首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Cytosolic APx knockdown indicates an ambiguous redox responses in rice   总被引:1,自引:0,他引:1  
Ascorbate peroxidases (APX, EC 1.1.11.1) are class I heme-peroxidases, which catalyze the conversion of H2O2 into H2O, using ascorbate as a specific electron donor. Previously, the presence of eight Apx genes was identified in the nuclear genome of rice (Oryza sativa), encoding isoforms that are located in different sub-cellular compartments. Herein, the generation of rice transgenic plants silenced for either both or each one of the cytosolic Apx1 and Apx2 genes was carried out in order to investigate the importance of cytosolic Apx isoforms on plant development and on plant stress responses. Transgenic double Apx1/2-silenced plants exhibited normal development, even though these plants showed a global reduction of Apx activity which strongly impacts the whole antioxidant system regulation. Apx1/2-silenced plants also showed increased H2O2 accumulation under control and stress situations and presented higher tolerance to toxic concentration of aluminum when compared to wild type plants. On the other hand, silencing OsApx1 and OsApx2 genes individually resulted in strong effect on plant development producing semi-dwarf phenotype. These results suggested that the double silencing of cytosolic OsApx genes induced compensatory antioxidant mechanisms in rice while single knockdown of these genes did not, which resulted in the impairing of normal plant development.  相似文献   

2.
Breaking of hyphae derived from growth of the phytopathogenic fungus Crinipellis perniciosa in liquid media yielded cell aggregates that performed as “quasi single cell” in toxicity assays. When treated with the chemical mutagens 4-nitroquinoleine-1-oxide (4NQO), hydrogen peroxide (H2O2), or paraquat (PAQ) as well as with ultraviolet light (UVC), broken hyphae of C. perniciosa gave a single cell–like response, i.e., survival curves similar to those obtained when treating single-cell suspensions. C. perniciosa had significantly higher UVC resistance than haploid bakers yeast but was more sensitive to 4NQO and extremely sensitive to PAQ and H2O2 when compared to likewise-treated yeast. Haploid C. perniciosa basidiospores (monokaryotic) were significantly more UVC resistant than C. perniciosa broken hyphae and than haploid and diploid yeast wild-type strains. This suggests a high capacity in C. perniciosa for repair of UVC-induced DNA lesions or, alternatively, an efficient protection from UVC irradiation, especially in basidiospores. The pronounced sensitivity of the dikaryotic form of C. perniciosa to PAQ and H2O2 points to a weak protection from oxidative stress-inducing agents.  相似文献   

3.
Twenty-six species of white-rotting Agaricomycotina fungi (Basidiomycota) were screened for their ability to produce calcium-oxalate (CaOx) crystals in vitro. Most were able to produce CaOx crystals in malt agar medium in the absence of additional calcium. In the same medium enriched with Ca2+, all the species produced CaOx crystals (weddellite or whewellite). Hyphae of four species (Ganoderma lucidum, Polyporus ciliatus, Pycnoporus cinnabarinus, and Trametes versicolor) were found coated with crystals (weddellite/whewellite). The production of CaOx crystals during the growth phase was confirmed by an investigation of the production kinetics for six of the species considered in the initial screening (Pleurotus citrinopileatus, Pleurotus eryngii, Pleurotus ostreatus, P. cinnabarinus, Trametes suaveolens, and T. versicolor). However, the crystals produced during the growth phase disappeared from the medium over time in four of the six species (P. citrinopileatus, P. eryngii, P. cinnabarinus, and T. suaveolens). For P. cinnabarinus, the disappearance of the crystals was correlated with a decrease in the total oxalate concentration measured in the medium from 0.65 ??g mm−2 (at the maximum accumulation rate) to 0.30 ??g mm−2. The decrease in the CaOx concentration was correlated with a change in mycelia morphology. The oxalate dissolution capability of all the species was also tested in a medium containing calcium oxalate as the sole source of carbon (modified Schlegel medium). Three species (Agaricus blazei, Pleurotus tuberregium, and P. ciliatus) presented a dissolution halo around the growth zone. This study shows that CaOx crystal production is a widespread phenomenon in white-rot fungi, and that an excess of Ca2+ can enhance CaOx crystal production. In addition, it shows that some white-rot fungal species are capable of dissolving CaOx crystals after growth has ceased. These results highlight a diversity of responses around the production or dissolution of calcium oxalate in white-rot fungi and reveal an unexpected potential importance of fungi on the oxalate cycle in the environment.  相似文献   

