首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mammals use tubulin from multiple genes to construct microtubules. Some genes are expressed in a tissue specific manner, while others are expressed in almost all cell types. beta5-Tubulin is a minor, ubiquitous isoform whose overexpression was recently shown to disrupt microtubules. Using inhibitory RNA, we now report that suppression of beta5 production in both human and hamster cells blocks cell proliferation. Cells depleted of beta5 either trigger the mitotic checkpoint and undergo apoptosis; or they experience a transient mitotic block, a high incidence of lagging chromosomes, and progression into G1 without cytokinesis to become large, flat cells with elevated DNA content. Microtubules appear to be normally organized in cells depleted of beta5, but they are rich in acetylated alpha-tubulin indicating that they may be more stable than normal. The results provide the first evidence that a specific isoform of beta-tubulin is required for mitosis.  相似文献   

2.
3.
Mutation of the zebrafish pescadillo gene blocks expansion of a number of tissues in the developing embryo, suggesting roles for its gene product in controlling cell proliferation. We report that levels of the pescadillo protein increase in rodent hepatocytes as they enter the cell cycle. Pescadillo protein localizes to distinct substructures of the interphase nucleus including nucleoli, the site of ribosome biogenesis. During mitosis pescadillo closely associates with the periphery of metaphase chromosomes and by late anaphase is associated with nucleolus-derived foci and prenucleolar bodies. Blastomeres in mouse embryos lacking pescadillo arrest at morula stages of development, the nucleoli fail to differentiate and accumulation of ribosomes is inhibited. We propose that in mammalian cells pescadillo is essential for ribosome biogenesis and nucleologenesis and that disruption to its function results in cell cycle arrest.  相似文献   

4.
Yang YR  Song M  Lee H  Jeon Y  Choi EJ  Jang HJ  Moon HY  Byun HY  Kim EK  Kim DH  Lee MN  Koh A  Ghim J  Choi JH  Lee-Kwon W  Kim KT  Ryu SH  Suh PG 《Aging cell》2012,11(3):439-448
Dysregulation of O-GlcNAc modification catalyzed by O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA) contributes to the etiology of chronic diseases of aging, including cancer, cardiovascular disease, type 2 diabetes, and Alzheimer's disease. Here we found that natural aging in wild-type mice was marked by a decrease in OGA and OGT protein levels and an increase in O-GlcNAcylation in various tissues. Genetic disruption of OGA resulted in constitutively elevated O-GlcNAcylation in embryos and led to neonatal lethality with developmental delay. Importantly, we observed that serum-stimulated cell cycle entry induced increased O-GlcNAcylation and decreased its level after release from G2/M arrest, indicating that O-GlcNAc cycling by OGT and OGA is required for precise cell cycle control. Constitutively, elevated O-GlcNAcylation by OGA disruption impaired cell proliferation and resulted in mitotic defects with downregulation of mitotic regulators. OGA loss led to mitotic defects including cytokinesis failure and binucleation, increased lagging chromosomes, and micronuclei formation. These findings suggest an important role for O-GlcNAc cycling by OGA in embryonic development and the regulation of the maintenance of genomic stability linked to the aging process.  相似文献   

5.
Z Kiss-László  S Blanc    T Hohn 《The EMBO journal》1995,14(14):3552-3562
A splicing event essential for the infectivity of a plant pararetrovirus has been characterized. Transient expression experiments using reporter constructs revealed a splice donor site in the leader sequence of the cauliflower mosaic virus (CaMV) 35S RNA and three additional splice donor sites within open reading frame (ORF) I. All four donors use the same splice acceptor within ORF II. Splicing between the leader and ORF II produces an mRNA from which ORF III and, in the presence of the CaMV translational transactivator, ORF IV can be translated efficiently. The other three splicing events produce RNAs encoding ORF I-II in-frame fusions. All four spliced CaMV RNAs were detected in CaMV-infected plants. Virus mutants in which the splice acceptor site in ORF II is inactivated are not infectious, indicating that splicing plays an essential role in the CaMV life cycle. The results presented here suggest a model for viral gene expression in which RNA splicing is required to provide appropriate substrate mRNAs for the specialized translation mechanisms of CaMV.  相似文献   

