首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To assess the effects related to known and proposed biosynthetic pathways on the (13)C content of lipids and storage products of the photoautotrophic bacterium Chloroflexus aurantiacus, the isotopic compositions of bulk cell material, alkyl and isoprenoid lipids, and storage products such as glycogen and polyhydroxyalkanoic acids have been investigated. The bulk cell material was 13 per thousand depleted in (13)C relative to the dissolved inorganic carbon. Evidently, inorganic carbon fixation by the main carboxylating enzymes used by C. aurantiacus, which are assumed to use bicarbonate rather than CO(2), results in a relatively small carbon isotopic fractionation compared with CO(2) fixation by the Calvin cycle. Even carbon numbered fatty acids, odd carbon numbered fatty acids, and isoprenoid lipids were 14, 15, and 17-18 per thousand depleted in (13)C relative to the carbon source, respectively. Based on the (13)C contents of alkyl and isoprenoid lipids, a 40 per thousand difference in (13)C content between the carboxyl and methyl carbon from acetyl-coenzyme A has been calculated. Both sugars and polyhydroxyalkanoic acid were enriched in (13)C relative to the alkyl and isoprenoid lipids. To the best of our knowledge this is the first report in which the stable carbon isotopic composition of a large range of biosynthetic products in a photoautotrophic organism has been investigated and interpreted based on previously proposed inorganic carbon fixation and biosynthetic pathways. Our results indicate that compound-specific stable carbon isotope analysis may provide a rapid screening tool for carbon fixation pathways.  相似文献   

2.
The stable carbon isotopic compositions of the inorganic carbon source, bulk cell material, and isoprenoid lipids of the hyperthermophilic crenarchaeon Metallosphaera sedula, which uses a 3-hydroxypropionate-like pathway for autotrophic carbon fixation, have been measured. Bulk cell material was approximately 3 per thousand enriched in 13C relative to the dissolved inorganic carbon, and 2 per thousand depleted in 13C relative to isoprenoid membrane lipids. The isotope data suggested that M. sedula uses mainly bicarbonate rather than CO(2) as inorganic carbon source, which is in accordance with a 3-hydroxypropionate-like carbon fixation pathway. To the best of our knowledge this is the first report of 13C fractionation effects of such a hyperthermophilic crenarchaeon.  相似文献   

3.
The molecular and isotopic compositions of lipid biomarkers of cultured Aquificales genera have been used to study the community and trophic structure of the hyperthermophilic pink streamers and vent biofilm from Octopus Spring. Thermocrinis ruber, Thermocrinis sp. strain HI 11/12, Hydrogenobacter thermophilus TK-6, Aquifex pyrophilus, and Aquifex aeolicus all contained glycerol-ether phospholipids as well as acyl glycerides. The n-C(20:1) and cy-C(21) fatty acids dominated all of the Aquificales, while the alkyl glycerol ethers were mainly C(18:0). These Aquificales biomarkers were major constituents of the lipid extracts of two Octopus Spring samples, a biofilm associated with the siliceous vent walls, and the well-known pink streamer community (PSC). Both the biofilm and the PSC contained mono- and dialkyl glycerol ethers in which C(18) and C(20) alkyl groups were prevalent. Phospholipid fatty acids included both the Aquificales n-C(20:1) and cy-C(21), plus a series of iso-branched fatty acids (i-C(15:0) to i-C(21:0)), indicating an additional bacterial component. Biomass and lipids from the PSC were depleted in (13)C relative to source water CO(2) by 10.9 and 17.2 per thousand, respectively. The C(20-21) fatty acids of the PSC were less depleted than the iso-branched fatty acids, 18.4 and 22.6 per thousand, respectively. The biomass of T. ruber grown on CO(2) was depleted in (13)C by only 3.3 per thousand relative to C source. In contrast, biomass was depleted by 19.7 per thousand when formate was the C source. Independent of carbon source, T. ruber lipids were heavier than biomass (+1.3 per thousand). The depletion in the C(20-21) fatty acids from the PSC indicates that Thermocrinis biomass must be similarly depleted and too light to be explained by growth on CO(2). Accordingly, Thermocrinis in the PSC is likely to have utilized formate, presumably generated in the spring source region.  相似文献   

