首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 13 毫秒
1.
Shiga toxin (Stx) is internalized by receptor-mediated endocytosis and transported retrogradely to the endoplasmic reticulum from where the enzymatically active part of the toxin is translocated to the cytosol. In this study, we have investigated the effect of polyunsaturated fatty acids (PUFA) on intoxication and retrograde transport of Stx. In HEp-2 cells, PUFA treatment inhibited Stx intoxication by a factor of 10. Moreover, both Stx internalization and endosome-to-Golgi transport were reduced by PUFA and these reductions can together explain the reduced toxicity. Also cholera toxin internalization was reduced by PUFA treatment. Finally, ricin and Pseudomonas exotoxin 1 cytotoxicity were not reduced by PUFA, demonstrating that PUFA do not cause a general block in retrograde transport to the endoplasmic reticulum. In conclusion, these results clearly demonstrate the importance of PUFA for Stx and cholera toxin trafficking.  相似文献   

2.
The bacterial exotoxin Shiga toxin is endocytosed by mammalian host cells and transported retrogradely through the secretory pathway before entering the cytosol. Shiga toxin also increases the levels of microfilaments and microtubules (MTs) upon binding to the cell surface. The purpose for this alteration in cytoskeletal dynamics is unknown. We have investigated whether Shiga toxin-induced changes in MT levels facilitate its intracellular transport. We have tested the effects of the Shiga toxin B subunit (STB) on MT-dependent and -independent transport steps. STB increases the rate of MT-dependent Golgi stack repositioning after nocodazole treatment. It also enhances the MT-dependent accumulation of transferrin in a perinuclear recycling compartment. By contrast, the rate of MT-independent transferrin recycling is not significantly different when STB is present. We found that STB normally requires MTs and dynein for its retrograde transport to the juxtanuclear Golgi complex and that STB increases MT assembly. Furthermore, we find that MT polymerization is limiting for STB transport in cells. These results show that STB-induced changes in cytoskeletal dynamics influence intracellular transport. We conclude that the increased rate of MT assembly upon Shiga toxin binding facilitates the retrograde transport of the toxin through the secretory pathway.  相似文献   

3.
4.
Shiga toxins (Stxs) produced by enterohaemorrhagic Escherichia coli may induce colonic ulceration, bloody diarrhoea and acute renal failure. The A subunit (StxA) is known to inhibit protein synthesis, whereas the B subunits (StxB) bind to Gb3 on the cell surface. However, the mechanisms by which Stxs kill target cells remain unclear. Stx1A or Stx1B genes were introduced into pcDNA3.1 vectors and transfected into NIH3T3 and HeLa cells. The Stx1B gene-transfected cells became apoptotic with accompanying DNA fragmentation, whereas the Stx1A gene-transfected cells were found to be necrotic and no DNA fragmentation occurred. The HeLa/C4 cells integrated with the Stx1B gene with a tetracycline-inducible promoter eventually produced cytoplasmic Stx1B, leading to DNA fragmentation on the addition of doxycycline. These apoptotic changes were abrogated by pretreatment with Z-VAD-fmk. These results suggest that the transfected Stx1B gene induces apoptosis by activating the caspase cascade after Stx1B expression in the cytoplasm.  相似文献   

5.
Manganese (Mn) protects cells against lethal doses of purified Shiga toxin by causing the degradation of the cycling transmembrane protein GPP130, which the toxin uses as a trafficking receptor. Mn-induced GPP130 down-regulation, in addition to being a potential therapeutic approach against Shiga toxicosis, is a model for the study of metal-regulated protein sorting. Significantly, however, the mechanism by which Mn regulates GPP130 trafficking is unknown. Here we show that a transferable trafficking determinant within GPP130 bound Mn and that Mn binding induced GPP130 oligomerization in the Golgi. Alanine substitutions blocking Mn binding abrogated both oligomerization of GPP130 and GPP130 sorting from the Golgi to lysosomes. Further, oligomerization was sufficient because forced aggregation, using a drug-controlled polymerization domain, redirected GPP130 to lysosomes in the absence of Mn. These experiments reveal metal-induced oligomerization as a Golgi sorting mechanism for a medically relevant receptor for Shiga toxin.  相似文献   

