首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Visual signal transduction is initiated by the photoisomerization of 11-cis retinal upon rhodopsin ligation. Unlike vertebrate rhodopsin, which interacts with Gt-type G-protein to stimulate the cyclic GMP signaling pathway, invertebrate rhodopsin interacts with Gq-type G-protein to stimulate a signaling pathway that is based on inositol 1,4,5-triphosphate. Since the inositol 1,4,5-triphosphate signaling pathway is utilized by mammalian nonvisual pigments and a large number of G-protein-coupled receptors, it is important to elucidate how the activation mechanism of invertebrate rhodopsin differs from that of vertebrate rhodopsin. Previous crystallographic studies of squid and bovine rhodopsins have shown that there is a profound difference in the structures of the retinal-binding pockets of these photoreceptors. Here, we report the crystal structures of all-trans bathorhodopsin (Batho; the first photoreaction intermediate) and the artificial 9-cis isorhodopsin (Iso) of squid rhodopsin. Upon the formation of Batho, the central moiety of the retinal was observed to move largely towards the cytoplasmic side, while the Schiff base and the ionone ring underwent limited movements (i.e., the all-trans retinal in Batho took on a right-handed screwed configuration). Conversely, the 9-cis retinal in Iso took on a planar configuration. Our results suggest that the light energy absorbed by squid rhodopsin is mostly converted into the distortion energy of the retinal polyene chain and surrounding residues.  相似文献   

2.
The light-induced isomerization of the retinal from 11-cis to all-trans triggers changes in the conformation of visual rhodopsins that lead to the formation of the activated state, which is ready to interact with the G protein. To begin to understand how changes in the structure and dynamics of the retinal are transmitted to the protein, we performed molecular dynamics simulations of squid rhodopsin with 11-cis and all-trans retinal, and with two different force fields for describing the retinal molecule. The results indicate that structural rearrangements in the binding pocket, albeit small, propagate toward the cytoplasmic side of the protein, and affect the dynamics of internal water molecules. The sensitivity of the active-site interactions on the retinal force-field parameters highlights the coupling between the retinal molecule and its immediate protein environment.  相似文献   

3.
Invertebrate rhodopsins activate a G-protein signalling pathway in microvillar photoreceptors. In contrast to the transducin-cyclic GMP phosphodiesterase pathway found in vertebrate rods and cones, visual transduction in cephalopod (squid, octopus, cuttlefish) invertebrates is signalled via Gq and phospholipase C. Squid rhodopsin contains the conserved residues of the G-protein coupled receptor (GPCR) family, but has only 35% identity with mammalian rhodopsins. Unlike vertebrate rhodopsins, cephalopod rhodopsin is arranged in an ordered lattice in the photoreceptor membranes. This organization confers sensitivity to the plane of polarized light and also provides the optimal orientation of the linear retinal chromophores in the cylindrical microvillar membranes for light capture. Two-dimensional crystals of squid rhodopsin show a rectilinear arrangement that is likely to be related to the alignment of rhodopsins in vivo.Here, we present a three-dimensional structure of squid rhodopsin determined by cryo-electron microscopy of two-dimensional crystals. Docking the atomic structure of bovine rhodopsin into the squid density map shows that the helix packing and extracellular plug structure are conserved. In addition, there are two novel structural features revealed by our map. The linear lattice contact appears to be made by the transverse C-terminal helix lying on the cytoplasmic surface of the membrane. Also at the cytoplasmic surface, additional density may correspond to a helix 5-6 loop insertion found in most GPCRs relative to vertebrate rhodopsins. The similarity supports the conservation in structure of rhodopsins (and other G-protein-coupled receptors) from phylogenetically distant organisms. The map provides the first indication of the structural basis for rhodopsin alignment in the microvillar membrane.  相似文献   