4.
The effect of salicylic acid (SA) on oxalate oxidase and peroxidase activities and hydrogen peroxide (H2O2) production in leaf cells has been studied in wheat of the susceptible cultivar Zhnitsa infected by Septoria nodorum, a pathogen of wheat leaf blotch. The results show that fungal hyphae spread into interstices between mesophyll cells and that infected tissues contain H2O2. Treatment with SA results in enhanced H2O2 production in mesophyll cells, which is due to activation of oxalate oxidase and peroxidase in the cell wall. It is proposed that the modulating effect of SA on oxidoreductase activities is involved in the induction of protective response to fungal infection in wheat plants.  相似文献   

5.
Pure cadmium oxalate trihydrate (COT) and barium added cadmium oxalate (BCO) single crystals were grown by controlled diffusion of Cd2+ and Ba2+ ions in silica gel at ambient temperature. A single test tube technique coupled with gel aging conferred maximum size crystals by controlling the nucleation rate. It was found that the pH and age of the gel greatly influenced the crystal quality, their size and transparency. Grown crystals CdC2O4 · 3H2O and Ba0.5Cd0.5(C2O4)2 · 5H2O were characterized by X-ray diffraction, Fourier transform infrared spectroscopy and thermal analysis. Effect of barium dopant on the growth and morphology of cadmium oxalate was studied. Pure cadmium oxalate crystallized in triclinic system and the barium-doped cadmium oxalate crystallized in hexagonal system with massive changes in their unit cell parameters. The infrared spectrum revealed the presence of oxalate ligands and water of hydration in both the pure and barium-doped crystals. Thermal analysis showed that the grown crystals were dehydrated thermally even from lower temperatures and the doped crystals were found more stable.  相似文献   

6.
Oxalate‐producing plants accumulate calcium oxalate crystals (CaOx(c)) in the range of 3–80% w/w of their dry weight, reducing calcium (Ca) bioavailability. The calcium oxalate deficient 5 (cod5) mutant of Medicago truncatula has been previously shown to contain similar Ca concentrations to wild‐type (WT) plants, but lower oxalate and CaOx(c) concentrations. We imaged the Ca distribution in WT and cod5 leaflets via synchrotron X–ray fluorescence mapping (SXRF). We observed a difference in the Ca distribution between cod5 and WT leaflets, manifested as an abundance of Ca in the interveinal areas and a lack of Ca along the secondary veins in cod5, i.e. the opposite of what is observed in WT. X–ray microdiffraction (μXRD) of M. truncatula leaves confirmed that crystalline CaOx(c) (whewellite; CaC2O4·H2O) was present in the WT only, in cells sheathing the secondary veins. Together with μXRD, microbeam Ca K–edge X–ray absorption near‐edge structure spectroscopy (μXANES) indicated that, among the forms of CaOx, i.e. crystalline or amorphous, only amorphous CaOx was present in cod5. These results demonstrate that deletion of COD5 changes both Ca localization and the form of CaOx within leaflets.  相似文献   

7.
Oxalic acid is an important virulence factor for disease caused by the fungal necrotrophic pathogen Sclerotinia sclerotiorum, yet calcium oxalate (CaOx) crystals have not been widely reported. B. carinata stems were infected with S. sclerotiorum and observed using light microscopy. Six hours post inoculation (hpi), CaOx crystals were evident on 46% of stem sections and by 72 hpi on 100%, demonstrating that the secretion of oxalic acid by S. sclerotiorum commences before hyphal penetration. This is the first time CaOx crystals have been reported on B. carinata infected with S. sclerotiorum. The shape of crystals varied as infection progressed. Long tetragonal rods were dominant 12 hpi (68% of crystal-containing samples), but by 72 hpi, 50% of stems displayed bipyramidal crystals, and only 23% had long rods. Scanning electron microscopy from 24 hpi revealed CaOx crystals in all samples, ranging from tiny irregular crystals (< 0.5 μm) to large (up to 40 μm) highly organized arrangements. Crystal morphology encompassed various forms, including tetragonal prisms, oval plates, crystal sand, and druses. Large conglomerates of CaOx crystals were observed in the hyphal mass 72 hpi and these are proposed as a strategy of the fungus to hold and detoxify Ca2+ions. The range of crystal morphologies suggests that S. sclerotiorum growth and infection controls the form taken by CaOx crystals.  相似文献   

