首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Shamouti orange (Citrus sinensis L. Osbeck) salt-tolerant cells were grown under low water potential conditions induced by polyethylene glycol (PEG), NaCl, and CaCl2. On the basis of equal osmotic potentials, PEG was the least inhibitory, NaCl next, and CaCl2 the most inhibitory. The relation between growth capacity and ion content can be summarized as follows. (a) Internal K+ concentration was a major factor which changed in the presence of PEG, NaCl, and CaCl2 and probably played a key role in determining growth capacity. (b) Internal concentrations of Na+, Ca2+, or Cl could not be directly correlated with growth. (C) Internal Mg2+ concentration could be significant only in the presence of high external Ca2+ concentrations. (d) The contribution of nitrate and phosphate to the internal osmoticum was negligible. The ratio of external (Ca2+)/(Na+)2 concentration is crucial for growth. Ratios above 0.5 × 10−4 per millimolar gave maximal protection from adverse effects of NaCl. Growth capacity was found to be determined by the combination of (Ca2+)/(Na+)2 ratio and the absolute external concentration of NaCl. However, a correlation between internal K+ concentration and growth capacity seemed independent of external NaCl concentration.  相似文献   

2.
Summary The composition of the vacuolar sap of Chara vulgaris growing in a brackish water lake was estimated weekly over 2 years (1984–1985). The ionic concentrations of the main cations Na+, K+, Ca2+, and Mg2+ and the anion Cl- varied depending on cell age, developmental state, and season. The average of all measurements (in mM) was Na+: 35, K+: 106, Ca2+: 7, Mg2+: 23, Cl-: 101, SO 2- 4 : 20, and PO 3- 4 : 5. At the onset of growth in May/June the ionic content was lower compared to the mean value for the year, steadily increasing until it reached its maximum above the annual mean in winter. During the period of fructification (sexual reproduction: formation of antheridia and oogonia), when up to 100 mM sucrose was accumulated in the vacuolar sap, ionic content was lowest. This resulted in a fairly constant osmotic potential throughout the year. Mg2+ and Ca2+ concentrations were correlated with the physiological age of the cells.  相似文献   

3.
Summary Kinetic properties of Na+–Ca2+ exchange in a renal epithelial cell line (LLC-MK2) were assessed by measuring cytosolic free Ca2+ with fura-2 and45Ca2+ influx. Replacing external Na+ with K+ produced relatively small increases in free Ca2+ and45Ca2+ uptake unless the cells were incubated with ouabain. Ouabain markedly increased cell Na+ and strongly potentiated the effect of replacing external Na+ with K+ on free Ca2+ and45Ca2+ uptake.45Ca2+ influx in 140mm K+ or N-methyl-d-glucamine minus influx in 140mm Na+ was used to quantify Na+–Ca2+ exchange activity of Na+-loaded cells. The dependence of exchange on cell Na+ was sigmoidal; theK 0.5 was 26±3 mmol/liter cell water space, and the Hill coefficient was 3.1±0.2. The kinetic features of the dependence of exchange on cell Na+ partly account for the small increase in Ca2+ influx when all external Na+ is replaced by K+. Besides raising cell Na+ ouabain appears to activate the exchanger. Magnesium competitively inhibited exchange activity. The potency of Mg2+ was 8.2-fold lower with potassium instead of N-methyl-d-glucamine or choline as the replacement for external Na+. Potassium also increased theV max of exchange by 86% and had no effect on theK m for Ca2+. The exchanger does not cause detectable22Na+–Mg2+ exchange and does not appear to require K+ or transport86Rb+. Although exchange activity was plentiful in the epithelial cells from monkey kidney, others from amphibian, canine, opossum, and porcine kidney had no detectable exchange activity. All of the measured kinetic properties of Na+–Ca2+ exchange in the renal epithelial cells are very similar to those of the exchanger in rat aortic myocytes.  相似文献   