6.
The vertebrate ocular lens is a simple and continuously growing tissue. Growth factor-mediated receptor tyrosine kinases (RTKs) are believed to be required for lens cell proliferation, differentiation and survival. The signaling pathways downstream of the RTKs remain to be elucidated. Here, we demonstrate the important role of Ras in lens development by expressing a dominant-negative form of Ras (dn-Ras) in the lens of transgenic mice. We show that lens in the transgenic mice was smaller and lens growth was severely inhibited as compared to the wild-type lens. However, the lens shape, polarity and transparency appeared normal in the transgenic mice. Further analysis showed that cell proliferation is inhibited in the dn-Ras lens. For example, the percentage of 5-bromo-2'-deoxyuridine (BrdU)-labeled cells in epithelial layer was about 2- to 3-fold lower in the transgenic lens than in the wild-type lens, implying that Ras activity is required for normal cell proliferation during lens development. We also found a small number of apoptotic cells in both epithelial and fiber compartment of the transgenic lens, suggesting that Ras also plays a role in cell survival. Interestingly, although there was a delay in primary fiber cell differentiation, secondary fiber cell differentiation was not significantly affected in the transgenic mice. For example, the expression of beta- and gamma-crystallins, the marker proteins for fiber differentiation, was not changed in the transgenic mice. Biochemical analysis indicated that ERK activity, but not Akt activity, was significantly reduced in the dn-Ras transgenic lenses. Overall, our data imply that the RTK-Ras-ERK signaling pathway is essential for cell proliferation and, to a lesser extent, for cell survival, but not for crystallin gene expression during fiber differentiation. Thus, some of the fiber differentiation processes are likely mediated by RTK-dependent but Ras-independent pathways.  相似文献   

7.
LKB1 acts as a master upstream protein kinase regulating a number of kinases involved in diverse cellular functions. Recent studies have suggested a role for LKB1 in male fertility. Male mice with reduced total LKB1 expression, including the complete absence of the major splice variant in testis (LKB1(S)), are completely infertile. We sought to further characterise these mice and determine the mechanism underlying this infertility. This involved expression studies of LKB1 in developing germ cells, morphological analysis of mature spermatozoa and histological studies of both the testis and epididymis using light microscopy and transmission electron microscopy. We conclude that a defect in the release of mature spermatids from the seminiferous epithelium (spermiation) during spermatozoan development is a major cause of the infertility phenotype. We also present evidence that this is due, at least in part, to defects in the breakdown of the junctions, known as ectoplasmic specialisations, between the sertoli cells of the testis epithelium and the heads of the maturing spermatids. Overall this study uncovers a critical role for LKB1 in spermiation, a highly regulated, but poorly understood process vital for male fertility.  相似文献   

8.
Centromere protein A (CENP-A) is a homolog of histone H3 that epigenetically marks the heterochromatin of chromosomes. CENP-A is a critical component of the cell cycle machinery that is necessary for proper assembly of the mitotic spindle. However, the role of CENP-A in the heart and cardiac progenitor cells (CPCs) has not been previously studied. This study shows that CENP-A is expressed in CPCs and declines with age. Silencing CENP-A results in a decreased CPC growth rate, reduced cell number in phase G2/M of the cell cycle, and increased senescence associated β-galactosidase activity. Lineage commitment is not affected by CENP-A silencing, suggesting that cell cycle arrest induced by loss of CENP-A is a consequence of senescence and not differentiation. CENP-A knockdown does not exacerbate cell death in undifferentiated CPCs, but increases apoptosis upon lineage commitment. Taken together, these results indicate that CPCs maintain relatively high levels of CENP-A early in life, which is necessary for sustaining proliferation, inhibiting senescence, and promoting survival following differentiation of CPCs.  相似文献   

9.
Zhang  Fengxia  Wei  Mingxuan  Chen  Haoran  Ji  Liting  Nie  Yan  Kang  Jungseog 《Cell division》2022,17(1):1-13

The centrosome is a multifunctional organelle that is known primarily for its microtubule organising function. Centrosomal defects caused by changes in centrosomal structure or number have been associated with human diseases ranging from congenital defects to cancer. We are only beginning to appreciate how the non-microtubule organising roles of the centrosome are related to these clinical conditions. In this review, we will discuss the historical evidence that led to the proposal that the centrosome participates in cell cycle regulation. We then summarize the body of work that describes the involvement of the mammalian centrosome in triggering cell cycle progression and checkpoint signalling. Then we will highlight work from the fission yeast model organism, revealing the molecular details that explain how the spindle pole body (SPB, the yeast functional equivalent of the centrosome), participates in these cell cycle transitions. Importantly, we will discuss some of the emerging questions from recent discoveries related to the role of the centrosome as a cell cycle regulator.