8.
Rapid generation of superoxide radicals and accumulation of H2O2 is a characteristic early response of plants following perception of insect herbivory signals. Induction of oxidative burst on account of herbivory triggers various defense mechanisms in plants. Response of superoxide and H2O2-metabolizing enzymes and secondary metabolites in nine pigeonpea genotypes to Helicoverpa armigera feeding was investigated. Out of nine, four genotypes were found to be moderately resistant, three were intermediate and two were moderately susceptible. In general, H. armigera infestation resulted in increase in superoxide dismutase activity, H2O2 and phenolics content and decrease in catalase (CAT) activity in leaves, developing seeds and pod wall of pigeonpea genotypes. Peroxidase activity was found only in leaves. Among genotypes, the increase in phenolic constituents was found greater in moderately resistant genotypes than in moderately susceptible genotypes; this might determine their contribution in providing resistance to genotypes against H. armigera infestation. The capability of moderately resistant genotypes to maintain relatively lower H2O2 content and higher CAT activity in pod wall and developing seeds also appeared to determine resistance of genotypes towards H. armigera. Expression of resistance to H. armigera was found to be associated with a negative correlation of H2O2-metabolizing enzymes and phenolics with pod damage as well as with negative association between CAT activity and H2O2 content. A positive correlation found between H2O2 content and pod damage suggested the accumulation of H2O2 in response to pod borer attack. In addition, correlation analysis also revealed a positive association between CAT, phenolic compounds and DPPH radical scavenging activity following pod borer attack; this indicated their contribution in resistance mechanisms against H. armigera herbivory.  相似文献   

9.
Differential expression of catalase isozymes in different genotypes of chickpea resistant genotypes- A1, JG-315, JG-11, WR-315, R1-315, Vijaya, ICCV-15017, GBS-964, GBM-10, and susceptible genotypes- JG-62, MNK, ICCV-08321, ICCV-08311, KW-104, ICCV-08123, ICC-4951, ICC-11322, ICC-08116 for wilt disease caused by Fusarium oxysporum. f. sp. ciceri (Foc) was analyzed. Salicylic acid (SA) and H2O2 concentrations were determined in control as well as in plants infected with F. ciceri and found that the high and low levels of salicylic acid and H2O2 in resistant and susceptible genotypes of chickpea respectively. Catalase isozyme activities were detected in the gel and found that no induction of new catalases was observed in all the resistant genotypes and their some of the native catalase isozymes were inhibited; whereas, induction of multiple catalase isozymes was observed in all the screened susceptible genotypes and their activities were not inhibited upon Foc or SA treatments. The above results support the possible role of these isozymes as a marker to identify which genotype of chickpea is expressing systemic acquired resistance.  相似文献   