4.
Abstract The comparative Na+ tolerance of Chora buckellii cultured in freshwater (FW) or artificial Waldsea water (AWW, which contains about 110 mol m?3 each Na +, Mg2+, Cl? and SO2-4 was tested with respect to the external Na+ to Ca2+ ratio (Na: Ca). Fifty per cent of FW cells subjected to 70 mol m?3 NaCl, which raised Na:Ca from 10: 1 to 700: 1 and the external osmotic pressure from 0.024 to 0.402 MPa, died within 6 d. Death was associated with the loss of Na/K selectivity, H+ -pump activity and turgor. Restoration of Na:Ca to 10:1 in high Na+ medium with CaCl2 ensured 100% survival and maintained H+-pump activity and Na/K selectivity of FW cells. Turgor was regulated within 3 d with net uptake of Na +, K+ and Cl? in the vacuolc. Mg2+ was not as effective as Ca2+ in enhancing survival or maintaining H+ -pump activity and Na/K selectivity of FW cells in the presence of elevated Na+. However, turgor was regulated within 3 d by accumulation of Cl? and an unknown cation in the vacuole. All AWW cells subjected to an increase of 70 mol m ?3 NaCl, which raised Na: Ca from 16:1 to 25: 1 and the external osmotic pressure from 0.915 to 1.22 MPa, survived and maintained H + -pump activity. Turgor was regulated within 6d by accumulating Na +, K+ and Cl? in the vacuole. All AWW cells subjected to 70molm?3 NaCl in a medium in which Na:Ca was equal to 700:1 survived and maintained H + -pump activity, but showed loss of Na/K selectivity. Turgor was regulated with an unknown osmoticum(a) within 6 d.  相似文献   

5.
研究了渗透和盐胁迫处理对转Bt基因抗虫棉(Gossypium hirsutum) 99B种子的萌发和幼苗生长的影响,以及幼苗不同器官离子吸收和分配的差异。结果表明:渗透和盐胁迫均对转Bt基因抗虫棉幼苗的生长有抑制作用,其中PEG的抑制作用最强,而3种盐的抑制程度以CaCl2>NaCl>Na2SO4,且在Na+含量相同时,Cl-的毒害大于SO42-。渗透胁迫下使根、茎和叶中的Na+和Cl-含量提高,K+、Ca2+、SO42-含量和K+/Na+、Ca2+/Na+和SO42-/Cl-比值降低,且地上部的变化幅度大于地下部的,其中以PEG的影响最为显著,其次是CaCl2,Na2SO4处理最弱。这些说明,转Bt基因抗虫棉99B的耐盐性较弱。  相似文献   

6.
Summary The effects of different concentrations of Mg2+, Ca2+, or Na+ on the morphology and growth of Methanosarcina thermophila TM-1 growing on acetate at concentrations comparable with those found in anaerobic digestors was studied. At 30 mm Mg2+ or less, M. thermophila grew as large aggregates that settled rapidly. At 100 mm Mg2+ or more, the bacteria grew as single cells or a mixture of single cells and small aggregates is suspended culture. Mg2+ was necessary for growth and could not be substituted by addition of either Ca2+ or Na+. The optimal Mg2+ concentration was 30 mm and no growth was observed at 400 mm Mg2+. Cultures could be adapted to 300 mm Mg2+ without a change in growth rate. Added Ca2+ was not required for growth and had no effect on cell morphology. Inhibition by Na+ was directly related to the Mg2+ concentration. When the Mg2+ was 0.05 mm or less, 0.35 m Na+ completely inhibited growth. However, more Na+ was required for inhibition at higher Mg2+ concentrations. The same inhibitory effect of Na+ was observed when the temperature was 52°C or 45°C. The potential for disaggregation of Methanosarcina aggregates in anaerobic digestor environments was discussed. Offprint requests to: B. K. Ahring  相似文献   