4.
Upon absorption of light, the retinal chromophore in rhodopsin isomerizes from the 11-cis to the trans configuration, initiating a photoreaction cycle. The primary photoreaction state, bathorhodopsin (BATHO), relaxes thermally through lumirhodopsin (LUMI) into a photoactive state, metarhodopsin (META), which stimulates the conjugated G-protein. Previous crystallographic studies of squid and bovine rhodopsins have shown that the structural change in the primary photoreaction of squid rhodopsin is considerably different from that observed in bovine rhodopsin. It would be expected that there is a fundamental difference in the subsequent thermal relaxation process between vertebrate and invertebrate rhodopsins. In this work, we performed crystallographic analyses of the LUMI state of squid rhodopsin using the P62 crystal. When the crystal was illuminated at 100 K with blue light, a half fraction of the protein was converted into BATHO. This reaction state relaxed into LUMI when the illuminated crystal was warmed in the dark to 170 K. It was found that, whereas trans retinal is largely twisted in BATHO, it takes on a more planar configuration in LUMI. This relaxation of retinal is accompanied by reorientation of the Schiff base NH bond, the hydrogen-bonding partner of which is switched to Asn185 in LUMI. Unlike bovine rhodopsin, the BATHO-to-LUMI transition in squid rhodopsin was accompanied by no significant change in the position/orientation of the beta-ionone ring of retinal.  相似文献   

5.
The crystal structure of sensory rhodopsin II from Natronobacterium pharaonis was recently solved at 2.1 Å resolution from lipidic cubic phase-grown crystals. A critical analysis of previous structure-function studies is possible within the framework of the high-resolution structure of this photoreceptor. Based on the structure, a molecular understanding emerges of the efficiency and selectivity of the photoisomerization reaction, of the interaction of the sensory receptor and its cognate transducer protein HtrII, and of the mechanism of spectral tuning in photoreceptors. The architecture of the retinal binding pocket is compact, representing a major determinant for the selective binding of the chromophore, all-trans retinal to the apoprotein, opsin. Several chromophore-protein interactions revealed by the structure were not predicted by previous mutagenesis and spectroscopic analyses. The structure suggests likely mechanisms by which photoisomerization triggers the activation of sensory rhodopsin II, and highlights the possibility of a unified mechanism of signaling mediated by sensory receptors, including visual rhodopsins. Future investigations using time-resolved crystallography, structural dynamics, and computational studies will provide the basis to unveil the molecular mechanisms of sensory receptors-mediated transmembrane signaling.  相似文献   

6.
Yeagle PL  Choi G  Albert AD 《Biochemistry》2001,40(39):11932-11937
Activation of G-protein coupled receptors (GPCR) is not yet understood. A recent structure showed most of rhodopsin in the ground (not activated) state of the GPCR, but the cytoplasmic face, which couples to the G protein in signal transduction, was not well-defined. We have determined an experimental three-dimensional structure for rhodopsin in the unactivated state, which shows good agreement with the crystal structure in the transmembrane domain. This new structure defines the cytoplasmic face of rhodopsin. The G-protein binding site can be mapped. The same experimental approach yields a preliminary structure of the cytoplasmic face in the activated (metarhodopsin II) receptor. Differences between the two structures suggest how the receptor is activated to couple with transducin.  相似文献   

7.
G-protein coupled receptors (GPCRs) are a protein family of outstanding pharmaceutical interest. GPCR homology models, based on the crystal structure of bovine rhodopsin, have been shown to be valuable tools in the drug-design process. The initial model is often refined by molecular dynamics (MD) simulations, a procedure that has been recently discussed controversially. We therefore analyzed MD simulations of bovine rhodopsin in order to identify contacts that could serve as constraints in the simulation of homology models. Additionally, the effect of an N-terminal truncation, the nature of the membrane mimic, the influence of varying protonation states of buried residues and the importance of internal water molecules was analyzed. All simulations were carried out using the program-package GROMACS. While N-terminal truncation negatively influenced the overall protein stability, a stable simulation was possible in both solvent environments. As regards the protonation state of titratable sites, the experimental data could be reproduced by the program UHBD (University of Houston Brownian Dynamics), suggesting its application for studying homology models of GPCRs. A high flexibility was observed for internal water molecules at some sites. Finally, interhelical hydrogen-bonding interactions could be derived, which can now serve as constraints in the simulations of GPCR homology models.  相似文献   

8.