4.
Compound-specific carbon and hydrogen isotopic compositions of lipid biomolecules (n-alkanes, n-alkanoic acids, n-alkanols, sesquiterpenes, diterpenes, phytol, diterpenols and β-sitosterol), extracted from Cryptomeria japonica leaves, were determined in order to understand isotopic fractionations occurring during lipid biosynthesis in this species. All lipid biomolecules were depleted in both 13C and D relative to bulk tissue and ambient water, respectively. n-Alkyl lipids associated with the acetogenic pathway were depleted in 13C relative to bulk tissue by 2.4-9.9‰ and depleted in D relative to ambient water by 91-152‰. C15- and C30-isoprenoid lipids (sesquiterpenes, squalene and β-sitosterol) associated with the mevalonic-acid pathway are depleted in 13C relative to bulk tissue by 1.7-3.1‰ and depleted in D relative to ambient water by 212-238‰. C20-isoprenoid lipids (phytol and diterpenoids) associated with the non-mevalonic-acid pathway were depleted in 13C relative to bulk tissue by 4.6-5.9‰ and depleted in D relative to ambient water by 238-303‰. Phytol was significantly depleted in D by amounts up to 65‰ relative to other C20 isoprenoid lipids. The acetogenic, mevalonic-acid and non-mevalonic-acid pathways were clearly discriminated using a cross-plot between the carbon and hydrogen isotopic fractionations.  相似文献   

5.
Stable carbon isotopes can provide insight into carbon cycling pathways in natural environments. We examined carbon isotope fractionations associated with a hyperthermophilic fermentative bacterium, Thermotoga maritima, and a thermophilic chemolithoautotrophic bacterium Persephonella marina. In T. maritima, phospholipid fatty acids (PLFA) are slightly enriched in 13C relative to biomass (epsilon = 0.1-0.8 per thousand). However, PLFA and biomass are depleted in 13C relative to the substrate glucose by approximately 8 per thousand. In P. marina, PLFA are 1.8-14.5 per thousand enriched in 13C relative to biomass, which suggests that the reversed tricarboxylic acid (TCA) cycle or the 3-hydroxypropionate pathway may be used for CO2 fixation. This is supported by small fractionation between biomass and CO2 (epsilon = -3.8 per thousand to -5.0 per thousand), which is similar to fractionations reported for other organisms using similar CO2 fixation pathways. Identification of the exact pathway will require biochemical assay for specific enzymes associated with the reversed TCA cycle or the 3-hydroxypropionate pathway.  相似文献   

6.
The stable carbon isotope composition of isoprene emitted from leaves of red oak (Quercus rubra L.) was measured. Isoprene was depleted in 13C relative to carbon recently fixed by photosynthesis. The difference in isotope composition between recently fixed carbon and emitted isoprene was independent of the isotopic composition of the source CO2. β-Carotene, an isoprenoid plant constituent, was depleted in 13C relative to whole leaf carbon to the same degree as isoprene, but fatty acids were more depleted. Isoprene emitted from leaves fed abscisic acid was much less depleted in 13C than was isoprene emitted from unstressed leaves. We conclude that isoprene is made from an isoprenoid precursor that is derived from acetyl-CoA made from recent photosynthate. The carbon isotope composition of isoprene in the atmosphere is likely to be slightly more negative (less 13C) than C3 plant material but when plants are stressed the isotopic composition could vary.  相似文献   

