首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Liquid-liquid phase-separation data were obtained for aqueous saline solutions of hen egg-white lysozyme at a fixed protein concentration (87 g/l). The cloud-point temperature (CPT) was measured as a function of salt type and salt concentration to 3 M, at pH 4.0 and 7.0. Salts used included those from mono and divalent cations and anions. For the monovalent cations studied, as salt concentration increases, the CPT increases. For divalent cations, as salt concentration rises, a maximum in the CPT is observed and attributed to ion binding to the protein surface and subsequent water structuring. Trends for sulfate salts were dramatically different from those for other salts because sulfate ion is strongly hydrated and excluded from the lysozyme surface. For anions at fixed salt concentration, the CPT decreases with rising anion kosmotropic character. Comparison of CPTs for pH 4.0 and 7.0 revealed two trends. At low ionic strength for a given salt, differences in CPT can be explained in terms of repulsive electrostatic interactions between protein molecules, while at higher ionic strength, differences can be attributed to hydration forces. A model is proposed for the correlation and prediction of the CPT as a function of salt type and salt concentration. NaCl was chosen as a reference salt, and CPT deviations from that of NaCl were attributed to hydration forces. The Random Phase Approximation, in conjunction with a square-well potential, was used to calculate the strength of protein-protein interactions as a function of solution conditions for all salts studied.  相似文献   

2.
Addition of “chaotropic” neutral salts to spin-labeled erythrocyte membranes produced changes in membrane conformation proportional to the known activities of the salts: KSCN > CaCl2 ≥ KNO3 ? NaCl. The effects had a threshold of about 0.10 m and increased through 0.60 m for all salts. Above 0.6 m other changes due to dielectric effects and/or protein loss began.The chaotropic effects were reversible on removal of the chaotropic ion, for human (or bovine) membranes prepared with a buffer ionic strength of 0.02. For membranes prepared with a buffer ionic strength of 0.005 the changes were irreversible. Exposure to salt concentration greater than 1 m also produced irreversible changes, probably due to solubilization. The results appear to show that the water-soluble membrane proteins are essential to maintain the “native” membrane conformation.  相似文献   

3.
Antennal gustatory sensilla of the ground beetle Pterostichus aethiops (Pz., 1797) (Coleoptera, Carabidae) respond to salts, the three sensory cells, A-, B- and C-cells, producing action potentials that are distinguished by differences in their shape, amplitude, duration and polarity of spikes. The B-cell (salt cell) was highly sensitive to both ionic composition and concentration of the tested nine salt solutions showing phasic-tonic type of reaction with a pronounced phasic component. The stimulating effect was dominated by the cations involved, and in most cases, monovalent cations were more effective stimuli than divalent cations. Salt concentration/response relations were tested with NaCl at 1, 10, 100 and 1000 mmol l−1: mean firing rates increased from 0.8 to 44 spikes per first second of the response, respectively. The pH value of the stimulating solutions also influenced the B-cell rate of firing. By contrast, the pH level of stimulus solutions influenced the A-cells’ phasic-tonic response more than the ionic composition or concentration of these solutions. Compared to a standard 100 mmol l−1 salt (NaCl) solution (pH 6.3), alkaline solutions of the salts NaCH3COO, Na2HPO4 and Na2B4O7 (pH 7.9, 8.5 and 9.3, respectively, all 100 mmol l−1) induced remarkably stronger responses in the A-cell. On the other hand, the reaction to an acid solution of NaH2PO4 (pH 4.5, 100 mmol l−1) was minimal. A-cell responses to neutral salts like NaCl, KCl, CaCl2, MgCl2 and C5H14NOCl (pH 6.1-6.5) varied largely in strength. Very low or no responses were observed with chlorides of divalent cations, CaCl2 and MgCl2, and choline chloride (C5H14NOCl), indicating that the ionic composition of the solutions also affected A-cell responses. Neural activity of the C-cell was not influenced by the salt solutions tested.  相似文献   

4.
Summary Intracellular perfusion technique has been applied to the muscle fibers of the barnacle species,Balanus nubilus. In these fibers, generation and the form of the calcium spike was governed by the frequency of stimulation and intra- and extracellular calcium concentrations. Voltage-clamp experiments showed that the magnitude of the potassium outward current was controlled by the intracellular calcium concentration whose increase, nearly 103-fold, raised the resting membrane conductance and the outward potassium current. On the other hand, application of 10mm zinc ions inside the muscle fiber had no effect on either the resting potential or the outward potassium current but suppressed the early inward calcium current. Similarly, the inward calcium current was decreased by low concentration of sodium ions in the extracellular fluid only when its ionic strength was made low by substituting sucrose for the sodium salt. Measurement of outward current with the muscle fiber in calcium-free ASW solution and intracellularly perfused with several cationic solutions established the selectivity sequence TEA相似文献   