10.
Piloderma fallax is an ectomycorrhizal fungus commonly associated with several conifer and hardwood species. We examined the formation of calcium oxalate crystals by P. fallax in response to calcium (0.0, 0.1, 0.5, 1, and 5 mM) and phosphorus (0.1 and 6 mM) additions in modified Melin-Norkrans agar medium. Both calcium and phosphorus supplementation significantly affected the amount of calcium oxalate formed. More calcium oxalate was formed at high P levels. Concentrations of soluble oxalate in the fungus and medium were higher at low P levels. There was a strong positive linear relationship between Ca level and calcium oxalate but only under conditions of phosphorus limitation. Calcium oxalate crystals were identified as the monohydrate form (calcium oxalate monohydrate [COM] whewellite) by X-ray diffraction analysis. Prismatic, styloid, and raphide forms of the crystals, characteristic COM, were observed on the surface of fungal hyphae by scanning electron microscopy. P. fallax may be capable of dissolving hyphal calcium oxalate under conditions of limited Ca. The biomineralization of calcium oxalate by fungi may be an important step in the translocation and cycling of Ca and P in soil.Many fungi from forest litter, including ectomycorrhizal fungi, exhibit calcium oxalate (CaOx) crystals on their hyphae. The ubiquity of CaOx crystals on fungal hyphae suggests that their formation may provide a selective advantage to the organism (4). CaOx formation is hypothesized to regulate intracellular pH and levels of oxalate and Ca and, hence, serves as a major sink for toxic amounts of Ca in soil and other environments (52, 53, 61). In plants, CaOx crystals have also been proposed to serve as a calcium source under conditions of calcium limitation (14, 18, 41), but such a process has yet to be established among fungi.CaOx on fungal hyphae is formed from soil-derived calcium and biologically synthesized oxalate. Oxalate released by ectomycorrhizae has been correlated with increased phosphorus bioavailability in the rhizosphere (V. Casarin, cited by Hinsinger in reference 25). The ability of oxalate to chelate metal ions makes it important in the solubilization and transport of metals in soil, the weathering and diagenesis of rocks and soil minerals (9, 23, 31, 57), and, consequently, the transport of nutrients. It is generally presumed that CaOx crystals form on the surface of fungal hyphae as a result of precipitation when released oxalic acid interacts with calcium cations (23, 43). However, the regularity of the CaOx crystals suggests that their formation is regulated and that they may be formed within the fungal hyphae at specific sites of origin (3, 5, 7).CaOx crystals vary in morphology, ranging from plates to raphides, druses, tetragonal bipyramids, and prisms. This variation in morphology can be seen among fungal genera and species (4). The crystals also usually occur either as CaOx monohydrate (COM; whewellite) (29) or CaOx dihydrate (weddellite) (3, 5, 28, 35, 60). Either crystal form or both may be present on fungal hyphae at the same time.In earlier studies (8, 9), we reported that Piloderma fallax is one of the major species of ectomycorrhizal fungi in subboreal forests. In addition, Piloderma sp. is found in temperate forest soils in association with conifer and hardwood species (34). Piloderma influences nutrient uptake and modifies mineral transformation in rock and soil systems (3, 33). In this study, we chose P. fallax because of (i) its ability to produce oxalate and form CaOx crystals (8, 56), (ii) its presence in many types of forest ecosystems, and (iii) its significant role in the breakdown and formation of soil minerals (9).The objective of this study was to quantify and characterize the formation of CaOx by P. fallax in response to various P and Ca levels in agar medium. We tested the hypothesis that P limitation will induce the production of oxalate and that increased concentrations of Ca will result in greater CaOx formation. This study also examined the dissolution of CaOx on P. fallax when it is grown on Ca-deficient medium and determined whether CaOx can serve as temporary Ca storage. Our study was conducted to add to knowledge of the ecological significance of CaOx, especially of its influence in biogeochemical cycling of P and Ca in soils.  相似文献   

11.
Human renal calculi surgically removed from kidney stone patients were obtained and chemically analysed. Stones with CaOx (calcium oxalate) as the major component were washed in 0.15 M NaCl with gentle stirring for 48 h and then pulverised to a fine powder. The powder was extracted with 0.05 M EGTA, 1 mM PMSF and 1% - mercaptoethanol for 4 days at 4°C, the suspensions and the supernatants obtained were filtered through an Amicon Model 200 apparatus (mol. wt. cut off of 10,000 daltons) under nitrogen at 40 p.s.i. and concentrated to a known volume. The method of Nakagawa et al. [7] was employed to study the ability of > 10 kDa fractions to influence COM growth using metastable solution of CaCl2 and Na2C2O2 containing traces of 14C-oxalic acid. Potent biomolecules having the ability to influence CaOx precipitation were subjected to isolation, purification and characterization. Standard biochemical procedures, e.g. ultracentrifugation, ion-exchange chromatography, molecular sieve chromatography and SDS-PAGE, etc., were employed. Results revealed that human renal calculi extract contains biomolecules that can inhibit as well as stimulate the growth of preformed COM (calcium oxalate monohydrate) crystals. Most potent stimulator of CaOx growth was found to have a molecular weight of 66 kDa.  相似文献   

