首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Libraries of de novo proteins provide an opportunity to explore the structural and functional potential of biological molecules that have not been biased by billions of years of evolutionary selection. Given the enormity of sequence space, a rational approach to library design is likely to yield a higher fraction of folded and functional proteins than a stochastic sampling of random sequences. We previously investigated the potential of library design by binary patterning of hydrophobic and hydrophilic amino acids. The structure of the most stable protein from a binary patterned library of de novo 4-helix bundles was solved previously and shown to be consistent with the design. One structure, however, cannot fully assess the potential of the design strategy, nor can it account for differences in the stabilities of individual proteins. To more fully probe the quality of the library, we now report the NMR structure of a second protein, S-836. Protein S-836 proved to be a 4-helix bundle, consistent with design. The similarity between the two solved structures reinforces previous evidence that binary patterning can encode stable, 4-helix bundles. Despite their global similarities, the two proteins have cores that are packed at different degrees of tightness. The relationship between packing and dynamics was probed using the Modelfree approach, which showed that regions containing a high frequency of chemical exchange coincide with less well-packed side chains. These studies show (1) that binary patterning can drive folding into a particular topology without the explicit design of residue-by-residue packing, and (2) that within a superfamily of binary patterned proteins, the structures and dynamics of individual proteins are modulated by the identity and packing of residues in the hydrophobic core.  相似文献   

2.
Binary patterning of polar and nonpolar amino acids has been used as the key design feature for constructing large combinatorial libraries of de novo proteins. Each position in a binary patterned sequence is designed explicitly to be either polar or nonpolar; however, the precise identities of these amino acids are varied extensively. The combinatorial underpinnings of the "binary code" strategy preclude explicit design of particular side chains at specified positions. Therefore, packing interactions cannot be specified a priori. To assess whether the binary code strategy can nonetheless produce well-folded de novo proteins, we constructed a second-generation library based upon a new structural scaffold designed to fold into 102-residue four-helix bundles. Characterization of five proteins chosen arbitrarily from this new library revealed that (1) all are alpha-helical and quite stable; (2) four of the five contain an abundance of tertiary interactions indicative of well-ordered structures; and (3) one protein forms a well-folded structure with native-like features. The proteins from this new 102-residue library are substantially more stable and dramatically more native-like than those from an earlier binary patterned library of 74-residue sequences. These findings demonstrate that chain length is a crucial determinant of structural order in libraries of de novo four-helix bundles. Moreover, these results show that the binary code strategy--if applied to an appropriately designed structural scaffold--can generate large collections of stably folded and/or native-like proteins.  相似文献   

3.
Only a minute fraction of all possible protein sequences can exist in the genomes of all life forms. To explore whether physicochemical constraints or a lack of need causes the paucity of different protein folds, we set out to construct protein libraries without any restriction of topology. We generated different libraries (all alpha-helix, all beta-strand, and alpha-helix plus beta-strand) with an average length of 100 amino acid residues, composed of designed secondary structure modules (alpha-helix, beta-strand, and beta-turn) in various proportions, based primarily on the patterning of polar and nonpolar residues. We wished to explore that part of sequence space that is rich in secondary structure. The analysis of randomly chosen clones from each of the libraries showed that, despite the low sequence homology to known protein sequences, a substantial proportion of the library members containing alpha-helix modules were indeed helical, possess a defined oligomerization state, and showed cooperative chemical unfolding behavior. On the other hand, proteins composed of mainly beta-strand modules tended to form amyloid-like fibrils and were among the least soluble proteins ever reported. We found that a large fraction of members in non-beta-strand-containing protein libraries that are distant from natural proteins in sequence space possess unexpectedly favorable properties. These results reinforce the efficacy of applying binary patterning to design proteins with native-like properties despite lack of restriction in topology. Because of the intrinsic tendency of beta-strand modules to aggregate, their presence requires precise topologic arrangement to prevent fibril formation.  相似文献   

