首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Many studies made in Europe and North America have shown an increasing depletion of exchangeable base cations that may cause tree nutritional deficiencies in sensitive soils. We use radial variation of strontium isotope in tree-rings (87Sr/86Sr ratio) to monitor possible changes in Ca sources for tree nutrition (Sr is used as an analog to Ca). The two main sources of Ca in forest stands are mineral weathering release and atmospheric inputs. Measurements in several forest stands in temperate regions show a steep decrease from pith to outer wood of the Sr isotope ratio from∼1870 to∼1920 except for stands developed on soils with a higher Ca status. This suggests a decrease of the weathering contribution (high 87Sr/86Sr ratio) when cations are displaced from the soil exchange complex by acid deposition at a rate faster than the replenishment of the cation pool by mineral weathering. This displacement enhances the atmospheric contribution, which is characterized by a low 87Sr/86Sr ratio. Tree-ring chronologies are an exceptional historic-timing record of chemical changes in the soil environment induced by atmospheric pollution. The reliability of the tree-ring recorder has been verified with a well-controlled nutritional perturbation in the context of a limed forest stand (with a known liming Sr isotopic signature). Our data suggest that forest ecosystems were affected by atmospheric inputs of strong acids earlier than previously thought.  相似文献   

2.
A comprehensive understanding of Ca cycling in an ecosystem is desirable because of the role of this element in tree mineral nutrition and its status as a major base cation on the soil exchange complex. The determination of the origin of Ca in forests is particularly indicated in regard of important changes linked to acid inputs and intensive logging. Natural strontium isotopes are increasingly used as tracers of Ca in forest ecosystems for qualitative and quantitative assessments. Nevertheless this method is limited to relatively simple systems with two sources of nutrients. Some recent studies coupled Sr/Ca or Sr/Ba ratios to Sr isotopic measurements in order to solve more complex systems. Such method has however associated with it some uncertainties: this approach assumed that Ca, Sr and Ba behave similarly throughout the ecosystem and does not take into account the Ca biopurification processes occurring in some tree’s organs which can alter element ratio. The present work focuses on two deciduous species covering large areas in Europe: European beech (Fagus sylvatica L.) and pedunculate oak (Quercus robur L.). In order to test the similarity of behaviour between Ca, Sr and Ba, their concentrations were measured extensively in the major compartments of two forest ecosystems. In parallel, the discrimination process inside tree organs was studied in 23 stands for beech and 10 stands for oak. We found that Sr and Ca behave similarly in all soil and tree compartments. By contrast, Ba and Ca appear to have contrasting behaviours, especially in streams, soil solution and soil exchange complex (no correlations between element concentrations). Sr/Ba and Ba/Ca ratios must therefore be used with care as tracer of Ca. The Ca biopurification is absent in roots and slight in bole wood but is large in bark, twigs and leaves. The discrimination factors (DF) between wood and leaves are characteristic of the two species studied and do not change significantly as a function of the soil Ca status (acidic or calcareous soils). Therefore, strontium–calcium DF can be used as a correction factor of the Sr/Ca ratio of leaves when this ratio is used in connection with Sr isotopic ratios. This correction allows to solve systems of tree nutrition with more than two sources of Ca.  相似文献   

3.
人为干扰下子午岭次生林土壤生态因子动态变化   总被引:12,自引:3,他引:9  
对黄土高原陕西子午岭次生林区不同人为扰动条件下林地土壤容重、有机质、团聚体和微生物等进行了研究.结果表明,人为干扰(砍伐与开垦)对土壤生态因子影响较大,随干扰程度加剧,土壤理化性质变差,土壤有机质由2.2%下降到0.8%.土壤稳定性团聚体减少30%;微生物数量由1×109个·g-1干土下降到8×107个·g-1干土,土壤退化严重.在同一干扰类型的土壤剖面上,土壤有机质和土壤微生物随土层深度的增加分别减少了50%和90%,并且在不同干扰强度下变化幅度略有差异.土壤容重由表层的0.9 g·cm-3增加到1.21 g·cm-3,呈增大趋势.同一干扰类型土壤理化性质在沟缘线上下存在一定差别,沟缘线以下样地表现出较好的土壤理化性质和较高的微生物量.  相似文献   