Background

The classic paradigm of heterotrimeric G-protein signaling describes a heptahelical, membrane-spanning G-protein coupled receptor that physically interacts with an intracellular Gα subunit of the G-protein heterotrimer to transduce signals. G-protein coupled receptors comprise the largest protein superfamily in metazoa and are physiologically important as they sense highly diverse stimuli and play key roles in human disease. The heterotrimeric G-protein signaling mechanism is conserved across metazoa, and also readily identifiable in plants, but the low sequence conservation of G-protein coupled receptors hampers the identification of novel ones. Using diverse computational methods, we performed whole-proteome analyses of the three dominant model plant species, the herbaceous dicot Arabidopsis thaliana (mouse-eared cress), the monocot Oryza sativa (rice), and the woody dicot Populus trichocarpa (poplar), to identify plant protein sequences most likely to be GPCRs.

Results

Our stringent bioinformatic pipeline allowed the high confidence identification of candidate G-protein coupled receptors within the Arabidopsis, Oryza, and Populus proteomes. We extended these computational results through actual wet-bench experiments where we tested over half of our highest ranking Arabidopsis candidate G-protein coupled receptors for the ability to physically couple with GPA1, the sole Gα in Arabidopsis. We found that seven out of eight tested candidate G-protein coupled receptors do in fact interact with GPA1. We show through G-protein coupled receptor classification and molecular evolutionary analyses that both individual G-protein coupled receptor candidates and candidate G-protein coupled receptor families are conserved across plant species and that, in some cases, this conservation extends to metazoans.

Conclusion

Our computational and wet-bench results provide the first step toward understanding the diversity, conservation, and functional roles of plant candidate G-protein coupled receptors.  相似文献   

9.
G-protein-coupled receptors play a key step in cellular signal transduction cascades by transducing various extracellular signals via G-proteins. Rhodopsin is a prototypical G-protein-coupled receptor involved in the retinal visual signaling cascade. We determined the structure of squid rhodopsin at 3.7A resolution, which transduces signals through the G(q) protein to the phosphoinositol cascade. The structure showed seven transmembrane helices and an amphipathic helix H8 has similar geometry to structures from bovine rhodopsin, coupling to G(t), and human beta(2)-adrenergic receptor, coupling to G(s). Notably, squid rhodopsin contains a well structured cytoplasmic region involved in the interaction with G-proteins, and this region is flexible or disordered in bovine rhodopsin and human beta(2)-adrenergic receptor. The transmembrane helices 5 and 6 are longer and extrude into the cytoplasm. The distal C-terminal tail contains a short hydrophilic alpha-helix CH after the palmitoylated cysteine residues. The residues in the distal C-terminal tail interact with the neighboring residues in the second cytoplasmic loop, the extruded transmembrane helices 5 and 6, and the short helix H8. Additionally, the Tyr-111, Asn-87, and Asn-185 residues are located within hydrogen-bonding distances from the nitrogen atom of the Schiff base.  相似文献   

10.
Birdsall NJ  Lazareno S  Popham A  Saldanha J 《Life sciences》2001,68(22-23):2517-2524
Proteins and small molecules are capable of regulating the agonist binding and function of G-protein coupled receptors by multiple allosteric mechanisms. In the case of muscarinic receptors, there is the well-characterised allosteric site that binds, for example, gallamine and brucine. The protein kinase inhibitor, KT5720, has now been shown to bind to a second allosteric site and to regulate agonist and antagonist binding. The binding of brucine and gallamine does not affect KT5720 binding nor its effects on the dissociation of [3H]-N-methylscopolamine from M1 receptors. Therefore it is possible to have a muscarinic receptor with three small ligands bound simultaneously. A model of the M1 receptor, based on the recently determined structure of rhodopsin, has the residues that have been shown to be important for gallamine binding clustered within and to one side of a cleft in the extracellular face of the receptor. This cleft may represent the access route of acetylcholine to its binding site.  相似文献   