7.
Solution chemistry profiles of mixed-conifer forests before and after fire   总被引:6,自引:2,他引:4  
Solution chemistry profiles of mixed-conifer forests in granitic catchments of the Sierra Nevada were measured for three years before (1987–1990) and three years after (1990–1993) prescribed fire. Wet deposition, throughfall and soil solution samplers were installed in both white-fir and giant-sequoia dominated forest stands underlain by poorly developed inceptisols. Stream water chemistry was monitored as part of an ongoing study of catchment outputs. Calcium, NO 3 and Cl were the major ions in precipitation. Canopy leaching increased mean concentrations of all major ions, especially K+ and Ca2+. Water flux through the soil occurred largely during spring snowmelt. Forest floor leachate represented the most concentrated solutions of major ions. Interaction with the mineral soil decreased mean concentrations of most species and the average composition of soil solutions closely resembled stream water at baseflow. Bicarbonate alkalinity, Ca2+, Mg2+, and Na+ were enriched in stream water relative to precipitation whereas inputs of H+, NH 4 + , NO 3 and SO 4 2– were retained within the catchments.Burning of the forest understory and litter layer increased solute concentrations in soil solution and stream water. Mean soil solution Ca2+, Mg2+ and K+ concentrations increased more than 10 fold, but the relative predominance of these cations was not affected by burning. Sulfate concentration, which was very low in soil solutions of undisturbed stands (<25 mmolc m–3), increased more than 100 times following fire. Ammonium concentration exhibited a rapid, short-term increase and then a decrease below pre-burn levels. Changes in soil solution chemistry were reflected in catchment outputs.Corresponding author.  相似文献   

8.
In order to identify physiological components that contribute to salinity tolerance, we compared the effects of Na+, Mg2+ and K+ salts (NaCl, Na2SO4, MgCl2, MgSO4, KCl and K2SO4), Ca2+ (CaSO4), mannitol and melibiose on the wild type and the single-gene NaCl-tolerant mutants stl1 and stl2 of Ceratopteris richardii. Compared with gametophytic growth of the wild type, stl2 showed a low level of tolerance that was restricted to Na+ salts and osmotic stress. stl2 exhibited high tolerance to both Na+ and Mg2+ salts, as well as to osmotic stress. In response to short-term exposure (3 d) to NaCl, accumulation of K+ and Na+ was similar in the wild type and stl1. In contrast, stl2 accumulated higher levels of K+ and lower levels of Na+. Ca2+ supplementation (1.0 mol m?3) ameliorated growth inhibition by Na+ and Mg2+ stress in wild type and stll, but not in stl2. In addition, under Na+ stress (175 mol m?3) wild-type, stll and stl2 gametopbytes maintained higher tissue levels of K+ and lower levels of Na+ when supplemented with Ca2+ (1.0 mol m?3). stl2 gametophytes were extremely sensitive to K+ supplementation. Growth of stl2 was greater than or equal to that of the wild type at trace concentrations of K+ but decreased substantially with increasing K+ concentration. Supplementation with K+ from 0 to 1.85 mol m?3 alleviated some of the inhibition by 75 mol m?3 NaCl in the wild type and in stl1. In stl2, growth at 75 mol m?3 NaCl was similar at 0 and 1.85 mol m?3 K+ supplementation. Although K+ supplementation above 1.85 mol m?3 did not alleviate inhibition of growth by Na+ in any genotype, stl2 maintained greater relative tolerance to NaCl at all K+ concentrations tested.  相似文献   

9.
Summary In the freshwater snailLymnaea stagnalis the influxes of Na+ and Cl were studied at different external concentrations of these ions. The characteristies of the Na+- and Cl-influxes are similar with respect to saturation kinetics,K m (0.1 mM) and activation by low-salt adaptation. In short-term experiments the Na+- and Cl-influxes are independent. Because of the counter-ions (H+ and HCO 3 ) involved, this indicates a potential acid-base regulatory capacity. Low-salt adaptation, due to either Na+-or Cl-depletion, activates both the Na+- and the Cl-influx. It is suggested that under both conditions the number of active integumental pumps, involved in Na+- as well as in Cl-uptake, is increased.  相似文献   