  相似文献   

10.
Pre-mRNA splicing factors are enriched in nuclear domains termed interchromatin granule clusters or nuclear speckles. During mitosis, nuclear speckles are disassembled by metaphase and reassembled in telophase in structures termed mitotic interchromatin granules (MIGs). We analysed the dynamics of the splicing factor SC35 in interphase and mitotic cells. In HeLa cells expressing green fluorescent protein (GFP)-SC35, this was localized in speckles during interphase and dispersed in metaphase. In telophase, GFP-SC35 was highly enriched within telophase nuclei and also detected in MIGs. Fluorescence recovery after photobleaching (FRAP) experiments revealed that the mobility of GFP-SC35 was distinct in different mitotic compartments. Interestingly, the mobility of GFP-SC35 was 3-fold higher in the cytoplasm of metaphase cells compared with interphase speckles, the nucleoplasm or MIGs. Treatment of cells with inhibitors of cyclin-dependent kinases (cdks) caused changes in the organization of nuclear compartments such as nuclear speckles and nucleoli, with corresponding changes in the mobility of GFP-SC35 and GFP-fibrillarin. Our results suggest that the dynamics of SC35 are significantly influenced by the organization of the compartment in which it is localized during the cell cycle.  相似文献   

11.
BRCA2 is a breast cancer susceptibility gene implicated in the repair of double-strand breaks by homologous recombination with RAD51. BRCA2 associates with a 70-amino-acid protein, DSS1, but the functional significance of this interaction has remained unclear. Recently, deficiency of a DSS1 orthologue in the fungus Ustilago maydis has been shown to cause a defect in recombinational DNA repair. Here we have investigated the consequences of DSS1 depletion in mammalian cells. We show that like BRCA2, DSS1 is required for DNA damage-induced RAD51 focus formation and for the maintenance of genomic stability, indicating a function conserved from lower eukaryotes to humans. However, DSS1 seems to be not required for BRCA2 or RAD51 stability or for BRCA2 and RAD51 to interact, raising the possibility that DSS1 may be required for the BRCA2-RAD51 complex to become associated with sites of DNA damage.  相似文献   

12.
JunB is essential for mammalian placentation   总被引:15,自引:0,他引:15       下载免费PDF全文
  相似文献   

13.
14.
The COP9 signalosome (CSN) is required for the full activity of cullin-RING E3 ubiquitin ligases (CRLs) in eukaryotes. CSN exerts its function on CRLs by removing the ubiquitin-related NEDD8 conjugate from the cullin subunit of CRLs. CSN seems, thereby, to control CRL disassembly or CRL subunit stability. In Arabidopsis thaliana, loss of CSN function leads to constitutive photomorphogenic (cop) seedling development and a post-germination growth arrest. The underlying molecular cause of this growth arrest is currently unknown. Here, we show that Arabidopsis csn mutants are delayed in G2 phase progression. This cell cycle arrest correlates with the induction of the DNA damage response pathway and is suggestive of the activation of a DNA damage checkpoint. In support of this hypothesis, we detected gene conversion events in csn mutants that are indicative of DNA double-strand breaks. DNA damage is also apparent in mutants of the NEDD8 conjugation pathway and in mutants of the E3 ligase subunits CULLIN4, COP1 and DET1, which share phenotypes with csn mutants. In summary, our data suggest that Arabidopsis csn mutants undergo DNA damage, which might be the cause of the delay in G2 cell cycle progression.  相似文献   

15.
16.

Background  

Bloom syndrome is a rare cancer-prone disorder in which the cells of affected persons have a high frequency of somatic mutation and genomic instability. Bloom syndrome cells have a distinctive high frequency of sister chromatid exchange and quadriradial formation. BLM, the protein altered in BS, is a member of the RecQ DNA helicase family, whose members share an average of 40% identity in the helicase domain and have divergent N-terminal and C-terminal flanking regions of variable lengths. The BLM DNA helicase has been shown to localize to the ND10 (nuclear domain 10) or PML (promyelocytic leukemia) nuclear bodies, where it associates with TOPIIIα, and to the nucleolus.  相似文献   