7.
The unresolved autotrophic CO2 fixation pathways in the sulfur-reducing Archaebacterium Thermoproteus neutrophilus and in the phototrophic Eubacterium Chloroflexus aurantiacus have been investigated. Autotrophically growing cultures were labelled with [1,4-13C1]succinate, and the 13C pattern in cell constituents was determined by 1H- and 13C-NMR spectroscopy of purified amino acids and other cell constituents. In both organisms succinate contributed to less than 10% of cell carbon, the major part of carbon originated from CO2. All cell constituents became 13C-labelled, but different patterns were observed in the two organisms. This proves that two different cyclic CO2 fixation pathways are operating in autotrophic carbon assimilation in both of which succinate is an intermediate. The 13C-labelling pattern in T. neutrophilus is consistent with the operation of a reductive citric acid cycle and rules out any other known autotrophic CO2 fixation pathway. Surprisingly, the proffered [1,4-13C1]succinate was partially converted to double-labelled [3,4-13C2]glutamate, but not to double-labelled aspartate. These findings suggest that the conversion of citrate to 2-oxoglutarate is readily reversible under the growth conditions used, and a reversible citrate cleavage reaction is proposed. The 13C-labelling pattern in C. aurantiacus disagrees with any of the established CO2 fixation pathways; it therefore demands a novel autotrophic CO2 fixation cycle in which 3-hydroxypropionate and succinate are likely intermediates. The bacterium excreted substantial amounts of 3-hydroxypropionate (5 mM) and succinate (0.5 mM) at the end of autotrophic growth. Autotrophically grown Chloroflexus cells contained acetyl-CoA carboxylase and propionyl-CoA carboxylase activity. These enzymes are proposed to be the main CO2-fixing enzymes resulting in malonyl-CoA and methylmalonyl-CoA formation; from these carboxylation products 3-hydroxypropionate and succinate, respectively, can be formed.  相似文献   

8.
Inferences about the evidence of life recorded in organic compounds within the Earth's ancient rocks have depended on 13C contents low enough to be characteristic of biological debris produced by the well-known CO2 fixation pathway, the Calvin cycle. 'Atypically' high values have been attributed to isotopic alteration of sedimentary organic carbon by thermal metamorphism. We examined the possibility that organic carbon characterized by a relatively high 13C content could have arisen biologically from recently discovered autotrophic pathways. We focused on the green non-sulphur bacterium Chloroflexus aurantiacus that uses the 3-hydroxypropionate pathway for inorganic carbon fixation and is geologically significant as it forms modern mat communities analogous to stromatolites. Organic matter in mats constructed by Chloroflexus spp. alone had relatively high 13C contents (−14.9‰) and lipids diagnostic of Chloroflexus that were also isotopically heavy (−8.9‰ to −18.5‰). Organic matter in mats constructed by Chloroflexus in conjunction with cyanobacteria had a more typical Calvin cycle signature (−23.5‰). However, lipids diagnostic of Chloroflexus were isotopically enriched (−15.1‰ to −24.1‰) relative to lipids typical of cyanobacteria (−33.9‰ to −36.3‰). This suggests that, in mats formed by both cyanobacteria and Chloroflexus , autotrophy must have a greater effect on Chloroflexus carbon metabolism than the photoheterotrophic consumption of cyanobacterial photosynthate. Chloroflexus cell components were also selectively preserved. Hence, Chloroflexus autotrophy and selective preservation of its products constitute one purely biological mechanism by which isotopically heavy organic carbon could have been introduced into important Precambrian geological features.  相似文献   