10.
Calcium-salinity interactions affect ion transport in Chara corallina   总被引:1,自引:1,他引:0  
Detached internodes of Chara corallina survived in solutions containing 100 mol m?3 NaCl when the external concentration of Ca2+ was greater than 1 mol m?3. Na+ influx was roughly proportional to external Na+ up to 100 mol m?3 NaCl. Na+ influx involved two components: a Ca2+-insensitive influx which allowed the passage of Na+ independently of external Ca2+; and a Ca2+-inhibitable mechanism where Na+ influx was inversely proportional to external Ca2+. The Ca2+-inhibitable Na+ influx was similar to the Ca2+-inhibitable K+ influx. Mg2+ and Ba2+ were able to substitute for Ca2+ in partially inhibiting Na+ influx in the absence of external Ca2+. The effect of Ca2+ appears specific to Na+ and K+ influx since the effects of a Ca2+-free solution on the influx of some other cations, anions and neutral compounds is small. It is suggested that Na+ influx via the Ca2+-inhibitable mechanism represents Na+ leakage through K+ channels and that cell death at high salinity occurs due to a cytotoxic Na+ influx via this mechanism.  相似文献   

11.
Previous work showed that in hamster red cells the amiloride-sensitive (AS) Na+ influx of 0.8 mmol/liter cells/hr is not mediated by Na-H exchange as in other red cells, but depends upon intracellular Mg2+ and can be increased by 40-fold by loading cells with Mg2+ to 10 mm. The purpose of this study was to verify the connection of AS Na+ influx with Na-dependent, amiloride-sensitive Mg2+ efflux and to utilize AS Na+ influx to explore that pathway.Determination of unidirectional influx of Na+ and net loss of Mg2+ in parallel sets of cells showed that activation by extracellular [Na+] follows a simple Michaelis-Menten relationship for both processes with a K m of 105–107 mm and that activation of both processes is sigmoidally dependent upon cytoplasmic [Mg2+] with a [Mg2+]0.5 of 2.1–2.3 mm and a Hill coefficient of 1.8. Comparison of Vmax for both sets of experiments indicated a stoichiometry of 2 Na: l Mg. Amiloride inhibits Na+ influx and Mg2+ extrusion in parallel (K i = 0.3 mm). Like Mg2+ extrusion, amiloride-sensitive Na+ influx shows an absolute requirement for cytoplasmic ATP and is increased by cell swelling. Hence, amiloride-sensitive Na+ influx in hamster red cells appears to be through the Na-Mg exchange pathway.There was no amiloride-sensitive Na+ efflux in hamster red cells loaded with Na+ and incubated with high [Mg2+] in the medium with or without external Na+, nor with ATP depletion. Hence, this is not a simple Na-Mg exchange carrier.  相似文献   

12.
Summary When the mulletMugil capito is transferred to medium lacking Ca++ (either Ca++-free seawater or distilled water) the passive permeability of the gill to Na+ and Cl is increased and the activating effect of external K+ on the Na+ and Cl effluxes in hyposaline media is inhibited. The permeability of the gill increases progressively in proportion to the time of Ca++ deprivation; it declines when Ca++ is added again to the external medium. The active mechanisms for ion excretion are not reversible. At external Ca++ concentrations from 0.1 to 10 mM the Na+ permeability is constant but the activation of Na+ efflux by K+ shows a maximum at a Ca++ concentration of about 1 mM. For activation of Cl efflux external bicarbonate must be present, in addition to Ca++, suggesting the existence of a Cl/HCO 3 exchange. The mechanism by which Ca++ controls the passive branchial permeability is thus probably different from that involved in K+ activation of ion excretion. The Ca++ effect on the K+ sensitive ionic excretory mechanisms seems to be related to intracellular Ca++ movements. Thus, on the one hand, substances such as Ruthenium Red and La+++ which both inhibit Ca++ exchange, in media containing Ca++ and HCO 3 also inhibit K+ activation of Na+ and Cl effluxes; on the other hand, the ionophore A 23187, a stimulator of Ca++ exchange, when added to these media, activates the Na+ and Cl effluxes; its maximal effect on the Na+ flux occurs at 2 mM Ca++.Abbreviations ASW-Ca artificial seawater minus calcium - DW deionised water - DWCa deionised water with 1 mM Ca++ added - DWCaHCO 3 DW with calcium plus bicarbonate - DWHCO 3 DW with 1 mM sodium bicarbonate added - FW freshwater (tap water) - FWK freshwater with K+ added - P. D. potential difference - SW seawater The experiments reported in this paper were done with Jean Maetz who tragically died in August 1977. It is the last report about several years of friendly collaboration  相似文献   