11.
A number of recently solved crystal structures of G-protein coupled receptors reveal the presence of closely associated cholesterol molecules in the receptor structure. We have previously shown the requirement of membrane cholesterol in the organization, dynamics and function of the serotonin1A receptor, a representative G‐protein coupled receptor. In this work, we explored the role of membrane cholesterol in the stability of the human serotonin1A receptor. Analysis of sensitivity of the receptor to thermal deactivation, pH, and proteolytic digestion in control, cholesterol-depleted and cholesterol-enriched membranes comprehensively demonstrate that membrane cholesterol stabilizes the serotonin1A receptor. We conclude that these results could have potential implications in future efforts toward crystallizing the receptor.  相似文献   

12.
Opioid receptors are the principal targets for opioids, which have been used as analgesics for centuries. Opioid receptors belong to the rhodopsin family of G-protein coupled receptors (GPCRs). In the absence of crystal structures of opioid receptors, 3D homology models have been reported with bovine rhodopsin as a template, though the sequence homology is low. Recently, it has been reported that use of multiple templates results in a better model for a target having low sequence identity with a single template. With the objective of carrying out a comparative study on the structural quality of the 3D models based on single and multiple templates, the homology models for opioid receptors (mu, delta and kappa) were generated using bovine rhodopsin as single template and the recently deposited crystal structures of squid rhodopsin, turkey β-1 and human β-2 adrenoreceptors along with bovine rhodopsin as multiple templates. In this paper we report the results of comparison between the refined 3D models based on multiple sequence alignment (MSA) and models built with bovine rhodopsin as template, using validation programs PROCHECK, PROSA, Verify 3D, Molprobity and docking studies. The results indicate that homology models of mu and kappa with multiple templates are better than those built with only bovine rhodopsin as template, whereas, in many aspects, the homology model of delta opioid receptor with single template is better with respect to the model based on multiple templates. Three nonselective ligands were docked to both the models of mu, delta and kappa opioid receptors using GOLD 3.1. The results of docking complied well with the pharamacophore, reported for nonspecific opioid ligands. The comparison of docking results for models with multiple templates and those with single template have been discussed in detail. Three selective ligands for each receptor were also docked. As the crystallographic structures are not yet known, this comparison will help in choosing better homology models of opioid receptors for studying ligand receptor interactions to design new potent opioid antagonists.  相似文献   

13.
A number of recently solved crystal structures of G-protein coupled receptors reveal the presence of closely associated cholesterol molecules in the receptor structure. We have previously shown the requirement of membrane cholesterol in the organization, dynamics and function of the serotonin(1A) receptor, a representative G-protein coupled receptor. In this work, we explored the role of membrane cholesterol in the stability of the human serotonin(1A) receptor. Analysis of sensitivity of the receptor to thermal deactivation, pH, and proteolytic digestion in control, cholesterol-depleted and cholesterol-enriched membranes comprehensively demonstrate that membrane cholesterol stabilizes the serotonin(1A) receptor. We conclude that these results could have potential implications in future efforts toward crystallizing the receptor.  相似文献   