6.
Protein kinase C (PKC) isozymes regulate different vesicular trafficking steps in the recycling or degradative pathways. However, a possible role of these kinases in the retrograde pathway from endosomes to the Golgi complex has previously not been investigated. We report here the involvement of a specific PKC isozyme, PKCdelta, in the intracellular transport of the glycolipid-binding Shiga toxin (Stx), which utilizes the retrograde pathway to intoxicate cells. Upon binding to cells, Stx was shown to specifically activate PKCdelta and not PKCalpha. The involvement of PKCdelta and PKCalpha in the retrograde transport of Stx was then monitored biochemically and by immunofluorescence after inhibition or depletion of the isozymes. PKCdelta, but not PKCalpha, was shown to selectively regulate the endosome-to-Golgi transport of StxB. Upon inhibition or knockdown of PKCdelta, StxB molecules colocalized less with giantin and more with EEA1, indicating that the molecules were accumulated in endosomes, unable to reach the Golgi complex. The inhibition of Golgi transport of Stx was reflected by a strong reduction in the toxic effect, demonstrating that transport of Stx to the cytosol is dependent on PKCdelta activity. These results are in agreement with our previous data, which show that Stx is able to stimulate its own transport.  相似文献   

7.
The glycolipid-binding cytotoxin produced by Shigella dysenteriae 1, Shiga toxin, binds to MDCK cells (strain 1) only after treatment with short-chain fatty acids like butyric acid or with the tumor promoter 12-O-tetradecanoylphorbol 13-acetate. The induced binding sites were found to be functional with respect to endocytosis and translocation of toxin to the cytosol. Glycolipids that bind Shiga toxin appeared at both the apical and the basolateral surface of polarized MDCK cells grown on filters, and Shiga toxin was found to be endocytosed from both sides of the cells. This was demonstrated by EM of cells incubated with Shiga-HRP and by subcellular fractionation of cells incubated with 125I-labeled Shiga toxin. The data indicated that toxin molecules are endocytosed from coated pits, and that some internalized Shiga toxin is transported to the Golgi apparatus. Fractionation of polarized cells incubated with 125I-Shiga toxin showed that the transport of toxin to the Golgi apparatus was equally efficient from both poles of the cells. After 1-h incubation at 37 degrees C approximately 10% of the internalized toxin was found in the Golgi fractions. The results thus suggest that glycolipids can be efficiently transported to the Golgi apparatus from both sides of polarized MDCK cell monolayers.  相似文献   

8.
9.

Background  

Shiga toxins 1 and 2 (Stx1 and Stx2) are bacteriophage-encoded proteins that have been associated with hemorrhagic colitis, hemolytic uremic syndrome and other severe disease conditions. Stx1 and Stx2 are genetically and immunologically distinct but share the same compound toxin structure, method of entry and enzymatic function.  相似文献   

10.
The small-molecule inhibitor Exo2 {4-hydroxy-3-methoxy-(5,6,7,8-tetrahydrol[1]benzothieno[2,3-d]pyrimidin-4-yl)hydraz-one benzaldehyde} has been reported to disrupt the Golgi apparatus completely and to stimulate Golgi-ER (endoplasmic reticulum) fusion in mammalian cells, akin to the well-characterized fungal toxin BFA (brefeldin A). It has also been reported that Exo2 does not affect the integrity of the TGN (trans-Golgi network), or the direct retrograde trafficking of the glycolipid-binding cholera toxin from the TGN to the ER lumen. We have examined the effects of BFA and Exo2, and found that both compounds are indistinguishable in their inhibition of anterograde transport and that both reagents significantly disrupt the morphology of the TGN in HeLa and in BS-C-1 cells. However, Exo2, unlike BFA, does not induce tubulation and merging of the TGN and endosomal compartments. Furthermore, and in contrast with its effects on cholera toxin, Exo2 significantly perturbs the delivery of Shiga toxin to the ER. Together, these results suggest that the likely target(s) of Exo2 operate at the level of the TGN, the Golgi and a subset of early endosomes, and thus Exo2 provides a more selective tool than BFA for examining membrane trafficking in mammalian cells.  相似文献   