12.
Oxalic acid has been shown as a virulence factor for some phytopathogenic fungi, removing calcium from pectin and favoring plant cell wall degradation. Recently, it was published that calcium oxalate accumulates in infected cacao tissues during the progression of Witches’ Broom disease (WBD). In the present work we report that the hemibiotrophic basidiomycete Moniliophthora perniciosa, the causal agent of WBD, produces calcium oxalate crystals. These crystals were initially observed by polarized light microscopy of hyphae growing on a glass slide, apparently being secreted from the cells. The analysis was refined by Scanning electron microscopy and the compositon of the crystals was confirmed by energy-dispersive x-ray spectrometry. The production of oxalate by M. perniciosa was reinforced by the identification of a putative gene coding for oxaloacetate acetylhydrolase, which catalyzes the hydrolysis of oxaloacetate to oxalate and acetate. This gene was shown to be expressed in the biotrophic-like mycelia, which in planta occupy the intercellular middle-lamella space, a region filled with pectin. Taken together, our results suggest that oxalate production by M. perniciosa may play a role in the WBD pathogenesis mechanism.  相似文献   

13.
Reactive oxygen species (ROS) play a crucial role in the early response to plant biotic and abiotic stresses. In this study, bacterial wilt‐resistant and wilt‐susceptible eggplants were inoculated with Ralstonia solanacearum and the ROS content was analysed. The result revealed an increased accumulation of hydrogen peroxide (H2O2) and superoxide (O2?) in resistant and susceptible eggplant roots after R. solanacearum inoculation. H2O2 and O2? accumulation increased earlier in the inoculated resistant eggplant root than in the inoculated susceptible eggplant root. Real‐time polymerase chain reaction results revealed that respiratory burst oxidase homologue (Rboh) A, RbohB, RbohF and PR1 expression levels increased in inoculated resistant eggplant roots at an early stage (0–60 h postinoculation) and were at higher expression levels than those in susceptible eggplant roots. Ascorbate peroxidase, peroxidase and catalase activities were higher in inoculated resistant eggplant roots than in susceptible eggplant roots at the early stage. Hence, an early ROS burst positively regulates bacterial wilt resistance in eggplant.  相似文献   

14.
The accumulation of salicylic acid and H2O2 during pathogenic infection of mustard plants with Alternaria brassicae spores was investigated to understand the role of these two defense compounds in the expression of resistance. Comparisons were made between a susceptible Brassica juncea variety RH30 and a Brassica carinata variety HC1, which is known to be resistant. An oxidative burst was detected as in situ accumulation of H2O2, in both the Brassica spp. after pathogen application. However, H2O2 generation was extracellular in the resistant variety and both extra- and intracellular in the susceptible variety. Endogenous levels of SA increased over 2.5-fold in the resistant variety HC1 in response to pathogen application and this increase was observed only in conjugated SA levels. Pathogen application also led to an increase in the antioxidant enzymes, guaiacol-dependent peroxidase (GDP) and superoxide dismutase (SOD) in HC1. Exogenous SA application to leaves led to over threefold increase in the free and conjugated SA levels in both varieties. Pathogen application to the SA pretreated plants led to over 10-fold increase in endogenous SA levels in both varieties as compared to the levels in controls and this correlated with a decrease in disease symptoms in both species. SA appeared to regulate defense responses in Brassica spp. in a concentration-dependent manner. While 2.7-fold increase in endogenous SA levels (as seen in HC1) led to an induction of antioxidant enzymes, over 10-fold increases in endogenous SA levels (as seen after exogenous SA application in both varieties) brought about no induction of the antioxidant enzymes, probably because SA itself served as an antioxidant.  相似文献   

15.
Ralstonia solanacearum, a soil-borne bacterium causes bacterial wilt, is a lethal disease of eggplant (Solanum melongena L.). However, the first line of defense mechanism of R. solanacearum infection remains unclear. The present study focused on the role of induced H2O2, defense-related enzymes of ascorbate-glutathione pathway variations in resistant and susceptible cultivars of eggplant under biotic stress. Fifteen cultivars of eggplant were screened for bacterial wilt resistance, and the concentration of antioxidant enzymes were estimated upon infection with R. solanacearum. A quantitative real-time PCR was also carried out to study the expression of defense genes. The concentration of H2O2 in the pathogen inoculated seedlings was two folds higher at 12 h after pathogen inoculation compared to control. Antioxidant enzymes of ascorbate-glutathione pathway were rapidly increased in resistant cultivars followed by susceptible and highly susceptible cultivars upon pathogen inoculation. The enzyme activity of ascorbate-glutathione pathway correlates by amplification of their defense genes along with pathogenesis-related protein-1a (PR-1a). The expressions of defense genes increased 2.5?3.5 folds in resistant eggplant cultivars after pathogen inoculation. The biochemical and molecular markers provided an insight to understand the first line of defense responses in eggplant cultivars upon inoculation with the pathogen.  相似文献   