9.
Compound-specific hydrogen and carbon isotopic compositions in n-alkanoic acids, phytol and sterols were determined for various plant classes (terrestrial C3-angiosperm; C3-gymnosperm; C4; crassulacean acid metabolism (CAM); and aquatic C3 plants) in order to investigate isotopic fractionations among various plant classes. In all plants, lipid biomolecules are depleted in both D (up to 324 per thousand ) and 13C (up to 14.7 per thousand ) relative to ambient water and bulk tissue, respectively. In addition, the magnitude of D- and 13C-depletion of lipid biomolecules is distinctive depending on plant classes. For example, C3 angiosperm n-alkanoic acids are less depleted in D (95+/-23 per thousand ) and 13C (4.3 +/- 2.5 per thousand ) relative to ambient water and bulk tissue, respectively, while C4 plant n-alkanoic acids are more depleted in D (119 +/- 15 per thousand ) and 13C (10.2 +/- 2.0 per thousand ). On the other hand, C3 angiosperm phytol and sterols are much more depleted in D (306 +/-12 per thousand for phytol, 211+/-15 per thousand for sterol) with less depletion in 13C (4.1 +/- 1.1 per thousand for phytol, 1.3 +/- 0.9 per thousand for sterol) relative to ambient water and bulk tissue, respectively, while C4 plant phytol and sterols are less depleted in D (254 +/- 7 per thousand for phytol, 186 +/- 13 per thousand for sterols) with much more depletion in 13C (9.0 +/- 1.2 per thousand for phytol, 5.0 +/- 1.1 per thousand for sterols). Among various plant classes, there is a positive correlation between the D- and 13C-depletion for n-alkanoic acids, while a negative correlation was found for phytol and sterols from the same plants.  相似文献   

10.
We determined hydrogen, carbon and nitrogen isotopic compositions of chlorophylls a and b isolated from leaves of five C3 higher plant species (Benthamidia japonica, Prunus japonica, Acer carpinifolium, Acer argutum and Querus mongloica), and hydrogen and carbon isotopic compositions of phytol and chlorophyllides in the chlorophylls to understand isotopic fractionations associated with chlorophyll biosynthesis in these species. Chlorophylls are depleted in D relative to ambient water by approximately 189 per thousand and enriched in (13)C relative to bulk tissue by approximately 1.6 per thousand. These data can be explained by the contribution of isotopic fractionations during phytol and chlorophyllide biosyntheses. Phytol is more depleted in both D (by approximately 308 per thousand) and (13)C (by approximately 4.3 per thousand), while chlorophyllides are less depleted in D (by approximately 44 per thousand) and enriched in (13)C (by approximately 4.8 per thousand). Such inhomogeneous distribution of isotopes in chlorophylls suggests that (1) the phytol in chlorophylls reflects strong D- and (13)C-depletions due to the isotopic fractionations during the methylerythritol phosphate pathway followed by hydrogenation, and (2) the chlorophyllides reflect D- and (13)C-enrichments in tricarboxylic acid cycle. On the other hand, chlorophylls are slightly ( approximately 1.2 per thousand) depleted in (15)N relative to the bulk tissue, indicating that net isotopic fractionation of nitrogen during chlorophyll biosynthesis is small compared with those of hydrogen and carbon.  相似文献   

11.
Green nonsulfur-like bacteria (GNSLB) in hot spring microbial mats are thought to be mainly photoheterotrophic, using cyanobacterial metabolites as carbon sources. However, the stable carbon isotopic composition of typical Chloroflexus and Roseiflexus lipids suggests photoautotrophic metabolism of GNSLB. One possible explanation for this apparent discrepancy might be that GNSLB fix inorganic carbon only during certain times of the day. In order to study temporal variability in carbon metabolism by GNSLB, labeling experiments with [13C]bicarbonate, [14C]bicarbonate, and [13C]acetate were performed during different times of the day. [14C]bicarbonate labeling indicated that during the morning, incorporation of label was light dependent and that both cyanobacteria and GNSLB were involved in bicarbonate uptake. 13C-labeling experiments indicated that during the morning, GNSLB incorporated labeled bicarbonate at least to the same degree as cyanobacteria. The incorporation of [13C]bicarbonate into specific lipids could be stimulated by the addition of sulfide or hydrogen, which both were present in the morning photic zone. The results suggest that GNSLB have the potential for photoautotrophic metabolism during low-light periods. In high-light periods, inorganic carbon was incorporated primarily into Cyanobacteria-specific lipids. The results of a pulse-labeling experiment were consistent with overnight transfer of label to GNSLB, which could be interrupted by the addition of unlabeled acetate and glycolate. In addition, we observed direct incorporation of [13C]acetate into GNSLB lipids in the morning. This suggests that GNSLB also have a potential for photoheterotrophy in situ.  相似文献   