13.
Summary Whole-cell patch-clamp recordings were made from freshly isolated human platelets. The pipette contained a high concentration of divalent cations, which permitted easy disruption of cell-attached membrane patches by suction. Single-channel currents were measured when the pipette contained isotonic BaCl2 or MgCl2 saline; over 30 sec –5 min an increasing number of channels appeared until conductance steps through individual channels could no longer be distinguished. The current-voltage relationship was curvilinear; chord conductance at –35 mV was 25 pS increasing to 45 to 52 pS at +45 mV. Ion substitution experiments showed the current to be primarily carried by Cl.E rev was shifted 30 mV/10-fold change in external Cl (replaced by gluconate), was similar with BaCl2 or MgCl2 in the pipette and was not significantly shifted by replacing external Na+ with K+. Addition of 1mm BAPTA to the MgCl2 pipette saline prevented activation of Cl currents; with isotonic CaCl2 internal saline, current appeared immediately upon patch rupture, suggesting that the Cl channels are dependent on internal Ca2+, 5-nitro-2-(3-phenylpropylamino)-benzoate, reported to block a Cl conductance in studies of rat epithelial cells, caused a potent flickery block and may be a useful tool with which to investigate the physiological role of Cl currents in human platelets.  相似文献   

14.
Summary ATP-dependent Ca2+ uptake into isolated pancreatic acinar cells with permeabilized plasma membranes, as well as into isolated endoplasmic reticulum prepared from these cells, was measured using a Ca2+-specific electrode and45Ca2+. Endoplasmic reticulum was purified on an isopycnic Percoll gradient and characterized by marker enzyme distribution. When compared to the total homogenate, the typical marker for the rough endoplasmic reticulum RNA was enriched threefold and the typical marker for the plasma membrane Na+,K+(Mg2+)ATPase was decreased 20-fold. When different fractions of the Percoll gradient were compared,45Ca2+ uptake correlated with the RNA content and not with the Na+,K+(Mg2+)ATPase activity. The characteristics of nonmitochondrial Ca2+ uptake into leaky isolated cells and45Ca2+ uptake into isolated endoplasmic reticulum were very similar: Calcium uptake was maximal at 0.3 and 0.2 mmol/liter free Mg2+, at 1 and 1 mmol/liter ATP, at pH 6.0 and 6.5, and free Ca2+ concentration of 2 and 2 mol/liter, respectively. Calcium uptake decreased at higher free Ca2+ concentration.45Ca2+ uptake was dependent on monovalent cations (Rb+>K+>Na+>Li+>choline+) and different anions (Cl>Br>SO 4 2– >NO 3 >I>cyclamate>SCN) in both preparations. Twenty mmol/liter oxalate enhanced45Ca2+ uptake in permeabilized cells 10-fold and in vesicles of endoplasmic reticulum, fivefold. Calcium oxalate precipitates in the endoplasmic reticulum of both preparations could be demonstrated by electron microscopy. The nonmitochondrial Ca2+ pool in permeabilized cells characterized in this study has been previously shown to regulate the cytosolic free Ca2+ concentration to 0.4 mol/liter. Our results provide firm evidence that the endoplasmic reticulum plays an important role in the regulation of the cytosolic free Ca2+ concentration in pancreatic acinar cells.  相似文献   

15.
Effects of sodium chloride on tobacco plants   总被引:7,自引:1,他引:6  
Abstract The effect of salinity on the growth and ion concentrations in a number of tobacco cultivars is described. Sodium chloride, at a concentration of 200 mol m?3, hardly affected the fresh weight, but significantly reduced the dry weight. The difference in the response of fresh and dry weights to salt was due to a change in succulence (water per unit leaf area); the latter increased with increasing leaf Na+ and Cl? concentration. Under saline conditions, increasing the external Na+: Ca? ratio by decreasing the Ca2+ concentration increased the accumulation of Na+ and Cl? into the leaf tissue.  相似文献   

