrays. The dsDNA microarrays have great potential to provide a high-throughput platform for investigation of sequence-specific DNA/protein interactions involved in gene expression regulation, restriction and so on.  相似文献   

10.
Honda M  Okuno Y  Yoo J  Ha T  Spies M 《The EMBO journal》2011,30(16):3368-3382
RAD52 protein has an important role in homology-directed DNA repair by mediating RAD51 nucleoprotein filament formation on single-stranded DNA (ssDNA) protected by replication protein-A (RPA) and annealing of RPA-coated ssDNA. In human, cellular response to DNA damage includes phosphorylation of RAD52 by c-ABL kinase at tyrosine 104. To address how this phosphorylation modulates RAD52 function, we used an amber suppressor technology to substitute tyrosine 104 with chemically stable phosphotyrosine analogue (p-Carboxymethyl-L-phenylalanine, pCMF). The RAD52(Y104pCMF) retained ssDNA-binding activity characteristic of unmodified RAD52 but showed lower affinity for double-stranded DNA (dsDNA) binding. Single-molecule analyses revealed that RAD52(Y104pCMF) specifically targets and wraps ssDNA. While RAD52(Y104pCMF) is confined to ssDNA region, unmodified RAD52 readily diffuses into dsDNA region. The Y104pCMF substitution also increased the ssDNA annealing rate and allowed overcoming the inhibitory effect of dsDNA. We propose that phosphorylation at Y104 enhances ssDNA annealing activity of RAD52 by attenuating dsDNA binding. Implications of phosphorylation-mediated activation of RAD52 annealing activity are discussed.  相似文献   

11.
《Biophysical journal》2020,118(11):2783-2789
The free-solution mobilities of small single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA) have been measured by capillary electrophoresis in solutions containing 0.01–1.0 M sodium acetate. The mobility of dsDNA is greater than that of ssDNA at all ionic strengths because of the greater charge density of dsDNA. The mobilities of both ssDNA and dsDNA decrease with increasing ionic strength until approaching plateau values at ionic strengths greater than ∼0.6 M. Hence, ssDNA and dsDNA appear to interact in a similar manner with the ions in the background electrolyte. For dsDNA, the mobilities predicted by the Manning electrophoresis equation are reasonably close to the observed mobilities, using no adjustable parameters, if the average distance between phosphate residues (the b parameter) is taken to be 1.7 Å. For ssDNA, the predicted mobilities are close to the observed mobilities at ionic strengths ≤0.01 M if the b-value is taken to be 4.1 Å. The predicted and observed mobilities diverge strongly at higher ionic strengths unless the b-value is reduced significantly. The results suggest that ssDNA strands exist as an ensemble of relatively compact conformations at high ionic strengths, with b-values corresponding to the relatively short phosphate-phosphate distances through space.  相似文献   

12.
Oakley GG  Patrick SM  Yao J  Carty MP  Turchi JJ  Dixon K 《Biochemistry》2003,42(11):3255-3264
The heterotrimeric DNA-binding protein, replication protein A (RPA), consists of 70-, 34-, and 14-kDa subunits and is involved in maintaining genomic stability by playing key roles in DNA replication, repair, and recombination. RPA participates in these processes through its interaction with other proteins and its strong affinity for single-stranded DNA (ssDNA). RPA-p34 is phosphorylated in a cell-cycle-dependent fashion primarily at Ser-29 and Ser-23, which are consensus sites for Cdc2 cyclin-dependent kinase. By systematically examining RPA-p34 phosphorylation throughout the cell cycle, we have found there are distinct phosphorylated forms of RPA-p34 in different cell-cycle stages. We have isolated and purified a unique phosphorylated form of RPA that is specifically associated with the mitotic phase of the cell cycle. The mitotic form of RPA (m-hRPA) shows no difference in ssDNA binding activity as compared with recombinant RPA (r-hRPA), yet binds less efficiently to double-stranded DNA (dsDNA). These data suggest that mitotic phosphorylation of RPA-p34 inhibits the destabilization of dsDNA by RPA complex, thereby decreasing the binding affinity for dsDNA. The m-hRPA also exhibits altered interactions with certain DNA replication and repair proteins. Using highly purified proteins, m-hRPA exhibited decreased binding to ATM, DNA pol alpha, and DNA-PK as compared to unphosphorylated recombinant RPA (r-hRPA). Dephosphorylation of m-hRPA was able to restore the interaction with each of these proteins. Interestingly, the interaction of RPA with XPA was not altered by RPA phosphorylation. These data suggest that phosphorylation of RPA-p34 plays an important role in regulating RPA functions in DNA metabolism by altering specific protein-protein interactions.  相似文献   