12.
Isotopic analyses of Candidatus "Brocadia anammoxidans," a chemolithoautotrophic bacterium that anaerobically oxidizes ammonium (anammox), show that it strongly fractionates against (13)C; i.e., lipids are depleted by up to 47 per thousand versus CO(2). Similar results were obtained for the anammox bacterium Candidatus "Scalindua sorokinii," which thrives in the anoxic water column of the Black Sea, suggesting that different anammox bacteria use identical carbon fixation pathways, which may be either the Calvin cycle or the acetyl coenzyme A pathway.  相似文献   

13.
Although the emission of acetaldehyde from plants into the atmosphere following biotic and abiotic stresses may significantly impact air quality and climate, its metabolic origin(s) remains uncertain. We investigated the pathway(s) responsible for the production of acetaldehyde in plants by studying variations in the stable carbon isotope composition of acetaldehyde emitted during leaf anoxia or following mechanical stress. Under an anoxic environment, C3 leaves produced acetaldehyde during ethanolic fermentation with a similar carbon isotopic composition to C3 bulk biomass. In contrast, the initial emission burst following mechanical wounding was 5–12‰ more depleted in 13C than emissions under anoxia. Due to a large kinetic isotope effect during pyruvate decarboxylation catalysed by pyruvate dehydrogenase, acetyl-CoA and its biosynthetic products such as fatty acids are also depleted in 13C relative to bulk biomass. It is well known that leaf wounding stimulates the release of large quantities of fatty acids from membranes, as well as the accumulation of reactive oxygen species (ROS). We suggest that, following leaf wounding, acetaldehyde depleted in 13C is produced from fatty acid peroxidation reactions initiated by the accumulation of ROS. However, a variety of other pathways could also explain our results, including the conversion of acetyl-CoA to acetaldehyde by the esterase activity of aldehyde dehydrogenase.  相似文献   

14.
During the process of terpene biosynthesis, C–C bond breaking and forming steps are subjected to kinetic carbon isotope effects, leading to distinct carbon isotopic signatures of the products. Accordingly, carbon isotopic signatures could be used to reveal the ‘biosynthetic history’ of the produced terpenoids. Five known sesquiterpene cyclases, regulating three different pathways, representing simple to complex biosynthetic sequences, were heterologously expressed and used for in vitro assays with farnesyl diphosphate as substrate. Compound specific isotope ratio mass spectrometry measurements of the enzyme substrate farnesyl diphosphate (FDP) and the products of all the five cyclases were performed. The calculated δ13C value for FDP, based on δ13C values and relative amounts of the products, was identical with its measured δ13C value, confirming the reliability of the approach and the precision of measurements. The different carbon isotope ratios of the products reflect the complexity of their structure and are correlated with the frequency of carbon–carbon bond forming and breaking steps on their individual biosynthetic pathways. Thus, the analysis of carbon isotopic signatures of terpenes at natural abundance can be used as a powerful tool in elucidation of associated biosynthetic mechanisms of terpene synthases and in future in vivo studies even without ‘touching’ the plant.  相似文献   