11.
Shiga toxin (Stx)-producing Escherichia coli (STEC), an important cause of hemolytic uremic syndrome, was completely killed by (60)Co irradiation at 1 x l0(3) gray (1 kGy) or higher. However, a low dose of irradiation (0.1-0.3 kGy) markedly induced Stx phage from STEC. Stx production was observed in parallel to the phage induction. Inactivation of Stx phage required a higher irradiation dose than that for bacterial killing. Regarding Stx, cytotoxicity was susceptible to irradiation, but cytokine induction activity was more resistant than Stx phage. The findings suggest that (1). although (60)Co irradiation is an effective means to kill the bacteria, it does induce Stx phage at a lower irradiation dose, with a risk of Stx phage transfer and emergence of new Stx-producing strains, and (2). irradiation differentially inactivates some activities of Stx.  相似文献   

12.
In HeLa cells, Shiga toxin B-subunit is transported from the plasma membrane to the endoplasmic reticulum, via early endosomes and the Golgi apparatus, circumventing the late endocytic pathway. We describe here that in cells derived from human monocytes, i.e., macrophages and dendritic cells, the B-subunit was internalized in a receptor-dependent manner, but retrograde transport to the biosynthetic/secretory pathway did not occur and part of the internalized protein was degraded in lysosomes. These differences correlated with the observation that the B-subunit associated with Triton X-100-resistant membranes in HeLa cells, but not in monocyte-derived cells, suggesting that retrograde targeting to the biosynthetic/secretory pathway required association with specialized microdomains of biological membranes. In agreement with this hypothesis we found that in HeLa cells, the B-subunit resisted extraction by Triton X-100 until its arrival in the target compartments of the retrograde pathway, i.e., the Golgi apparatus and the endoplasmic reticulum. Furthermore, destabilization of Triton X-100-resistant membranes by cholesterol extraction potently inhibited B-subunit transport from early endosomes to the trans-Golgi network, whereas under the same conditions, recycling of transferrin was not affected. Our data thus provide first evidence for a role of lipid asymmetry in membrane sorting at the interface between early endosomes and the trans-Golgi network.  相似文献   

13.
Produce isolates of the Escherichia coli Ont:H52 serotype carried Shiga toxin 1 and stable toxin genes but only expressed Stx1. These strains had pulsed-field gel electrophoresis profiles that were 90% homologous to clinical Ont:H52 strains that had identical phenotypes and genotypes. All Ont:H52 strains had identical single nucleotide polymorphism profiles that are suggestive of a unique clonal group.  相似文献   

14.
Shiga toxin can be internalized by clathrin-dependent endocytosis in different cell lines, although it binds specifically to the glycosphingolipid Gb3. It has been demonstrated previously that the toxin can induce recruitment of the toxin-receptor complex to clathrin-coated pits, but whether this process is concentration-dependent or which part of the toxin molecule is involved in this process, have so far been unresolved issues. In this article, we show that the rate of Shiga toxin uptake is dependent on the toxin concentration in several cell lines [HEp-2, HeLa, Vero and baby hamster kidney (BHK)], and that the increased rate observed at higher concentrations is strictly dependent on the presence of the A-subunit of cell surface-bound toxin. Surface-bound B-subunit has no stimulatory effect. Furthermore, this increase in toxin endocytosis is dependent on functional clathrin, as it did not occur in BHK cells after induction of antisense to clathrin heavy chain, thereby blocking clathrin-dependent endocytosis. By immunofluorescence, we show that there is an increased colocalization between Alexa-labeled Shiga toxin and Cy5-labeled transferrin in HeLa cells upon addition of unlabeled toxin. In conclusion, the data indicate that the Shiga toxin A-subunit of cell surface-bound toxin stimulates clathrin-dependent uptake of the toxin. Possible explanations for this phenomenon are discussed.  相似文献   