5.
Intracellular perfusion technique has been applied to the muscle fibers of the barnacle species, Balanus nubilus. In these fibers, generation and the form of the calcium spike was governed by the frequency of stimulation and intra- and extracellular calcium concentrations. Voltage-clamp experiments showed that the magnitude of the potassium outward current was controlled by the intracellular calcium concentration whose increase, nearly 10(3)-fold, raised the resting membrane conductance and the outward potassium current. On the other hand, application of 10 mM zinc ions inside the muscle fiber had no effect on either the resting potential or the outward potassium current but suppressed the early inward calcium current. Similarly, the inward calcium current was decreased by low concentration of sodium ions in the extracellular fluid only when its ionic strength was made low by substituting sucrose for the sodium salt. Measurement of outward current with the muscle fiber in calcium-free ASW solution and intracellularly perfused with several cationic solutions established the selectivity sequence TEA less than Cs less than Li less than Tris less than Rb less than Na less than K for the potassium channel.  相似文献   

6.
The dogfish shark Squalus acanthias regulates plasma osmolality and extracellular volume by secreting a fluid from its rectal gland which has a higher NaCl and lower urea concentration than plasma. We have previously identified the presence of a calcium-sensing receptor or polyvalent cation sensing receptor (CaSR) on vascular smooth muscle of the rectal gland artery (RGA) and rectal gland tubules (RGT). Activity of the CaSR is influenced by changes in ionic strength. This led us to speculate that the ingestion of invertebrate sea animals increased plasma ionic strength, resulting in inhibition of the receptor, relaxation of RGA, and reversal of inhibition of chloride secretion by the RGT. In contrast, ingestion of fish could diminish ionic strength and have the opposite effect. To study the effect of changes in extracellular ionic strength, shark Ringers solutions were adjusted to three different ionic strengths with NaCl, but the osmolarities were kept constant by varying the concentration of urea. High ionic strength inhibited and low ionic strength enhanced the response to increasing external Ca2+ from 2.5 to 4.7 mM in RGT. The increase in cytosolic Ca2+ ([Ca2+]i) of cells in low, normal, and high ionic strength Ringers solution was 344 +/- 60, 201 +/- 26, and 114 +/- 15 nmol/L, respectively. The [Ca2+]i responses of RGA to external Ca2+ in Ringers of three different ionic strengths were 323 +/- 43, 231 +/- 14, and 56 +/- 11 nmol/L, respectively. Activation of the CaSR by spermine was reduced by more than 50% by high ionic strength in both RGT and RGA. Whether the small changes in shark plasma ionic strength that occur after a shark ingests marine animals with lower and higher ionic strength modulates salt secretion by the rectal gland is not yet known.  相似文献   

7.
Single-channel currents through chloride channels were recorded in cultured hippocampal neurones from rats using the patch-clamp method. The channel is active at voltages between -80 and +80 mV, and the time spent in the open state increases with depolarization (almost fourfold for 120 mV). The channel conductance is 62 pS in symmetrical 150 mM NaCl saline. In salt gradient conditions the channel was measurably permeable to Na+. Substitution of NO3- and Br- for Cl- gave higher single-channel currents, meaning a higher permeability of the channel toward the two anions than to Cl-. SO4(2-) ions were poorer charge carriers, yet contributed measurable inward current at negative voltages. Channel activity appeared independent of intracellular Ca2+ concentration. Taken together, these features would suggest for this channel a role in stabilizing resting membrane potential and in maintaining normal cell excitability.  相似文献   

8.
The values of membrane action potentials and maximum depolarization rates of single muscle fibers in normal Tyrode solution and in low sodium solutions containing as little as 20 per cent of the sodium chloride were measured with intracellular microelectrodes. Under these conditions the membrane potential remains unchanged up to 36 per cent of [Na+]out concentration, whereas the overshoot of the action potential varies linearly with the logarithm of the external sodium concentration. The maximum depolarization rate is a linear function of the external sodium concentration. The results obtained support the ionic theory for sodium and the independence principle for sodium current related to the external sodium concentration.  相似文献   