14.
G-protein coupled receptors (GPCRs) are integral membrane cell surface receptors with key roles in mediating the cellular responses to a wide range of biologically relevant molecules including hormones, neurotransmitters and importantly the majority of currently available drugs. The first high-resolution, X-ray crystallographic structure of a GPCR, that of rhodopsin, was obtained in 2000. It took a further seven years for the next structure, that of the β2 adrenergic receptor. Remarkably, at the time of writing, there have been an astonishing 18 further independent high-resolution GPCR structures published in the last five years (overall total of 68 structures in different conformations or bound to different ligands). Of particular note is the recent structure of the β2 adrenergic receptor in complex with its cognate heterotrimeric G-protein revealing for the first time molecular details of the interaction between a GPCR and the complete G-protein. Together these structures have provided unprecedented detail into the mechanism of action of these incredibly important proteins. This review describes several key methodological advances that have made such extraordinarily fast progress possible.  相似文献   

15.
The crystal structure of sensory rhodopsin II from Natronobacterium pharaonis was recently solved at 2.1 A resolution from lipidic cubic phase-grown crystals. A critical analysis of previous structure-function studies is possible within the framework of the high-resolution structure of this photoreceptor. Based on the structure, a molecular understanding emerges of the efficiency and selectivity of the photoisomerization reaction, of the interaction of the sensory receptor and its cognate transducer protein HtrII, and of the mechanism of spectral tuning in photoreceptors. The architecture of the retinal binding pocket is compact, representing a major determinant for the selective binding of the chromophore, all-trans retinal to the apoprotein, opsin. Several chromophore-protein interactions revealed by the structure were not predicted by previous mutagenesis and spectroscopic analyses. The structure suggests likely mechanisms by which photoisomerization triggers the activation of sensory rhodopsin II, and highlights the possibility of a unified mechanism of signaling mediated by sensory receptors, including visual rhodopsins. Future investigations using time-resolved crystallography, structural dynamics, and computational studies will provide the basis to unveil the molecular mechanisms of sensory receptors-mediated transmembrane signaling.  相似文献   

16.
Choi G  Landin J  Galan JF  Birge RR  Albert AD  Yeagle PL 《Biochemistry》2002,41(23):7318-7324
The structural changes that accompany activation of a G-protein coupled receptor (GPCR) are not well understood. To better understand the activation of rhodopsin, the GPCR responsible for visual transduction, we report studies on the three-dimensional structure for the activated state of this receptor, metarhodopsin II. Differences between the three-dimensional structure of ground state rhodopsin and metarhodopsin II, particularly in the cytoplasmic face of the receptor, suggest how the receptor is activated to couple with transducin. In particular, activation opens a groove on the surface of the receptor that could bind the N-terminal helix of the G protein, transducin alpha.  相似文献   

17.
Photoreceptors of the squid Loligo pealei contain a G-protein-coupled receptor (GPCR) signaling system that activates phospholipase C in response to light. Analogous to the mammalian visual system, signaling of the photoactivated GPCR rhodopsin is terminated by binding of squid arrestin (sArr). sArr forms a light-dependent, high-affinity complex with squid rhodopsin, which does not require prior receptor phosphorylation for interaction. This is at odds with classical mammalian GPCR desensitization where an agonist-bound phosphorylated receptor is needed to break stabilizing constraints within arrestins, the so-called “three-element interaction” and “polar core” network, before a stable receptor–arrestin complex can be established. Biophysical and mass spectrometric analysis of the squid rhodopsin–arrestin complex indicates that in contrast to mammalian arrestins, the sArr C-tail is not involved in a stable three-element interaction. We determined the crystal structure of C-terminally truncated sArr that adopts a basal conformation common to arrestins and is stabilized by a series of weak but novel polar core interactions. Unlike mammalian arrestin-1, deletion of the sArr C-tail does not influence kinetic properties of complex formation of sArr with the receptor. Hydrogen–deuterium exchange studies revealed the footprint of the light-activated rhodopsin on sArr. Furthermore, double electron–electron resonance spectroscopy experiments provide evidence that receptor-bound sArr adopts a conformation different from the one known for arrestin-1 and molecular dynamics simulations reveal the residues that account for the weak three-element interaction. Insights gleaned from studying this system add to our general understanding of GPCR–arrestin interaction.  相似文献   