4.
Libraries of hybrid proteins from distantly related sequences   总被引:15,自引:0,他引:15  
We introduce a method for sequence homology-independent protein recombination (SHIPREC) that can create libraries of single-crossover hybrids of unrelated or distantly related proteins. The method maintains the proper sequence alignment between the parents and introduces crossovers mainly at structurally related sites distributed over the aligned sequences. We used SHIPREC to create a library of interspecies hybrids of a membrane-associated human cytochrome P450 (1A2) and the heme domain of a soluble bacterial P450 (BM3). By fusing the hybrid gene library to the gene for chloramphenicol acetyl transferase (CAT), we were able to select for soluble and properly folded protein variants. Screening for 1A2 activity (deethylation of 7-ethoxyresorufin) identified two functional P450 hybrids that were more soluble in the bacterial cytoplasm than the wild-type 1A2 enzyme.  相似文献   

5.
Roy S  Hecht MH 《Biochemistry》2000,39(16):4603-4607
We previously reported a combinatorial strategy for designing alpha-helical proteins by assigning only the binary patterning of polar or nonpolar residues [Kamtekar, S., Schiffer, J. M., Xiong, H. Y., Babik, J. M., and Hecht, M. H. (1993) Science 262, 1680-1685]. Here we describe the finding that approximately half of the proteins in the original collection display some level of cooperativity in their thermal denaturation profiles. Many are monomeric in solution, demonstrating that the observed cooperativity is not merely a consequence of oligomerization. These findings demonstrate that although the combinatorial nature of the design strategy precludes explicit design of side-chain packing, binary patterning incorporates sufficient sequence information to generate de novo proteins with cooperatively folded structures. As binary partitioning of polar and nonpolar amino acids is an intrinsic part of the genetic code, these findings may bear on the early evolution of native proteins.  相似文献   

6.
Selection based on the folding properties of proteins with ribosome display   总被引:4,自引:0,他引:4  
Ribosome display is a powerful tool for selecting and evolving protein functions through ligand-binding. Here, this in vitro system was used to perform selection based on the folding properties of proteins, independent of specific ligand-binding. The selection is based on two properties of misfolded proteins: (1) increased sensitivity to proteolysis and (2) greater exposure of hydrophobic area. By targeting these properties, we show that compactly folded and soluble proteins can be enriched over insoluble and random coil proteins. This approach may be especially useful for selection and evolution of folded proteins from random sequence libraries.  相似文献   

7.
We have developed a method to determine the optimal binary pattern (arrangement of hydrophobic and polar amino acids) of a target protein fold prior to amino acid sequence selection in protein design studies. A solvent accessible surface is generated for a target fold using its backbone coordinates and "generic" side-chains, which are constructs whose size and shape are similar to an average amino acid. Each position is classified as hydrophobic or polar according to the solvent exposure of its generic side-chain. The method was tested by analyzing a set of proteins in the Protein Data Bank and by experimentally constructing and analyzing a set of engrailed homeodomain variants whose binary patterns were systematically varied. Selection of the optimal binary pattern results in a designed protein that is monomeric, well-folded, and hyperthermophilic. Homeodomain variants with fewer hydrophobic residues are destabilized, while additional hydrophobic residues induce aggregation. Binary patterning, in conjunction with a force field that models folded state energies, appears sufficient to satisfy two basic goals of protein design: stability and conformational specificity.  相似文献   

8.
Many polypeptides overexpressed in bacteria are produced misfolded and accumulate as solid structures called inclusion bodies. Inclusion-body-prone proteins have often been reported to escape precipitation when fused to maltose-binding protein (MBP). Here, we have examined the case of HPV 16 oncoprotein E6. The unfused sequence of E6 is overexpressed as inclusion bodies in bacteria. By contrast, fusions of E6 to the C-terminus of MBP are produced soluble. We have analyzed preparations of soluble MBP-E6 fusions by using three independent approaches: dynamic light scattering, lateral turbidimetry, and sandwich ELISA. All three methods showed that MBP-E6 preparations contain highly aggregated material. The behavior of these soluble aggregates under denaturating conditions suggests that they are formed by agglomeration of misfolded E6 moieties. However, precipitation is prevented by the presence of the folded and highly soluble MBP moieties, which maintain the aggregates in solution. Therefore, the fact that a protein or protein domain is produced soluble when fused to the C-terminus of a carrier protein does not guarantee that the protein of interest is properly folded and active. We suggest that aggregation of fusion proteins should be systematically assayed, especially when these fusions are to be used for binding measurements or activity tests.  相似文献   