15.
Stable hydrogen and carbon isotopic compositions of individual n-alkanes were determined for various terrestrial plants (33 samples including 27 species) and aquatic plants (six species) in natural environments from Japan and Thailand. In C3 plants, n-alkanes extracted from angiosperms have a deltaD value of -152+/-26 per thousand (relative to Standard Mean Ocean Water [SMOW]) and delta13C value of -36.1+/-2.7 per thousand (relative to Peedde Belemnite [PDB]), and those from gymnosperms have a deltaD value of -149+/-16 per thousand and delta13C value of -31.6+/-1.7 per thousand. Angiosperms have n-alkanes depleted in 13C relative to gymnosperms. n-Alkanes from C4 plants have a deltaD value of -171+/-12 per thousand and delta13C value of -20.5+/-2.1 per thousand, being a little depleted in D and much enriched in 13C compared to C3 plants. n-Alkanes of CAM plants are a little depleted in D and vary widely in delta13C relative to those of C3 and C4 plants. In aquatic plants, n-alkanes from freshwater plants have a deltaD value of -187+/-16 per thousand and delta13C value of -25.3+/-1.9 per thousand, and those from seaweeds have a deltaD value of -155+/-34 per thousand and delta13C value of -22.8+/-1.0 per thousand. All n-alkanes from various plant classes are more depleted in D and 13C relative to environmental water and bulk tissue, respectively. In addition, the hydrogen and carbon isotopic fractionations during n-alkane synthesis are distinctive for these various plant classes. While C3 plants have smaller isotopic fractionations in both D and 13C, seaweed has larger isotopic fractionations.  相似文献   

16.
Close HG  Bovee R  Pearson A 《Geobiology》2011,9(3):250-265
Throughout the Proterozoic δ(13)C values for preserved n-alkyl lipids are more positive than for syngenetic kerogen. This pattern is the inverse of biosynthetic expectations. It has been suggested that this isotopic inversion results from selective preservation of lipids from (13)C-enriched heterotrophic populations, while the bulk of kerogen derives from primary producers. Here, we formulate a degradation model to calculate the (13)C content of sedimentary total organic carbon and lipid. The model addresses two scenarios. The first scenario explores preferential preservation of heterotrophic lipid, thereby quantifying the existing hypothesis. In the second, we suggest that an inverse signature could be the result of prokaryotic phytoplankton contributing the majority of the total ecosystem biomass. Photosynthetic prokaryotes bearing a relative (13)C enrichment would contribute much of the resulting preserved lipids, while primary eukaryotic biomass would dominate the total organic carbon. We find that our hypothesis of a mixed primary producer community generates inverse isotopic patterns while placing far fewer requirements on specific degradation conditions. It also provides a possible explanation as to why there are large variations in the (13)C content of the isoprenoid lipids pristane and phytane relative to n-alkyl lipid, while the difference between n-alkyl lipid and kerogen is more constant. Our results suggest that the disappearance of the inverse (13)C signature in the late Ediacaran is a natural consequence of the fundamental shift to oceans in which export production has a higher ratio of eukaryotic biomass.  相似文献   

17.
Green nonsulfur-like bacteria (GNSLB) in hot spring microbial mats are thought to be mainly photoheterotrophic, using cyanobacterial metabolites as carbon sources. However, the stable carbon isotopic composition of typical Chloroflexus and Roseiflexus lipids suggests photoautotrophic metabolism of GNSLB. One possible explanation for this apparent discrepancy might be that GNSLB fix inorganic carbon only during certain times of the day. In order to study temporal variability in carbon metabolism by GNSLB, labeling experiments with [13C]bicarbonate, [14C]bicarbonate, and [13C]acetate were performed during different times of the day. [14C]bicarbonate labeling indicated that during the morning, incorporation of label was light dependent and that both cyanobacteria and GNSLB were involved in bicarbonate uptake. 13C-labeling experiments indicated that during the morning, GNSLB incorporated labeled bicarbonate at least to the same degree as cyanobacteria. The incorporation of [13C]bicarbonate into specific lipids could be stimulated by the addition of sulfide or hydrogen, which both were present in the morning photic zone. The results suggest that GNSLB have the potential for photoautotrophic metabolism during low-light periods. In high-light periods, inorganic carbon was incorporated primarily into Cyanobacteria-specific lipids. The results of a pulse-labeling experiment were consistent with overnight transfer of label to GNSLB, which could be interrupted by the addition of unlabeled acetate and glycolate. In addition, we observed direct incorporation of [13C]acetate into GNSLB lipids in the morning. This suggests that GNSLB also have a potential for photoheterotrophy in situ.  相似文献   