4.
Basic features of seasonal and multiyear dynamics of accumulation of Chernobyl-derived 137Cs and 90Sr in wood are considered. Seasonal variation in the radionuclide concentration are shown to be more regular and predictable than the multiyear variation. Seasonal dynamics of 137Cs is opposite by trend to that of 90Sr. The multiyear dynamics of both 137Cs and 90Sr in the wood is variable and depends on chemical nature of individual radionuclide, type of landscape, kinetics of the radionuclide plant-available forms, and irreversible fixation of the radionuclides in the root-abundant soil layer.  相似文献   

5.
A comparison between Ca and Sr cycling in forest ecosystems   总被引:8,自引:1,他引:7  
Poszwa  Anne  Dambrine  Etienne  Pollier  Benoît  Atteia  Olivier 《Plant and Soil》2000,225(1-2):299-310
In favourable conditions, the 87Sr/86Sr isotope ratios of the Sr delivered by rain and soil mineral weathering differ. Assuming that Ca and Sr behave similarly in forest ecosystems, several authors have used the 87Sr/86Sr variation in forest compartments to calculate the contribution of rain and mineral weathering to Ca fluxes and pools. However, there are a number of experimental reports showing that Ca and Sr may behave differently in the soil and in the plant. We have tested this Ca–Sr analogy in the field by measuring the variation of Sr and Ca concentrations, fluxes and pools in spruce, beech and maple stands on granite, sandstone and limestone. Results show that (1) variations of Ca and Sr concentrations are generally correlated at each level of the ecosystems. (2) In spruce on acid soils, a preferential uptake of Ca over Sr occurs (Aubure spruce Sr/Ca = 0.8×10−3; soil exchangeable Sr/Ca between 2 and 6×10−3). On calcareous soils, a preferential uptake of Sr over Ca by spruce may occur. (3) In spruce and beech on acid and calcareous soils, a preferential translocation of Ca over Sr from roots to leaves occurs ((Sr/Ca) in leaves was between 10 and 90% of that in roots). (4) The biological cycling of Ca and Sr leads to an enrichment of the upper soil layers in Ca and Sr. Compared to Sr, Ca accumulates in the upper layer of acid soils because Ca cycling through litterfall is favoured over Sr cycling, and possibly because of the selectivity of acid organic exchangers for Ca. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

6.
Coefficients of 137Cs accumulation and 90Sr were determined in macromycetes of different trophic groups (137Cs in 43 species and 90Sr in 19 species) in the conditions of droughty year (1992). Their variability in forest formations was determined in the period from 1992 to 1998. In the year with increased atmospheric humidity (1998), two-fold rise of 137Cs accumulation in fruit bodies was registered on average. The pollution of Boletus edulis correlates with photosynthetically active part of Betula pendula and Pinus silvestris closer than with soil pollution. This shows the possibility to indicate the pollution of short-living fruit bodies of fungi by the pollution of plants-symbiotrophs.  相似文献   