9.
Huang BC  Liu R 《Biochemistry》2007,46(35):10102-10112
mRNA display is a genotype-phenotype conjugation method that allows the amplification-based, iterative rounds of in vitro selection to be applied to peptides and proteins. Compared to prior protein selection techniques, mRNA display can be used to select functional sequences from both long natural protein and short combinatorial peptide libraries with much higher complexities. To investigate the basic features and problems of using mRNA display in studying conditional protein-protein interactions, we compared the target-binding selections against calmodulin (CaM) using both a natural protein library and a combinatorial peptide library. The selections were efficient in both cases and required only two rounds to isolate numerous Ca2+/CaM-binding natural proteins and synthetic peptides with a wide range of affinities. Many known and novel CaM-binding proteins were identified from the natural human protein library. More than 2000 CaM-binding peptides were selected from the combinatorial peptide library. Unlike sequences from prior CaM-binding selections that correlated poorly with naturally occurring proteins, synthetic peptides homologous to the Ca2+/CaM-binding motifs in natural proteins were isolated. Interestingly, a large number of synthetic peptides that lack the conventional CaM-binding secondary structures bound to CaM tightly and specifically, suggesting the presence of other interaction modes between CaM and its downstream binding targets. Our results indicate that mRNA display is an ideal approach to the identification of Ca2+-dependent protein-protein interactions, which are important in the regulation of numerous signaling pathways.  相似文献   

10.
De novo proteins from designed combinatorial libraries   总被引:4,自引:0,他引:4  
Combinatorial libraries of de novo amino acid sequences can provide a rich source of diversity for the discovery of novel proteins with interesting and important activities. Randomly generated sequences, however, rarely fold into well-ordered proteinlike structures. To enhance the quality of a library, features of rational design must be used to focus sequence diversity into those regions of sequence space that are most likely to yield folded structures. This review describes how focused libraries can be constructed by designing the binary pattern of polar and nonpolar amino acids to favor proteins that contain abundant secondary structure, while simultaneously burying hydrophobic side chains and exposing hydrophilic side chains to solvent. The "binary code" for protein design was used to construct several libraries of de novo proteins, including both alpha-helical and beta-sheet structures. The recently determined solution structure of a binary patterned four-helix bundle is well ordered, thereby demonstrating that sequences that have neither been selected by evolution (in vivo or in vitro) nor designed by computer can form nativelike proteins. Examples are presented demonstrating how binary patterned libraries have successfully produced well-ordered structures, cofactor binding, catalytic activity, self-assembled monolayers, amyloid-like nanofibrils, and protein-based biomaterials.  相似文献   

11.
A central goal of protein design is to devise novel proteins for applications in biotechnology and medicine. Many applications, including those focused on sensing and catalysis will require proteins that recognize and bind to small molecules. Here, we show that stably folded α-helical proteins isolated from a binary patterned library of designed sequences can be mutated to produce binding sites capable of binding a range of small aromatic compounds. Specifically, we mutated two phenylalanine side chains to alanine in the known structure of de novo protein S-824 to create buried cavities in the core of this four-helix bundle. The parental protein and the Phe→Ala variants were exposed to mixtures of compounds, and selective binding was assessed by saturation transfer difference NMR. The affinities of benzene and a number of its derivatives were determined by pulse field gradient spin echo NMR, and several of the compounds were shown to bind the mutated protein with micromolar dissociation constants. These studies suggest that stably folded de novo proteins from binary patterned libraries are well-suited as scaffolds for the design of binding sites.  相似文献   