18.
Carbon isotopic fractionation in heterotrophic microbial metabolism.   总被引:10,自引:4,他引:6       下载免费PDF全文
Differences in the natural-abundance carbon stable isotopic compositions between products from aerobic cultures of Escherichia coli K-12 were measured. Respired CO2 was 3.4% depleted in 13C relative to the glucose used as the carbon source, whereas the acetate was 12.3% enriched in 13C. The acetate 13C enrichment was solely in the carboxyl group. Even though the total cellular carbon was only 0.6% depleted in 13C, intracellular components exhibited a significant isotopic heterogeneity. The protein and lipid fractions were -1.1 and -2.7%, respectively. Aspartic and glutamic acids were -1.6 and +2.7%, respectively, yet citrate was isotopically identical to the glucose. Probable sites of carbon isotopic fractionation include the enzyme, phosphotransacetylase, and the Krebs cycle.  相似文献   

19.
Carbon isotopic fractionation in heterotrophic microbial metabolism   总被引:2,自引:0,他引:2  
Differences in the natural-abundance carbon stable isotopic compositions between products from aerobic cultures of Escherichia coli K-12 were measured. Respired CO2 was 3.4% depleted in 13C relative to the glucose used as the carbon source, whereas the acetate was 12.3% enriched in 13C. The acetate 13C enrichment was solely in the carboxyl group. Even though the total cellular carbon was only 0.6% depleted in 13C, intracellular components exhibited a significant isotopic heterogeneity. The protein and lipid fractions were -1.1 and -2.7%, respectively. Aspartic and glutamic acids were -1.6 and +2.7%, respectively, yet citrate was isotopically identical to the glucose. Probable sites of carbon isotopic fractionation include the enzyme, phosphotransacetylase, and the Krebs cycle.  相似文献   

20.
Microbial mats that inhabit gypsum deposits in ponds at Guerrero Negro, Baja California Sur, Mexico, developed distinct pigmented horizons that provided an opportunity to examine the fixation and flow of carbon through a trophic structure and, in conjunction with previous phylogenetic analyses, to assess the diagenetic fates of molecular δ13C biosignatures. The δ13C values of individual biomarker lipids, total carbon, and total organic carbon (TOC) were determined for each of the following horizons: tan‐orange (TO) at the surface, green (G), purple (P), and olive‐black (OB) at the bottom. δ13C of individual fatty acids from intact polar lipids (IPFA) in TO were similar to δ13C of dissolved inorganic carbon (DIC) in the overlying water column, indicating limited discrimination by cyanobacteria during CO2 fixation. δ13CTOC of the underlying G was 3‰ greater than that of TO. The most δ13C‐depleted acetogenic lipids in the upper horizons were the cyanobacterial biomarkers C17 n‐alkanes and polyunsaturated fatty acids. Bishomohopanol was 4 to 7‰ enriched, relative to alkanes and intact polar fatty acids (IPFA), respectively. Acyclic C20 isoprenoids were depleted by 14‰ relative to bishomohopanol. Significantly, ?[δ13CTOC ? δ13C∑IPFA] increased from 6.9‰ in TO to 14.7‰ in OB. This major trend might indicate that 13C‐enriched residual organic matter accumulated at depth. The permanently anoxic P horizon was dominated by anoxygenic phototrophs and sulfate‐reducing bacteria. P hosted an active sulfur‐dependent microbial community. IPFA and bishomohopanol were 13C‐depleted relative to upper crust by 7 and 4‰, respectively, and C20 isoprenoids were somewhat 13C‐enriched. Synthesis of alkanes in P was evidenced only by 13C‐depleted n‐octadecane and 8‐methylhexadecane. In OB, the marked increase of total inorganic carbon δ13C (δ13CTIC) of >6‰ perhaps indicated terminal mineralization. This δ13CTIC increase is consistent with degradation of the osmolyte glycine betaine by methylotrophic methanogens and loss of 13C‐depleted methane from the mat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号