7.
东北东部森林生态系统土壤碳贮量和碳通量   总被引:69,自引:7,他引:62  
杨金艳  王传宽 《生态学报》2005,25(11):2875-2882
土壤碳是高纬度地区森林生态系统最大的碳库,是森林生态系统碳循环的极其重要组分。研究了东北东部典型的6种次生林生态系统(天然蒙古栎林、杨桦林、杂木林、硬阔叶林、红松人工林和落叶松人工林)的土壤碳动态,包括(1)量化土壤有机碳(SOC)含量、碳密度及周转时间,(2)比较不同森林生态系统的土壤表面CO2通量(RS)年通量差异,(3)建立RS年通量及其分量与SOC的量化关系。研究结果表明:阔叶天然次生林和针叶人工林的SOC含量变化范围分别为52.63~66.29 g.kg-1和42.15~49.15 g.kg-1;平均SOC密度分别为15.57和17.16 kg.m-2;平均SOC周转时间分别为32a和48a。各个生态系统的RS依次为杂木林951 gC.m-2.a-1、硬阔叶林892 gC.m-2.-a 1、杨桦林812 gC.m-2.-a 1、蒙古栎林678gC.m-2.-a 1、红松林596 gC.m-2.-a 1和落叶松林451 gC.m-2.a-1。RS年通量及其分量(土壤异养呼吸和自养呼吸)与SOC含量呈显著的正相关,但其相关程度因土层不同而异(R2=0.747~0.933)。同一生态系统中,SOC含量随土深增加而降低,而SOC密度和SOC周转时间随深度增加而增大。采用统一规范的研究方法,获取大量有代表性的森林生态系统土壤碳贮量和RS的实测数据,是减少区域尺度碳平衡研究中不确定性的不可缺少的研究内容。  相似文献   

8.
The results of the researches of spices-specificity, accumulation dynamics and distribution of 90Sr, of 137Cs and of transuranic elements in fish of the Chernobyl NPP exclusion zone are analysed. The data of estimations of absorbed doze rate from incorporated radionuclides for pray fish and predatory species are given. For the fish from the lake of the left-bank floodplain of the Pripyat River the increase of 90Sr specific activity is registered which is presumably connected with the dynamics of the physical-chemical forms of the radionuclide in soils and their wash out in water bodies from the catchment basin. Now about 90% of internal dose rate of fish from closed aquatic ecosystems within the Chernobyl NPP exclusion zone is caused by 90Sr incorporation.  相似文献   

9.
Abstract

The main aim of our work was to assess whether strontium (Sr) affects soil microbial biomass size and activity, and the involvement of said biomass in the availability process of the metal. In addition, information concerning the distribution and mobility of the stable element within ecosystems may allow the prediction of the behaviour of its radioisotope counterpart, 90Sr. Samples were collected in the surroundings of a strontium mine and characterised for total and diethylene triamine pentaacetic acid (DTPA)-extractable Sr, total organic C (TOC), microbial biomass C (MBC), MBC/TOC ratio and metabolic quotient (qCO2). Moreover, MBC and DTPA-extractable Sr were measured during a 45-day incubation experiment of samples soils amended with maize. Overall, increased levels of total Sr had a negative effect on both TOC and MBC. DTPA-extractable Sr was significantly correlated to MBC/TOC suggesting a possible role of soil microbial biomass in the mobilisation of the element. The synthesis of new microbial biomass after soil amendment was negatively affected by the initial content of DTPA-extractable Sr. Conversely, there was a linear positive relationship between newly formed MBC and DTPA-extractable Sr during the incubation, indicating that soil microbial biomass may promote the mobilisation of Sr. These findings indicate that soil amendment with easily degradable organic substrate significantly increases Sr mobility and availability.  相似文献   

10.
Increased topsoil carbon stock across China's forests   总被引:2,自引:0,他引:2  
Biomass carbon accumulation in forest ecosystems is a widespread phenomenon at both regional and global scales. However, as coupled carbon–climate models predicted, a positive feedback could be triggered if accelerated soil carbon decomposition offsets enhanced vegetation growth under a warming climate. It is thus crucial to reveal whether and how soil carbon stock in forest ecosystems has changed over recent decades. However, large‐scale changes in soil carbon stock across forest ecosystems have not yet been carefully examined at both regional and global scales, which have been widely perceived as a big bottleneck in untangling carbon–climate feedback. Using newly developed database and sophisticated data mining approach, here we evaluated temporal changes in topsoil carbon stock across major forest ecosystem in China and analysed potential drivers in soil carbon dynamics over broad geographical scale. Our results indicated that topsoil carbon stock increased significantly within all of five major forest types during the period of 1980s–2000s, with an overall rate of 20.0 g C m?2 yr?1 (95% confidence interval, 14.1–25.5). The magnitude of soil carbon accumulation across coniferous forests and coniferous/broadleaved mixed forests exhibited meaningful increases with both mean annual temperature and precipitation. Moreover, soil carbon dynamics across these forest ecosystems were positively associated with clay content, with a larger amount of SOC accumulation occurring in fine‐textured soils. In contrast, changes in soil carbon stock across broadleaved forests were insensitive to either climatic or edaphic variables. Overall, these results suggest that soil carbon accumulation does not counteract vegetation carbon sequestration across China's forest ecosystems. The combination of soil carbon accumulation and vegetation carbon sequestration triggers a negative feedback to climate warming, rather than a positive feedback predicted by coupled carbon–climate models.  相似文献   