9.
The radiation response of Chinese hamster cells (V79) exposed to a wide concentration range of Li2SO4, Na2SO4 or K2SO4 has been examined and compared with the radiation response of cells treated in an identical manner with LiCl, NaCl, or KCl solutions. At hypotonic salt concentrations, cells were radiosensitized by both the chloride and sulphate salts. At high salt concentrations, approximately greater than 0.9 M, a radioprotective effect was observed with both chloride and sulphate salts. At intermediate salt concentrations from about 0.2 to 0.9 M, the cells that were treated with the sulphate salt solutions were radioprotected; cells treated with chloride salt solutions were radiosensitized. The difference in radiation response was attributed to the difference in anions for the two types of salts used.  相似文献   

10.
The response of cyanobacteria to a changing osmotic environment includes the accumulation of organic osmolytes such as glucosylglycerol. The activation of the enzymes involved in glucosylglycerol synthesis [glucosylglycerol-phosphate synthase (GGPS) and glucosylglycerol-phosphate phosphatase (GGPP)] in Synechocystis sp. strain PCC 6803 by various salts and salt concentrations was investigated in vitro. GGPS seemed to be the target for salt-mediated regulation of glucosylglycerol synthesis in vitro. GGPS activation was dependent on the concentration of NaCl, and a sigmoidal plot was obtained. Sensitivity to NaCl was markedly enhanced by low Mg+2 concentrations (optimal at 4 mM), but Mg2+ was not absolutely necessary for the Na+ stimulation. As in the case of NaCl, other salts (including MgCl2) stimulated GGPS. The relative order of GGPS activation in the presence of chloride by the cations at constant ionic strength was Li+ > Na+ > K+, Mg2+ Mn2+. No absolute dependence on ionic strength was observed in Mg2+/Na+-exchange experiments. The degree of activation by ions at various concentrations was positively related to the increasing destabilizing properties of the cations according to the Hofmeister rule, where chaotropic cations are most efficient. Cations were responsible for activation since chaotropic anions counteracted the activating effect of cations. Received: 10 August 1998 / Accepted: 11 November 1998  相似文献   

11.
Frog toe muscles were bathed in isotonic, sodium-free Tris chloride, methanesulfonate, or sulfate solutions containing sucrose or mannitol and varying in ionic strength from 0.006 to 0.291. By decreasing the ionic strength the curve relating the peak tension of the K contractures to the log [K] was reversibly shifted to lower [K]. Increasing the [Ca] from 1 to 4 mM almost abolished this effect. The resting uptake of 45Ca was increased more than two times by decreasing the ionic strength from 0.125 to 0.039. It was not increased significantly by raising [Ca] from 1 to 4 mM at low or normal ionic strength. The additional uptake of 45Ca during contractures provoked by 120 mM K was not significantly different at the two levels of ionic strength. The rate of emergence of 45Ca from muscles loaded with 45Ca at reduced ionic strength, was decreased. The effects of low ionic strength are discussed in terms of changes in the potential difference across a membrane with fixed negative charges on the outer surface.  相似文献   

12.
The passive permeability of the red blood cell in cations   总被引:6,自引:3,他引:3       下载免费PDF全文
The efflux of salt from human red blood cells suspended in isotonic sucrose plus low concentrations of salt, was measured under steady-state conditions. The relationship between the efflux and the log of the salt concentration can be fitted by two straight lines with a sharp inflection point, the steeper slope occurring at concentrations below 0.2 mM NaCl. The determining factor in the rate of efflux is the ionic strength rather than the specific monovalent cations or anions and the effects are completely reversible. With an increase in temperature, the effects of reduced ionic strength are more pronounced and the inflection point is shifted toward higher salt concentrations. An increase in pH leads to an increased efflux at a given ionic strength, but the size of the pH effect is small at low ionic strength. At a given pH, the data can be fitted by a simplified form of the Goldman equation suggesting that with reduction in ionic strength, the permeability remains constant until the inflection point is reached. At that ionic strength, a sharp reversible transition to a new permeability state occurs. The permeability increases with an increase in the external but not the internal pH.  相似文献   