15.
Endocytosed Shiga toxin is transported from the Golgi complex to the endoplasmic reticulum in butyric acid-treated A431 cells. We here examine the extent of this retrograde transport and its regulation. The short B fragment of Shiga toxin is sufficient for transport to the ER. The B fragment of cholera toxin, which also binds to glycolipids, is transported to all the Golgi cisterns, but cannot be localized in the ER even after butyric acid treatment. Under all conditions the toxic protein ricin was found predominantly in the trans-Golgi network. There is no transport of endocytosed fluid to the Golgi apparatus or to the ER even after butyric acid treatment and in the presence of Shiga toxin, indicating that transport to the ER, through the trans-Golgi network and the cisterns of the Golgi apparatus, involves several sorting stations. Since Shiga toxin receptors (Gb3) in butyric acid- treated A431 cells seem to have a ceramide moiety with longer fatty acids than in untreated cells, the possibility exists that fatty acid composition of the receptor is important for sorting to the ER. Both retrograde transport and intoxication with Shiga toxin can also be induced by cAMP, supporting the idea that retrograde transport from the Golgi to the ER is required for intoxication. The data suggest that transport to the ER in cells in situ may depend on fatty acid composition and is regulated by physiological signals.  相似文献   

16.
Shiga toxins produced by Escherichia coli O157:H7 are responsible for food poisoning and hemolytic uremic syndrome (HUS). The A subunits of Shiga toxins (Stx1A and Stx2A) inhibit translation by depurinating a specific adenine in the large rRNA. To determine if Stx1A and Stx2A require the ribosomal stalk for depurination, their activity and cytotoxicity were examined in the yeast P protein deletion mutants. Stx1A and Stx2A were less toxic and depurinated ribosomes less in a strain lacking P1/P2 on the ribosome and in the cytosol (ΔP2) than in a strain lacking P1/P2 on the ribosome, but containing free P2 in the cytosol (ΔP1). To determine if cytoplasmic P proteins facilitated depurination, Stx1A and Stx2A were expressed in the P0ΔAB mutant, in which the binding sites for P1/P2 were deleted on the ribosome, and P1/P2 accumulated in the cytosol. Stx1A was less toxic and depurinated ribosomes less in P0ΔAB, suggesting that intact binding sites for P1/P2 were critical. In contrast, Stx2A was toxic and depurinated ribosomes in P0ΔAB as in wild type, suggesting that it did not require the P1/P2 binding sites. Depurination of ΔP1, but not P0ΔAB ribosomes increased upon addition of purified P1α/P2βin vitro, and the increase was greater for Stx1 than for Stx2. We conclude that cytoplasmic P proteins stimulate depurination by Stx1 by facilitating the access of the toxin to the ribosome. Although ribosomal stalk is important for Stx1 and Stx2 to depurinate the ribosome, Stx2 is less dependent on the stalk proteins for activity than Stx1 and can depurinate ribosomes with an incomplete stalk better than Stx1.  相似文献   