11.
王柯  郭义强  张建军  张亚男  刘时栋 《生态学报》2019,39(23):8867-8877
以“山水林田湖草生命共同体”为中心思想,从生态系统的格局和质量两个方面,对赣州市山水林田湖生态保护与修复试点工程实施效果进行了综合评估。结果如下:(1)从生态系统格局来看,2015到2018年,赣州市森林、农田和城镇生态系统面积明显增加,超过40%的草地生态系统转变为森林生态系统,且近45%的城镇生态系统面积增量由草地生态系统贡献。此外,多数自然生态系统的斑块破碎化加剧,森林生态系统破碎化现象最为明显,最大斑块指数从54.36降低到37.41,而半自然生态系统最大斑块指数增大。(2)从生态系统质量来看,赣州市归一化植被指数稳定在0.7以上并呈增长趋势,水土流失综合治理面积从16543.8 km2增长到18550.4 km2,重点流域水质基本稳定在Ⅱ、Ⅲ级,城镇生态系统受土壤重金属污染的风险较小,但部分县区农田生态系统受一种或多种土壤重金属污染的风险较大。整体而言,赣州市山水林田湖生态保护与修复试点工程取得了显著成效,较好的完成了实施方案中的规划目标。在进一步的生态保护与修复工作中,应重视赣州市自然生态系统斑块破碎化严重地区、水质出现波动较大的河流断面以及农田生态系统受土壤重金属污染威胁较大的县区。  相似文献   

12.
森林生态系统土壤保持价值的年内动态   总被引:4,自引:0,他引:4  
李士美  谢高地  张彩霞  祁悦 《生态学报》2010,30(13):3482-3490
以定位观测数据位基础,选用日雨量模型和通用土壤流失方程,研究了5种森林生态系统土壤保持价值的年内动态。研究表明,季节雨林、次生林、人工橡胶林、阔叶红松林和次生白桦林的土壤保持价值分别为570.29、347.87、174.65、14.31元.hm-.2a-1和8.76元.hm-.2a-1。土壤保持价值各月分配不均,5-10月的土壤保持价值占全年土壤保持价值的80%以上。西双版纳3种森林生态系统土壤保持价值构成中,保持土壤养分的价值高达60%以上。长白山2种森林生态系统的土壤保持价值构成有所不同,阔叶红松林以减少泥沙淤积价值为主,而次生白桦林以保持土壤养分价值为主。土壤保持价值构成中,减少废弃地价值的不足总价值的10%。  相似文献   