16.
The solute relations of the upper epidermis of the third leaf of barley (Hordeum vulgare L. cv. Klaxon) were studied by analysing vacuolar saps extracted from individual cells. Their osmolality (nanolitre osmometry) and the concentrations of K, Na, Ca, Cl, P, S (energy dispersive X-ray analysis) and NO 3 (microfluorometry) were measured. All of the osmotically important solutes were accounted for. These were K+, NO 3 , Cl, and Ca2+. The concentration of each solute varied along the leaf blade and changed with leaf age. Calcium in particular increased during leaf ageing, exceeding concentrations of 50 mM. Plants starved of Ca2+ during this period accumulated epidermal K+ instead of Ca2+. Leaf ageing was accompanied by an increase in epidermal osmolalities by about 100 mosmol · kg–1. When compared to the bulk leaf extract, epidermal cell extracts exhibited significantly higher concentrations of NO 3 , Cl and Ca2+, similar concentrations of K+ and Na+, and lower concentrations of P. In plants subjected to various levels of NaCl stress (up to 200 mM), epidermal concentrations of Cl always exceeded those of the bulk extract, while Na+ concentrations were similar. Epidermal cells osmotically adjusted to the increase in the external salt concentration.Abbreviations EDX analysis energy dispersive X-ray analysis We wish to thank Paul Richardson, Jeremy Pritchard, Peter Hinde, Eirion Owen and Andrew Davies (Banger) for their helpfull discussion and technical advice. This work was financed by a grant (UR5/ 521) from the Agricultural and Food Research Council.  相似文献   

17.
Response of sugarcane to different types of salt stress   总被引:2,自引:0,他引:2  
Summary Due to climatic conditions and prevailing water regime the yield and sucrose recovery in sugarcane are high in South Western India. However, excessive irrigation, poor drainage and luxuriant use of fertilizers have resulted in conversion of large fertile areas into saline lands. The salinity is due to the excess of Na+, Ca++, Mg++, SO4 and Cl ions. Individual salts of NaCl, Na2SO4, MgCl2 and MgSO4 were employed in culture experiments to study salt stress effect on sugarcane variety Co 740. It was observed that sulphate salinity was more toxic to sugarcane than the chloride one. Sulphate salts caused more inhibition of growth, chlorophyll synthesis, PEPCase activity, decreased the uptake of K+ and Ca++ ions but stimulated nitrate reductase. The stress did not result in proline accumulation in the sugarcane cultivar Co 740. The degree of toxicity of different ions in decreasing order in sugarcane cultivar Co 740 is SO4 >Na+>Cl>Mg++.  相似文献   

18.
M. Katsuhara  M. Tazawa 《Protoplasma》1986,135(2-3):155-161
Summary The mechanism of salt tolerance was studied using isolated internodal cells of the charophyteNitellopsis obtusa grown in fresh water. When 100 mM NaCl was added to artificial pond water (0.1 mM each of NaCl, KC1, CaCl2), no cell survived for more than one day. Within the first 30 minutes, membrane potential (Em) depolarized and membrane resistance (Rm) decreased markedly. Simultaneously, cytoplasmic Na+ increased and K+ decreased greatly. At steady state the increase in Na+ content was roughly equal to the decrease in K+ content. The Cl content of the cytoplasm did not change. These results suggest that Na+ enters the cytoplasm by exchange with cytoplasmic K+. Both the entry of Na+ and the exit of K+ are assumed to be passive and the latter being caused by membrane depolarization. Vacuolar K+, Na+, and Cl remained virtually constant, suggesting that rapid influx of Na+ from the cytoplasm did not occur.In 100 mM NaCl containing 10 mM CaCl2, membrane depolarization, membrane resistance decrease and changes in cytoplasmic [Na+] and [K+] did not occur, and cells survived for many days. When cells treated with 100 mM NaCl were transferred within 1 hour to 100 mM NaCl containing 10 mM CaCl2, Em decreased, Rm increased, cytoplasmic Na+ and K+ returned to their initial levels, and cells survived. Two possible mechanisms for the role of Ca2+ in salt tolerance inNitellopsis are discussed; one a reduction in plasmalemma permeability to Na+ and the other a stimulation of active Na+-extrusion.  相似文献   