13.
The combination of affinity chromatography and capillary electrophoresis (CE-SDS) has been found to be a useful tool to analyse populations of proteins which specifically bind to ssor dsDNA. Proteins were extracted from tissue, cytosol or nuclei of meristems of Pisum sativum seedlings and separated on cellulose column functionalized with ss-, dsDNA (calf thymus) and ssDNA (P. sativum) at 2M concentration of sodium chloride. Electropherograms of the crude protein extracts show two fractions of proteins specific for dsDNA (calf thymus) and three fractions specific for ssDNA (calf thymus). Four and five fractions of proteins specific for ssDNA (P. sativum) were identified in the material isolated from cytosolic and nuclear extracts, respectively. Both ds- and ssDNA (calf thymus) form complexes with ca. 4.0 % of the total amount of proteins, while ssDNA (P. sativum) binds to ca. 11.0 % of cytosolic and 5.0 % of nuclear proteins.  相似文献   

14.
The molecular role of the RecF protein in loading RecA protein onto single-stranded DNA (ssDNA)-binding protein-coated ssDNA has been obscured by the facility with which the RecO and RecR proteins alone perform this function. We now show that RecFOR and RecOR define distinct RecA loading functions that operate optimally in different contexts. RecFOR, but not RecOR, is most effective when RecF(R) is bound near an ssDNA/double-stranded (dsDNA) junction. However, RecF(R) has no enhanced binding affinity for such a junction. RecO and RecR proteins are both required under all conditions in which the RecFOR pathway operates. The RecOR pathway is uniquely distinguished by a required interaction between RecO protein and the ssDNA binding protein C terminus. The RecOR pathway is more efficient for RecA loading onto ssDNA when no proximal dsDNA is available. A merger of new and published results leads to a new model for RecFOR function.  相似文献   

15.
A model is proposed for non-hexameric helicases translocating along single-stranded (ss) DNA and unwinding double-stranded (ds) DNA. The translocation of a monomeric helicase along ssDNA in weakly-ssDNA-bound state is driven by the Stokes force that is resulted from the conformational change following the transition of the nucleotide state. The unwinding of dsDNA is resulted mainly from the bending of ssDNA induced by the strong binding force of helicase with dsDNA. The interaction force between ssDNA and helicases in weakly-ssDNA-bound state determines whether monomeric helicases such as PcrA can unwind dsDNA or dimeric helicases such as Rep are required to unwind dsDNA.  相似文献   

16.
Bacteriophage T7 gene 2.5 protein (gp2.5) is a single-stranded DNA (ssDNA)-binding protein that has essential roles in DNA replication, recombination and repair. However, it differs from other ssDNA-binding proteins by its weaker binding to ssDNA and lack of cooperative ssDNA binding. By studying the rate-dependent DNA melting force in the presence of gp2.5 and its deletion mutant lacking 26 C-terminal residues, we probe the kinetics and thermodynamics of gp2.5 binding to ssDNA and double-stranded DNA (dsDNA). These force measurements allow us to determine the binding rate of both proteins to ssDNA, as well as their equilibrium association constants to dsDNA. The salt dependence of dsDNA binding parallels that of ssDNA binding. We attribute the four orders of magnitude salt-independent differences between ssDNA and dsDNA binding to nonelectrostatic interactions involved only in ssDNA binding, in contrast to T4 gene 32 protein, which achieves preferential ssDNA binding primarily through cooperative interactions. The results support a model in which dimerization interactions must be broken for DNA binding, and gp2.5 monomers search dsDNA by 1D diffusion to bind ssDNA. We also quantitatively compare the salt-dependent ssDNA- and dsDNA-binding properties of the T4 and T7 ssDNA-binding proteins for the first time.  相似文献   