13.
季节性雪被变化对森林凋落物分解及土壤氮动态的影响   总被引:2,自引:0,他引:2  
全球气候变化引发的雪被格局变化将深刻影响植被的凋落物分解、陆地生态系统的土壤养分循环等过程.森林是陆地生态系统的主体,在全球生物地球化学循环中起着不可替代的作用.本研究综述了季节性雪被变化对森林凋落物分解及土壤氮动态的影响.全球气候变化情景下季节性雪被表现出因地域而异的增加或减少的变化格局,一方面通过改变环境温湿度、凋落物质量、分解者动态等直接影响分解过程,另一方面通过改变森林群落结构、植被物候、土壤养分等间接地作用于凋落物分解.同时,季节性雪被通过影响氮富集作用、雪被下土壤温湿度、冻融循环、森林群落、雪下动物和微生物等相关因子而改变森林土壤氮循环.本领域未来应开展的研究是: 1) 全面考虑全球气候变化情景下季节性雪被格局的变异性,开展不同季节性雪被格局变化的模拟研究;2) 开展季节性雪被融雪水淋溶作用对森林凋落物分解和土壤氮动态的影响研究;3) 阐明不同生态系统和气候带中季节性雪被格局变化对森林凋落物分解过程和土壤氮动态的驱动机制研究;4) 量化季节性雪被变化对森林凋落物分解和土壤氮动态在雪被覆盖期的瞬时影响和无雪期的延续影响,为阐明和模型预测陆地生态系统生物地球化学循环对全球气候变化的响应提供理论基础和数据支持.  相似文献   

14.
Increasing occurrence of droughts is a major environmental concern, however its consequences on forested ecosystems are not fully understood at the landscape level. Here we link the forest shade tolerance index to soil moisture in the North America using the U.S. and Quebec forest inventories. We report a significant decrease of shade tolerance index along the hydric–mesic–xeric soil transition in most of the area considered except three subtropical/tropical ecoregions of the Southeastern U.S. We conclude that droughts may alter forest succession, and in particular decrease the role of forest gap dynamics and dominance of the shade-tolerant species in mature forests.  相似文献   

15.
Urbanization and anthropogenic activities are the major source of environmental pollution which may cause damage in terrestrial ecosystems and their organisms. Toxic elements can accumulate in soil and leave tissue; thus, through the food chain they can accumulate in predatory organisms. The aim of our study was to investigate the effects of urbanization on toxic element concentration in soil, leaf litter and Carabus violaceus and Pterostichus oblongopunctatus specimens along an urbanization gradient. The studied predator species were common and their distribution is widespread along the urbanization gradient. Soil, leaf litter and ground beetles were collected from three forested area: urban park, suburban forest and rural forest. The following toxic element concentrations were analyzed in all samples: Al, Ba, Cd, Cu, Fe, Mn, Ni, Pb, Sr and Zn. In the soil there was no significant difference in toxic element concentration between areas, except in seasons. Significantly higher toxic element concentration was found in autumn than in spring in the soil. In the case of leaf litter we found significant differences between areas in the following toxic elements: Ba, Cu, Mn, Sr and Zn. The concentrations of all elements were significantly higher in autumn than in spring. Significantly higher concentration was found in P. oblongopunctatus specimens than in C. violaceus for all studied elements, except Sr. We found significant differences in elemental concentrations between sexes in both species. Significantly higher Cu and Pb concentration was found in male beetles than in female ones. Just the opposite was true for the Sr concentration. We found positive correlation between toxic element concentration of C. violaceus and leaf litter for Mn and Zn. Negative correlations were found between toxic elements of ground beetles and soil for Al, Ba, Fe, Sr and Zn. Our study confirms that different breeding strategies and sexes cause differences in the accumulation of toxic elements. In summary, we demonstrated that ground beetles, leaf litter and soil were suitable bioindicators for monitoring the effects of urbanization and anthropogenic activities on terrestrial ecosystem.  相似文献   