18.
Using sets of experimental distance restraints, which characterize active or inactive receptor conformations, and the X-ray crystal structure of the inactive form of bovine rhodopsin as a starting point, we have constructed models of both the active and inactive forms of rhodopsin and the beta2-adrenergic G-protein coupled receptors (GPCRs). The distance restraints were obtained from published data for site-directed crosslinking, engineered zinc binding, site-directed spin-labeling, IR spectroscopy, and cysteine accessibility studies conducted on class A GPCRs. Molecular dynamics simulations in the presence of either "active" or "inactive" restraints were used to generate two distinguishable receptor models. The process for generating the inactive and active models was validated by the hit rates, yields, and enrichment factors determined for the selection of antagonists in the inactive model and for the selection of agonists in the active model from a set of nonadrenergic GPCR drug-like ligands in a virtual screen using ligand docking software. The simulation results provide new insights into the relationships observed between selected biochemical data, the crystal structure of rhodopsin, and the structural rearrangements that occur during activation.  相似文献   

19.
Navarro J  Landau EM  Fahmy K 《Biopolymers》2002,67(3):167-177
The primary step in cellular signaling by G-protein-coupled receptors (GPCRs) is the interaction of the agonist-activated transmembrane receptor with an intracellular G-protein. Understanding the underlying molecular mechanisms requires the structural determination of receptor G-protein complexes that are not yet achieved. The crystal structure of the bovine photoreceptor rhodopsin, a prototypical GPCR, was solved recently and the structures of different states of engineered G-proteins were reported. Posttranslational hydrophobic modifications of G-proteins are in most cases removed for crystallization but play functional roles for interactions among G-protein subunits with receptors, as well as membranes. Bovine rhodopsin is reconstituted into lipidic cubic phases to assess their potential for crystallization of receptor G-protein complexes under conditions that may preserve the structural and functional roles of hydrophobic protein modifications. Three-dimensional bilayers of a bicontinuous lipidic cubic phase are successfully employed for crystallization of membrane and soluble proteins. UV-visible absorption and attenuated total reflection Fourier transform IR difference spectroscopy reveal that light activation of cubic phase reconstituted rhodopsin results in the generation of a metarhodopsin II-like state. Via diffusion along aqueous channels, transducin couples efficiently to this photoproduct as evidenced by the nucleotide-dependent increase of transducin fluorescence. Thus, rhodopsin transducin interactions do not crucially depend on the presence of sn1 and sn2 acyl chains, phospholipid head groups, or membrane planarity. Because lipidic cubic phases preserve the essential functional and structural properties of native rhodopsin and transducin, they appear suitable for the detergent-free crystallization of receptor G-protein complexes carrying a normal pattern of hydrophobic modifications.  相似文献   

20.
The G-protein-coupled receptor rhodopsin is activated by photoconversion of its covalently bound ligand 11-cis-retinal to the agonist all-trans-retinal. After light-induced isomerization and early photointermediates, the receptor reaches a G-protein-dependent equilibrium between active and inactive conformations distinguished by the protonation of key opsin residues. In this report, we study the role of the 9-methyl group of retinal, one of the crucial steric determinants of light activation. We find that when this group is removed, the protonation equilibrium is strongly shifted to the inactive conformation. The residually formed active species is very similar to the active form of normal rhodopsin, metarhodopsin II. It has a deprotonated Schiff base, binds to the retinal G-protein transducin, and is favored at acidic pH. Our data show that the normal proton transfer reactions are inhibited in 9-demethyl rhodopsin but are still mandatory for receptor activation. We propose that retinal and its 9-methyl group act as a scaffold for opsin to adjust key proton donor and acceptor side chains for the proton transfer reactions that stabilize the active conformation. The mechanism may also be applicable to related receptors and may thus explain the partial agonism of certain ligands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号