13.
Eukaryotic cells exploit dynamic and compartmentalized ionic strength to impact a myriad of biological functions such as enzyme activities, protein-protein interactions, and catalytic functions. Herein, we investigated the fluorescence depolarization dynamics of recently developed ionic strength biosensors (mCerulean3-linker-mCitrine) in Hofmeister salt (KCl, NaCl, NaI, and Na2SO4) solutions. The mCerulean3-mCitrine acts as a Förster resonance energy transfer (FRET) pair, tethered together by two oppositely charged α-helices in the linker region. We developed a time-resolved fluorescence depolarization anisotropy approach for FRET analyses, in which the donor (mCerulean3) is excited by 425-nm laser pulses, followed by fluorescence depolarization analysis of the acceptor (mCitrine) in KE (lysine-glutamate), arginine-aspartate, and arginine-glutamate ionic strength sensors with variable amino acid sequences. Similar experiments were carried out on the cleaved sensors as well as an E6G2 construct, which has neutral α-helices in the linker region, as a control. Our results show distinct dynamics of the intact and cleaved sensors. Importantly, the FRET efficiency decreases and the donor-acceptor distance increases as the environmental ionic strength increases. Our chemical equilibrium analyses of the collapsed-to-stretched conformational state transition of KE reveal that the corresponding equilibrium constant and standard Gibbs free energy changes are ionic strength dependent. We also tested the existing theoretical models for FRET analyses using steady-state anisotropy, which reveal that the angle between the dipole moments of the donor and acceptor in the KE sensor are sensitive to the ionic strength. These results help establish the time-resolved depolarization dynamics of these genetically encoded donor-acceptor pairs as a quantitative means for FRET analysis, which complement traditional methods such as time-resolved fluorescence for future in vivo studies.  相似文献   

14.
Isolated thylakoid membranes are damaged during freezing in dilute salt solutions, as shown by the inactivation of photochemical thylakoid reactions. After freezing, a number of membrane proteins were found in the particle-free supernatant. Up to 5% of the total membrane protein was solubilized by freezing, and the pattern of released proteins as seen in sodium dodecyl sulfate gel electrophoretograms was influenced by the nature of the solutes present. Membranes protected by sucrose did not release much protein during freezing. Concentrated salt solutions caused protein release also in the absence of freezing. Among the proteins released were ferredoxin—NADP+ reductase, plastocyanin and coupling factor CF1. Subunits of CF1 were found in different proportions in the supernatants of thylakoid suspensions after freezing in the presence of different salts. Cyclic photophosphorylation was largely inactivated before significant protein release could be detected.It is suggested that protein release is the final consequence of the non-specific suppression of intramembrane ionic interactions by the high ionic strength created in the vicinity of the membranes by the accumulation of salts during slow freezing. Salt effects on water structure and alterations of nonpolar membrane interactions by the incorporation of (protonated) lipophilic anions from organic salts into the membrane phase during freezing may also be involved.  相似文献   

15.
Light-scattering has been measured on aqueous NaCl solutions of dodecyldimethylammonium chloride and sodium dodecyl sulfate. From molecular weight determination it is confirmed that spherical micelles are formed at low NaCl concentrations, but at high NaCl concentrations the small micelles formed at the critical micelle concentration further associate to form large rod-like micelles with increasing micelle concentration. The reduction of repulsion between charged groups induces the sphere-rod transition of micelle shape. The dependence of molecular weight on ionic strength can be expressed by double logarithmic relations, which are dependent on the micelle shape. While dodecyldimethylammonium chloride dissolves even in 4.00 M NaCl, sodium dodecyl sulfate solutions exhibit some XXX in angular dissymmetry at NaCl concentrations higher than 0.50 M at low temperatures.  相似文献   

16.
It has been shown that the intracellular concentrations of Na+, K+, and Cl- ions in Desulfonatronum thiodismutans depend on the extracellular concentration of Na' ions. An increase in the extracellular concentration of Na+ results in the accumulation of K+ ions in cells, which points to the possibility that these ions perform an osmoprotective function. When the concentration of the NaCI added to the medium was increased to 4%, the concentration gradient of Cl- ions changed insignificantly. It was found that D. thiodismutans contains two forms of hydrogenase--periplasmic and cytoplasmic. Both enzymes are capable of functioning in solutions with high ionic force; however they exhibit different sensitivities to Na+, K+, and Li+ salts and pH. The enzymes were found to be resistant to high concentrations of Na+ and K+ chlorides and Na+ bicarbonate. The cytoplasmic hydrogenase differed significantly from the periplasmic one in having much higher salt tolerance and lower pH optimum. The activity of these enzymes depended on the nature of both the cationic and anionic components of the salts. For instance, the inhibitory effect of NaCl was less pronounced than that of LiCl, whereas Na+ and Li+ sulfates inhibited the activity of both hydrogenase types to an equal degree. The highest activity of these enzymes was observed at low Na+ concentrations, close to those typical of cells growing at optimal salt concentrations.  相似文献   