17.
Interactions between human DNA polymerase beta and the template-primer, as well as gapped DNA substrates, have been studied using quantitative fluorescence titration and analytical ultracentrifugation techniques. In solution, human pol beta binds template-primer DNA substrates with a stoichiometry much higher than predicted on the basis of the crystallographic structure of the polymerase-DNA complex. The obtained stoichiometries can be understood in the context of the polymerase affinity for the dsDNA and the two ssDNA binding modes, the (pol beta)(16) and (pol beta)(5) binding modes, which differ by the number of nucleotide residues occluded by the protein in the complex. The analysis of polymerase binding to different template-primer substrates has been performed using the statistical thermodynamic model which accounts for the existence of different ssDNA binding modes and has allowed us to extract intrinsic spectroscopic and binding parameters. The data reveal that the small 8 kDa domain of the enzyme can engage the dsDNA in interactions, downstream from the primer, in both (pol beta)(16) and (pol beta)(5) binding modes. The affinity, as well as the stoichiometry of human pol beta binding to the gapped DNAs is not affected by the decreasing size of the ssDNA gap, indicating that the enzyme recognizes the ssDNA gaps of different sizes with very similar efficiency. On the basis of the obtained results we propose a plausible model for the gapped DNA recognition by human pol beta. The enzyme binds the ss/dsDNA junction of the gap, using its 31 kDa domain, with slight preference over the dsDNA. Binding only to the junction, but not to the dsDNA, induces an allosteric conformational transition of the enzyme and the entire enzyme-DNA complex which results in binding of the 8 kDa domain with the dsDNA. This, in turn, leads to the significant amplification of the enzyme affinity for the gap over the surrounding dsDNA, independent of the gap size. The presence of the 5'-terminal phosphate, downstream from the primer, has little effect on the affinity, but profoundly affects the ssDNA conformation in the complex. The significance of these results for the mechanistic model of the functioning of human pol beta is discussed.  相似文献   

18.
The Escherichia coli PriA helicase complex with the double-stranded DNA (dsDNA), the location of the strong DNA-binding subsite, and the effect of the nucleotide cofactors, bound to the strong and weak nucleotide-binding site of the enzyme on the dsDNA affinity, have been analyzed using the fluorescence titration, analytical ultracentrifugation, and photo-cross-linking techniques. The total site size of the PriA-dsDNA complex is only 5 ± 1 bp, that is, dramatically lower than 20 ± 3 nucleotides occluded in the enzyme-single-stranded DNA (ssDNA) complex. The helicase associates with the dsDNA using its strong ssDNA-binding subsite in an orientation very different from the complex with the ssDNA. The strong DNA-binding subsite of the enzyme is located on the helicase domain of the PriA protein. The dsDNA intrinsic affinity is considerably higher than the ssDNA affinity and the binding process is accompanied by a significant positive cooperativity. Association of cofactors with strong and weak nucleotide-binding sites of the protein profoundly affects the intrinsic affinity and the cooperativity, without affecting the stoichiometry. ATP analog binding to either site diminishes the intrinsic affinity but preserves the cooperativity. ADP binding to the strong site leads to a dramatic increase of the cooperativity and only slightly affects the affinity, while saturation of both sites with ADP strongly increases the affinity and eliminates the cooperativity. Thus, the coordinated action of both nucleotide-binding sites on the PriA-dsDNA interactions depends on the structure of the phosphate group. The significance of these results for the enzyme activities in recognizing primosome assembly sites or the ssDNA gaps is discussed.  相似文献   

19.
An electrically neutral cobalt complex, Co(Eim)(4)(NCS)(2) (Eim=1-ethylimidazole, NCS=isothiocyanate) was synthesized and its interaction with double-stranded DNA (dsDNA) was comprehensively studied by electrochemical methods on a glassy carbon electrode (GCE). The experimental results revealed that the cobalt complex could interact with dsDNA via a specific groove-binding mode with an affinity constant of 3.6×10(5)M(-1). The surface-based studies showed that Co(Eim)(4)(NCS)(2) could electrochemically accumulate within the immobilized dsDNA layer rather than single-stranded DNA (ssDNA) layer. Based on this fact, the cobalt complex was utilized as an electrochemical hybridization indicator for the detection of oligonucleotides related to CaMV35S promoter gene. The results showed that the developed biosensor presented very low background interference due to the negligible affinity of the Co(Eim)(4)(NCS)(2) complex with ssDNA. The hybridization specificity experiments further indicated that the biosensor could well discriminate the complementary sequence from the base-mismatched and the non-complementary sequences. The complementary target sequence could be quantified over the range from 5.0×10(-9)M to 2.0×10(-6)M with a detection limit of 2.0×10(-10)M.  相似文献   

20.
RecA protein features two distinct DNA-binding sites. During DNA strand exchange, the primary site binds to single-stranded DNA (ssDNA), forming the helical RecA nucleoprotein filament. The weaker secondary site binds double-stranded DNA (dsDNA) during the homology search process. Here we demonstrate that this site has a second important function. It binds the ssDNA strand that is displaced from homologous duplex DNA during DNA strand exchange, stabilizing the initial heteroduplex DNA product. Although the high affinity of the secondary site for ssDNA is essential for DNA strand exchange, it renders DNA strand exchange sensitive to an excess of ssDNA which competes with dsDNA for binding. We further demonstrate that single-stranded DNA-binding protein can sequester ssDNA, preventing its binding to the secondary site and thereby assisting at two levels: it averts the inhibition caused by an excess of ssDNA and prevents the reversal of DNA strand exchange by removing the displaced strand from the secondary site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号