17.
The A-subunit polypeptides of Shiga toxin, the Shiga-like toxins (SLTs), and the plant lectin ricin inactivate eucaryotic ribosomes by enzymatically depurinating 28S rRNA. Comparison of the amino acid sequences of the members of the Shiga toxin family and ricin revealed two regions of significant homology that lie within a proposed active-site cleft of the ricin A chain. In previous studies, these conserved sequences of the SLT-I and ricin A subunits have been implicated as active sites. To establish the importance of these regions of homology, we used site-directed mutagenesis to alter the A-subunit sequences of two members of the Shiga toxin family. Substitution of an aspartic acid for glutamic acid 166 of the Slt-IIA subunit decreased the capacity of the polypeptides to inhibit protein synthesis at least 100-fold in a cell-free translation system. However, this mutation did not prevent the expression of immunoreactive, full-length Slt-IIA. In addition, SLT-II holotoxin containing the mutated A subunit was 1,000-fold less toxic to Vero cells. Finally, site-directed mutagenesis was used to delete sequences encoding amino acids 202 through 213 of the Shiga toxin A subunit. Although this deletion did not prevent holotoxin assembly, it abolished cytotoxic activity.  相似文献   

18.
We examined whether the mitogen-activated protein kinase (MAPK) pathway is involved in Shiga toxin (Stx)-induced Vero cell injury. Consonant with cell injury, Stx caused a transient extracellular signal-regulated kinase1/2 (ERK1/2) and a sustained p38 MAPK phosphorylation. p38 MAPK inhibitors (SB 203580 and PD 169316), but not an ERK1/2 kinase inhibitor (PD 98059), partially inhibited the Stx-induced cell death. BAPTA-AM, a Ca(2+) chelator, reduced both cell injury and p38 MAPK phosphorylation. Antioxidants reduced Stx1-induced p38 MAPK phosphorylation. These data indicate that Stx activates p38 MAPK through an increase in intracellular Ca(2+) and reactive oxygen species, and this signaling is involved in Stx-induced cell death.  相似文献   

19.
Apoptosis is an important process in normal animal development as well as in diseases, and inhibitor of apoptosis protein (IAP) is one of the important factors that regulate apoptotic cell death. We found that lipopolysaccharide (LPS) enhances the expression of mRNA and protein of cellular IAP-2 (cIAP2) in human monoblastic U937 cells differentiated by phorbol ester pretreatment. cIAP2 mRNA was not detected in undifferentiated U937 cells. mRNAs of cIAP1 and X-chromosome-linked IAP (XIAP) were expressed constitutively and not affected by LPS in both undifferentiated and differentiated cells. LPS stimulated the expression of cIAP2 mRNA and protein in time- and concentration-dependent manners. LPS enhanced the expression of cIAP2 mRNA and protein in human monocyte-derived macrophages, which was associated with the inhibition of the caspase-3 activation, i.e., decrease in active p17 fragment of caspase-3 with simultaneous accumulation of precursor p20 fragment. We conclude that LPS may inhibit apoptosis of macrophages, at least in part, through the induction of cIAP2.  相似文献   

20.
The pathogenic mechanisms of Shiga toxin and the Shiga-like toxins   总被引:33,自引:0,他引:33  
It is now well documented that some enteric bacteria which cause diarrhoeal and/or dysenteric disease produce, at high levels, one or more of a family of protein toxins referred to as Shiga toxin and Shiga-like toxins (SLTs; alternatively called verocytotoxins or VTs). Within the past few years, there have been considerable advancements made in our understanding of the biochemistry and molecular biology of Shiga toxin and SLTs. However, the precise role of the toxins in mediating colonic disease, as well as their contribution to the development of extra-intestinal sequelae (e.g. the haemolytic uraemic syndrome and neurological disorders), remain less clear. In this MicroReview, we will briefly summarize recent progress in Shiga toxin- and SLT-related research and present evidence supporting the concept that these toxins contribute to pathogenesis by directly damaging vascular endothelial cells, thereby disrupting the homeostatic properties of these cells. We will also discuss data which suggest that toxin-mediated damage in the kidney may not be limited to glomerular endothelial cells but may include tubular epithelial cells. Thus, the role of the toxins in renal disease may not be limited to the glomeruli, as was initially hypothesized when the association of infection with toxin-producing strains and the development of acute renal failure was established.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号