17.
The capacitance of skeletal muscle fibers was measured by recording with one microelectrode the voltage produced by a rectangular pulse of current applied with another microelectrode. The ionic strength of the bathing solution was varied by isosmotic replacement of NaCl with sucrose, the [K] [Cl] product being held constant. The capacitance decreased with decreasing ionic strength, reaching a value of some 2 µF/cm2 in solutions of 30 mM ionic strength, and not decreasing further in solutions of 15 mM ionic strength. The capacitance of glycerol-treated fibers did not change with ionic strength and was also some 2 µF/cm2. It seems likely that lowering the ionic strength reduces the capacitance of the tubular system (defined as the charge stored in the tubular system), and that the 2 µF/cm2 which is insensitive to ionic strength is associated with the surface membrane. The tubular system is open to the external solution in low ionic strength solutions since peroxidase is able to diffuse into the lumen of the tubules. Twitches and action potentials were also recorded from fibers in low ionic strength solutions, even though the capacitance of the tubular system was very small in these solutions. This finding can be explained if there is an action potential—like mechanism in the tubular membrane.  相似文献   

18.
ORD and CD measurements of spectrin, in both the dimer and tetramer association state, indicate a high proportion of alpha-helix in this protein. At temperatures below 27 degrees C and in 0.1 M NaCl, the tetramer has an apparent helix content of 73% and the dimer, 68%. The conformation of both states is dependent on salt concentration and temperature. Low ionic strength solutions of spectrin display lowered sedimentation coefficients and a decreased apparent helix content, indicating perhaps a slight refolding and expansion of the molecule. In addition, spectrin in low ionic strength solutions undergoes a broad temperature-dependent transition spread from 20 to 50 degrees C, while in the presence of salt the transition is sharp and centered on 49 degrees C. The temperature-dependent changes in low ionic strength solutions appear to parallel the dissociation of tetramer to dimer.  相似文献   

19.
Preservation solutions for buffy coat-free red cell concentrates with sucrose concentrations from 234 decreasing up to 15 mmol per 1 solution were tested. The hemolysis rate increased from 0.5 up to 1.9% by decreasing the sucrose concentration. The red cell volume was unchanged at low sucrose concentrations. No differences were noticed in ATP content and morphological changes. A considerable extracellular pH shift at high sucrose concentration exists only at the beginning of storage. A sucrose concentration of 30-50 mmol/l solution (3-5 mmol per unit red cell concentrate) at an ionic strength of 0.16 proves to be most suitable.  相似文献   

20.
The effects of dehydration and hemorrhage on plasma ionic, osmotic, and antidiuretic hormone (arginine vasotocin) concentrations and of hemorrhage on salt gland secretion and glomerular filtration rate were evaluated in glaucous-winged gulls, Larus glaucescens. Dehydration for 24 h did not affect plasma ionic, osmotic or arginine vasotocin concentrations; 72 h dehydration significantly elevated plasma osmolality, plasma sodium and chloride concentrations, and plasma arginine vasotocin concentration, but did not affect plasma potassium concentration. Constant infusion of 0.8 mol·l-1 NaCl increased plasma arginine vasotocin concentration and produced salt gland secretion in seven gulls; four secreted well, while three secreted less well. Removal of 20% blood volume during saline infusion immediately reduced (P<0.001) salt gland secretion rate in all gulls. After bleeding, good secretors maintained glomerular filtration rate and urine flow rate; the poorer secretors increased glomerular filtration rate and became diuretic. Blood replacement returned salt gland secretion rate to the prebleeding level (P<0.05) without affecting salt gland secretions sodium concentration in gulls which secreted well, but did not restimulate salt gland secretion in gulls which secreted poorly. Reinfusion of blood had no effect on glomerular filtration rate. Bleeding and blood replacement did not affect plasma arginine vasotocin concentration.Abbreviations AVT arginine vasotocin - ECF extracellular fluid - ECFV extracellular fluid volume - EDTA ethylenediaminetetra-acetate - EWL evaporative water loss - GFR glomerular filtration rate - Hct hematocrit - LB large blood sample - [Na+]pl plasma sodium concentration - Osmpl plasma osmolality - PEG polyethylene glycol - RH relative humidity - RIA radioimmunoassay - SB small blood sample - SGS salt gland secretion - T a ambient temperature - TFA trifluoroacetic acid - UFR urine flow rate  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号