16.
森林土壤水分作为物质与能量循环的载体影响林木生长与发育,并通过影响水分在陆气之间的循环与分配影响区域气候。基于我国不同气候带的9个森林生态系统定位观测站的长期观测数据,探究了2005-2016年中国典型森林生态系统土壤水分的空间分异及其时间动态,并进一步分析了影响其时空分异的环境因素。主要研究结论如下:(1)9个森林生态系统的土壤水分多年均值介于12.45%-36.30%之间,空间上呈现中温带、亚热带、热带土壤水分较高,暖温带土壤水分较低的分布特征。降水蒸散差(降水与蒸散的差值)可以解释我国森林生态系统土壤水分空间分异的62%(P<0.05);(2)我国北部与东部季风区森林区域土壤水分呈上升趋势,降水上升是主因,其中暖温带北京、南亚热带鼎湖山与鹤山森林土壤水分上升趋势显著,增幅分别为0.67%/a、1.72%/a与0.69%/a;西南地区森林生态系统土壤水分呈下降趋势,该趋势由降水下降与蒸散上升共同导致,其中中亚热带贡嘎山及哀牢山森林生态系统土壤水分下降趋势显著,降幅分别为-1.77%/a与-0.94%/a;土壤水分时间分异与降水蒸散差的相关性最高(R=0.59,P<0.01);(3)土壤水分呈下降趋势的森林生态系统中,春季土壤水分变化主导了年际变化,土壤水分上升的森林生态系统中,年际变化则是由秋、冬季主导。(4)与ERA-interim土壤水分再分析数据比较得出,两者在空间格局与变化趋势上均具有较高的一致性。CERN土壤水分观测数据反映了无人为干扰的自然条件下森林土壤-植被-气候之间的反馈作用,可为基于模型的土壤水分研究提供长时序的验证数据。  相似文献   

17.
Forest ecosystems are enormously important to mankind.They not only supply wood,foods,medicines,waxes,oils,gums,resins and tannins,but they also regulate climate, hydrology,mineral cycling,soil erosion,and cleansing of air and water.A variety of natural and human-induced environmental stresses have both beneficial and harmful effects on forest ecosystems.However,human-induced stresses are much more harmful than naturally induced disturbances.Human-induced stresses,which often are catastrophic although avoidable,include defor estation,fire,pollution,flooding,and soil compaction.Such stresses variously injure woody plants,impede vegetative and reproductive growth,and induce mortality,largely by causing physiological dysfunction in plants.Human-induced environmental stresses have led to decimation of forest ecosystems,loss of biodiversity,forest declines,and potential global warming. Short-rotation plantations,especially in the tropics,are increasing rapidly,largely to produce wood quickly.Plantations also stabilize soil,prevent water runoff,provide shelter from wind and heat,and relieve pressure for exploiting natural forests.However,plantations alone are unlikely to satisfy society 's growing needs for the products and services that can be provided by woody plant ecosystems.Hence,several multiple concurrent strategies are urgently needed to lessen the many destructive effects of human-induced environmental stresses on woody plants.These include not only the expansion of plantations but also of agroferestry systems and forest reserves as well as the development of innovative silvicultural techniques with a focus on the preservation of natural forests.Conserving sustainability of natural forests will require a land ethic as prelude to understanding the functioning of forest ecosystems,ecological and physiological impacts of disturbances on ecosystems,and the processes involved in recovery of disturbed ecosystems. Many of the harmful effects of pollution,fire,flooding,and soil compaction can be abated by judicious planning to create and perpetuate the critical components of forest stand structure and species composition.Strategies for continuous production of the products and services that can be supplied by woody plants will need to be reinforced by expanded long-term research and close cooperation among forest biologists,social scientists,economists,and regulatory government agencies.  相似文献   