19.
Summary ATP-dependent45Ca2+ uptake was investigated in purified plasma membranes from rat pancreatic acinar cells. Plasma membranes were purified by four subsequent precipitations with MgCl2 and characterized by marker enzyme distribution. When compared to the total homogenate, typical marker enzymes for the plasma membrane, (Na+,K+)-ATPase, basal adenylate cyclase and CCK-OP-stimulated adenylate cyclase were enriched by 43-fold, 44-fold, and 45-fold, respectively. The marker for the rough endoplasmic reticulum was decreased by fourfold compared to the total homogenate. Comparing plasma membranes with rough endoplasmic reticulum, Ca2+ uptake was maximal with 10 and 2 mol/liter free Ca2+, and half-maximal with 0.9 and 0.5 mol/liter free Ca2+. It was maximal at 3 and 0.2 mmol/liter free Mg2+ concentration, at an ATP concentration of 5 and 1 mmol/liter, respectively, and at pH 7 for both preparations. When Mg2+ was replaced by Mn2+ or Zn2+ ATP-dependent Ca2+ uptake was 63 and 11%, respectively, in plasma membranes; in rough endoplasmic reticulum only Mn2+ could replace Mg2+ for Ca2+ uptake by 20%. Other divalent cations such as Ba2+ and Sr2+ could not replace Mg2+ in Ca2+ uptake. Ca2+ uptake into plasma membranes was not enhanced by oxalate in contrast to Ca2+ uptake in rough endoplasmic reticulum which was stimulated by 7.3-fold. Both plasma membranes and rough endoplasmic reticulum showed cation and anion dependencies of Ca2+ uptake. The sequence was K+>Rb+>Na+>Li+>choline+ in plasma membranes and Rb+K+Na+>Li+>choline+ for rough endoplasmic reticulum. The anion sequence was ClBrI>SCN>NO 3 >isethionate >cyclamate>gluconate>SO 4 2– glutarate and Cl>Br>gluconate>SO 4 2– >NO 3 >I>cyclamateSCN, respectively. Ca2+ uptake into plasma membranes appeared to be electrogenic since it was stimulated by an inside-negative K+ and SCN diffusion potential and inhibited by an inside-positive diffusion potential. Ca2+ uptake into rough endoplasmic reticulum was not affected by diffusion potentials. We assume that the Ca2+ transport mechanism in plasma membranes as characterized in this study represents the extrusion system for Ca2+ from the cell that might be involved in the regulation of the cytosolic Ca2+ level.  相似文献   

20.
Sodium-induced calcium deficiency in salt-stressed corn   总被引:9,自引:5,他引:4  
Abstract The effect of the Na+/Ca2+ ratio in the root media on salt-stressed corn (Zea mays L. cvs DeKalb XL-75 and Pioneer 3906) was determined in greenhouse experiments. Plants grown in a complete nutrient solution salinized with 86.5 mol m?3 NaCl exhibited severe Ca2+ deficiency symptoms at the four-leaf stage. The symptoms disappeared when part of the NaCl was replaced with 10 mol m?3 CaCl2 (Na+/Ca2+ molar ratio = 5.7). Salt stress at an iso-osmotic potential of ?0.4 MPa substantially decreased shoot growth at all solution Na+/Ca2+ ratios from 34.6 to 0.26. However, the dry weights of blades at 26 d of age were much less when plants were salinized with NaCl alone, particularly that of DeKalb XL-75 which was more susceptible to Na-induced Ca2+ deficiency than was Pioneer 3906. The growth of sheaths was similarity reduced by sail stress at all Na+/Ca2+ ratios. The symptoms of Ca2+ deficiency were correlated with low Ca2+ concentrations in the leaf tissue. Ca2+ concentrations in the developing blades of NaCl-stressed plants were much lower than in control plants. As the Na+/Ca2+ ratio in the solution was decreased, Ca2+ levels increased in both the blades and sheaths while Na+ concentrations greatly decreased. DeKalb XL-75 was much less effective than Pioneer 3906 in restricting the uptake of Na+. The results clearly indicate that NaCl stress may cause lesions and unique plant responses that are not manifested on agronomic plants grown on saline soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号