12.
13.
14.
15.
16.
17.
An Y  Meresse P  Mas PJ  Hart DJ 《PloS one》2011,6(2):e16261
Structural and biophysical studies of protein complexes require multi-milligram quantities of soluble material. Subunits are often unstable when expressed separately so co-expression strategies are commonly employed since in vivo complex formation can provide stabilising effects. Defining constructs for subunit co-expression experiments is difficult if the proteins are poorly understood. Even more problematic is when subunit polypeptide chains co-fold since individually they do not have predictable domains. We have developed CoESPRIT, a modified version of the ESPRIT random library construct screen used previously on single proteins, to express soluble protein complexes. A random library of target constructs is screened against a fixed bait protein to identify stable complexes. In a proof-of-principle study, C-terminal fragments of the influenza polymerase PB2 subunit containing folded domains were isolated using importin alpha as bait. Separately, a C-terminal fragment of the PB1 subunit was used as bait to trap N-terminal fragments of PB2 resulting in co-folded complexes. Subsequent expression of the target protein without the bait indicates whether the target is independently stable, or co-folds with its partner. This highly automated method provides an efficient strategy for obtaining recombinant protein complexes at yields compatible with structural, biophysical and functional studies.  相似文献   

18.
This study reports the cloning and characterization of a cDNA encoding elongation factor 1-alpha (EF1alpha) from the yeast Schizosaccharomyces pombe. The cDNA was cloned from an Schizosaccharomyces pombe expression library by a two-hybrid selection for clones encoding calmodulin (CaM)-binding proteins. The predicted protein is highly homologous to mammalian EF1alpha, indicating a strong tendency towards conservation of the primary amino acid sequence. The protein was expressed as a glutathione S-transferase fusion in both bacteria and in Schizosaccharomyces pombe. The bacterial protein was shown by solution assay to compete with CaM kinase II for CaM. The CaM binding domain was localized to the C-terminus of the protein by this method. Expression of full-length EF1alpha in vivo caused an increase in cell cycle length and a decreased rate of growth as evidenced by a lack of elongated cells in slowly dividing cultures. This effect appears to involve CaM binding because a truncation mutant version of EF1alpha lacking the CaM binding domain did not cause cell cycle delay.  相似文献   

19.
A cDNA library of Plasmodium falciparum (Colombian strain FCB2) asexual stage was constructed in the lambda ZipLox vector. The lambda ZipLox library and a lambda ZAPII (Dd2 strain) were screened for genes coding for proteins that bind with or are related to calmodulin (CaM). Screening was accomplished with Hot start PCR assays and hybridization with radiolabeled probes. Actin I, CaM, glutamate synthase (GOGAT) and the three myosin clones--Pfmyo A, Pfmyo B and Pfmyo C--were identified. The clones coding for actin I, CaM and GOGAT were retrieved from the lambda ZipLox library, and the GOGAT and Pfmyo A clones from the lambda ZAP II library. The GOGAT clone contained an insert of 2,413 base pairs corresponding to 24.8% of the reported sequence. The Pfmyo A insert was 2,457 base pairs long, and represented the complete mRNA coding for this gene. Finally, the first report of a complete cDNA clone containing the P. falciparum myosin A is presented.  相似文献   

20.
Repeat proteins have a modular organization and a regular architecture that make them attractive models for design and directed evolution experiments. HEAT repeat proteins, although very common, have not been used as a scaffold for artificial proteins, probably because they are made of long and irregular repeats. Here, we present and validate a consensus sequence for artificial HEAT repeat proteins. The sequence was defined from the structure-based sequence analysis of a thermostable HEAT-like repeat protein. Appropriate sequences were identified for the N- and C-caps. A library of genes coding for artificial proteins based on this sequence design, named αRep, was assembled using new and versatile methodology based on circular amplification. Proteins picked randomly from this library are expressed as soluble proteins. The biophysical properties of proteins with different numbers of repeats and different combinations of side chains in hypervariable positions were characterized. Circular dichroism and differential scanning calorimetry experiments showed that all these proteins are folded cooperatively and are very stable (Tm > 70 °C). Stability of these proteins increases with the number of repeats. Detailed gel filtration and small-angle X-ray scattering studies showed that the purified proteins form either monomers or dimers. The X-ray structure of a stable dimeric variant structure was solved. The protein is folded with a highly regular topology and the repeat structure is organized, as expected, as pairs of alpha helices. In this protein variant, the dimerization interface results directly from the variable surface enriched in aromatic residues located in the randomized positions of the repeats. The dimer was crystallized both in an apo and in a PEG-bound form, revealing a very well defined binding crevice and some structure flexibility at the interface. This fortuitous binding site could later prove to be a useful binding site for other low molecular mass partners.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号