18.
由化石燃料燃烧和土地利用变化引起的全球气候变暖是地球上最严重的人为干扰之一,对陆地生态系统结构和功能产生重要的影响。土壤有机碳(SOC)是陆地生态系统最大的碳库,其微小变化都会影响全球碳平衡和气候变化。近30年来,国内外学者在不同森林生态系统相继开展了野外模拟增温对SOC分解的影响及其调控机制研究。基于在全球建立的26个野外模拟气候变暖实验平台,系统分析增温对森林生态系统SOC分解的影响格局和潜在机制,发现增温通常促进森林SOC的分解,对气候变暖产生正反馈作用。然而,因增温方式和持续时间、土壤微生物群落结构和功能的多样性、SOC结构和组成的复杂性、植物-土壤-微生物之间相互作用以及森林类型等不同而存在差异,导致人们对森林SOC分解响应气候变暖的程度及时空格局变化缺乏统一的认识,且各类生物和非生物因子的相对贡献尚不清楚。基于已有研究,从土壤微生物群落结构和功能、有机碳组分以及植物-土壤-微生物互作3个方面构建了气候变暖影响SOC分解的概念框架,并进一步阐述了今后的重点研究方向,以期深入理解森林生态系统碳-气候反馈效应,为制定森林生态系统管理措施和实现"碳中和"提供科学依据。1)加强模拟增温对不同森林生态系统(特别是热带亚热带森林生态系统) SOC分解的长期观测研究,查明SOC分解的时空动态特征;2)加强土壤微生物功能群与SOC分解之间关系的研究,揭示SOC分解对增温响应的微生物学机制;3)形成统一的SOC组分研究方法,揭示不同碳组分对增温的响应特征和机制;4)加强森林生态系统植物-土壤-微生物间相互作用对模拟增温的响应及其对SOC分解调控的研究;5)加强模拟增温与其他全球变化因子(例如降水格局变化、土地利用变化、大气氮沉降)对SOC分解的交互作用,为更好评估未来全球变化背景下森林土壤碳动态及碳汇功能的维持提供理论基础。  相似文献   

19.
焦向丽  朱教君  闫巧玲 《生态学报》2009,29(5):2631-2638
土壤动物是次生林生态系统的重要组成成分.为探讨次生林生态系统不同林型对大、中型土壤动物群落结构特征的影响,于2007年对东部山区次生林生态系统中5个主要林型的土壤动物群落进行了观测和分析.共获取土壤动物36210只,分别隶属于2门8纲32目.优势类群为真螨目(Acariformes)和弹尾目(Collembola).分析结果表明:(1)人工林大、中型土壤动物类群数和个体数波动大于次生林;(2)除落叶松人工林外,其他林型大、中型土壤动物生物量在7月份达到最大值;(3)除胡桃楸林外,其他林型大、中型土壤动物多样性在9月份达到最大值.结果表明,次生林较人工林土壤动物群落在生长季中波动范围小、多样性高.  相似文献   

20.
土壤水分作为森林生态系统水分蓄库的主体,森林土壤水分储量及其时空动态与变异对揭示区域植被恢复与气候变化背景下的森林生态系统水文过程响应与服务功能变化机制具有重要意义。本研究以南亚热带地区典型森林植被演替序列马尾松人工林(Pinus massoniana coniferous forest,PF)-马尾松针阔叶混交林(mixed Pinus massoniana/broad-leaved forest,MF)-季风常绿阔叶林(monsoon evergreen broad-leaved forest,MEBF)为研究对象,依托中国生态系统研究网络森林样地建设与监测统一规范对鼎湖山森林生态系统定位站站区内分布的上述森林类型土壤水分的长期定位观测(2005-2015年),通过分析各演替阶段森林土壤不同土层(0-15、15-30、30-45、45-60、60-75和75-90 cm)土壤体积含水量观测数据,探究该区域森林植被恢复过程中的土壤水分变化及其时空变异。结果表明:在雨热同期且干湿季明显的南亚热带地区,鼎湖山森林土壤储水量及其时间动态受降雨量的影响显著,森林土壤层对降雨具有强烈的调蓄和稳定作用,伴随PF→MF→MEBF自然演替进程,调蓄水分能力逐步增强。林型间,由初期阶段PF到顶级群落MEBF,森林土壤水分储量逐渐提高,且演替后期林型相对于早期林型,土壤储水量均呈现为较小的年际与年内变幅。干、湿季而言,干季时林型间的土壤储水量差异大于湿季,干季时MEBF和MF土壤含水量分别是PF的1.33倍和1.11倍。从土壤含水量的干、湿季期间变异来看,不同林型各土层土壤含水量的变异系数大小均表现为干季大于湿季;垂直剖面方向上,突出表现为无论干湿季MEBF各层土壤含水量变异均比其他两种林型较为缓和,充分体现了MEBF优越的土壤水分时空调配能力。整体上,伴随PF→MF→MEBF自然演替进程,土壤水分储量及其稳定性逐步提升。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号