17.
Glyoxalase 1 (Glo1), belonging to the glyoxalase system, participates in the detoxification of methylglyoxal (MG), a byproduct of glycolysis. Glo1 is associated with the progression of many human malignancies. However, the role of Glo1 in hepatocellular carcinoma (HCC) is unclear. We have discovered that the expression of Glo1 is up-regulated in HCC tissues compared with adjacent non-tumorous tissues, and knockdown of Glo1 expression by RNA interference significantly inhibited the proliferation of human HCC cell lines. Glo1 knockdown resulted in the accumulation of its cytotoxic substrate, MG. Overall, thus Glo1 might be essential for HCC progression and can be designated as a potential therapeutic target for HCC in the future.  相似文献   

18.
Products of prolidase [E.C. 3.4.13.9] activity, proline or hydroxyproline, contribute to up-regulation of hypoxia-inducible factor-1α (HIF-1α). Prolidase activity is regulated by β(1)-integrin signaling. We studied the effects of echistatin (a well-known disintegrin) and thrombin (a serine protease capable of activation of integrin α(2)β(1) receptor) on prolidase activity and expressions of prolidase, α(2)β(1)-integrin receptor, focal adhesion kinase (FAK), MAP-kinases (ERK(1) and ERK(2)), and nuclear HIF-1α in human colon adenocarcinoma (DLD-1) cells. It has been found that treatment of the cells with thrombin contributes to decrease in the expression of prolidase and simultaneously increase in its phosphorylation, resulting in maintenance of the enzyme activity. The phenomenon was accompanied by thrombin-dependent recovery of depressed autophosphorylation of FAK (pY(397)) under the effect of FAK inhibitor (1,2,4,5-benzenetetramine tetrahydrochloride). Although integrin α(2)β(1) receptor expression was not affected by thrombin, the signaling induced by thrombin up-regulated nuclear HIF-1α expression. It was accompanied by increase in the expression of MAP kinases, ERK1 and ERK2. It suggests that integrin-dependent signaling through p-FAK is up-regulated in DLD-1 cells and it may represent potential target for anti-cancer therapy.  相似文献   

19.
Metacaspases (MCAs) are caspase family cysteine peptidases that have been implicated in cell death processes in plants, fungi and protozoa. MCAs have also been suggested to be involved in cell cycle control, differentiation and clearance of aggregates; they are virulence factors. Dissecting the function of MCAs has been complicated by the presence in many organisms of multiple MCA genes or limitations on genetic manipulation. We describe here the creation of a MCA gene-deletion mutant (Δmca) in the protozoan parasite Leishmania mexicana, which has allowed us to dissect the role of the parasite''s single MCA gene in cell growth and cell death. Δmca parasites are viable as promastigotes, and differentiate normally to the amastigote form both in in vitro macrophages infection and in mice. Δmca promastigotes respond to cell death inducers such as the drug miltefosine and H2O2 similarly to wild-type (WT) promastigotes, suggesting that MCAs do not have a caspase-like role in execution of L. mexicana cell death. Δmca amastigotes replicated significantly faster than WT amastigotes in macrophages and in mice, but not as axenic culture in vitro. We propose that the Leishmania MCA acts as a negative regulator of amastigote proliferation, thereby acting to balance cell growth and cell death.  相似文献   

20.
Here, we show that the human homologue of the Caenorhabditis elegans biological clock protein CLK-2 (HCLK2) associates with the S-phase checkpoint components ATR, ATRIP, claspin and Chk1. Consistent with a critical role in the S-phase checkpoint, HCLK2-depleted cells accumulate spontaneous DNA damage in S-phase, exhibit radio-resistant DNA synthesis, are impaired for damage-induced monoubiquitination of FANCD2 and fail to recruit FANCD2 and Rad51 (critical components of the Fanconi anaemia and homologous recombination pathways, respectively) to sites of replication stress. Although Thr 68 phosphorylation of the checkpoint effector kinase Chk2 remains intact in the absence of HCLK2, claspin phosphorylation and degradation of the checkpoint phosphatase Cdc25A are compromised following replication stress as a result of accelerated Chk1 degradation. ATR phosphorylation is known to both activate Chk1 and target it for proteolytic degradation, and depleting ATR or mutation of Chk1 at Ser 345 restored Chk1 protein levels in HCLK2-depleted cells. We conclude that HCLK2 promotes activation of the S-phase checkpoint and downstream repair responses by preventing unscheduled Chk1 degradation by the proteasome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号