16.
We studied the effect of hydrogen peroxide on morphological characteristics and resistance of common wheat calluses ( Triticum aestivum L.) to Tilletia caries Tul. The induction of the defense response and morphogenesis in calluses depended on H2O2 concentration. A correlation was revealed between the elevated concentration of hydrogen peroxide in wheat calluses and high activity of oxalate oxidase in the cell wall. Administration of H2O2 into the callus culture medium was followed by rhizogenesis, induced the formation of dense regions, and inhibited fungal growth on calluses. Hydrogen peroxide at high concentrations was less potent in inhibiting the growth of fungi. A relationship was found between oxalate oxidase activity, H2O2 concentration, and morphogenetic and defense responses of calluses induced by exogenous hydrogen peroxide. These data suggest that the induction of H2O2 generation is one of the approaches to increase callus resistance.  相似文献   

17.
The mechanism of resistance to paraquat was investigated in biotypes of Hordeum glaucum Steud. and H. leporinum Link. with high levels of resistance. Inhibition of photosynthetic O2 evolution after herbicide application was used to monitor the presence of paraquat at the active site. Inhibition of photosynthetic O2 evolution after paraquat application was delayed in both resistant biotypes compared with the susceptible biotypes; however, this differential was more pronounced in the case of H. glaucum than in H. leporinum. Similar results could be obtained with the related herbicide diquat. Examination of the concentration dependence of paraquat-induced inhibition of O2 evolution showed that the resistant H. glaucum biotype was less affected by herbicide compared with the susceptible biotype 3 h after treatment at most rates. The resistant H. leporinum biotype, in contrast, was as inhibited as the susceptible biotype except at the higher rates. In all cases photosynthetic O2 evolution was dramatically inhibited 24 h after treatment. Measurement of the amount of paraquat transported to the young tissue of these plants 24 h after treatment showed 57% and 53% reductions in the amount of herbicide transported in the case of the resistant H. glaucum and H. leporinum biotypes, respectively, compared with the susceptible biotypes. This was associated with 62% and 66% decreases in photosynthetic O2 evolution of young leaves in the susceptible H. glaucum and H. leporinum biotypes, respectively, a 39% decrease in activity for the resistant H. leporinum biotype, but no change in the resistant H. glaucum biotype. Photosynthetic O2 evolution of leaf slices from resistant H. glaucum was not as inhibited by paraquat compared with the susceptible biotype; however, those of resistant and susceptible biotypes of H. leporinum were equally inhibited by paraquat. Paraquat resistance in these two biotypes appears to be a consequence of reduced movement of the herbicide in the resistant plants; however, the mechanism involved is not the same in H. glaucum as in H. leporinum.  相似文献   

18.

Background

Urinary sulfate (SO4 2−) and thiosulfate (S2O3 2−) can potentially bind with calcium and decrease kidney stone risk. We modeled the effects of these species on the concentration of ionized calcium (iCa) and on supersaturation (SS) of calcium oxalate (CaOx) and calcium phosphate (CaP), and measured their in vitro effects on iCa and the upper limit of stability (ULM) of these salts.

Methods

Urine data from 4 different types of stone patients were obtained from the Mayo Nephrology Clinic (Model 1). A second data set was obtained from healthy controls and hypercalciuric stone formers in the literature who had been treated with sodium thiosulfate (STS) (Model 2). The Joint Expert Speciation System (JESS) was used to calculate iCa and SS. In Model 1, these parameters were calculated as a function of sulfate and thiosulfate concentrations. In Model 2, data from pre- and post STS urines were analyzed. ULM and iCa were determined in human urine as a function of sulfate and thiosulfate concentrations.

Results

Calculated iCa and SS values for all calcium salts decreased with increasing sulfate concentration. Thiosulfate had no effect on these parameters. In Model 2, calculated iCa and CaOx SS increased after STS treatment, but CaP SS decreased, perhaps due to a decrease in pH after STS treatment. In confirmatory in vitro experiments supplemental sulfate, but not thiosulfate, significantly increased the calcium needed to achieve the ULM of CaP and tended to increase the oxalate needed to reach the ULM of CaOx. Sulfate also significantly decreased iCa in human urine, while thiosulfate had no effect.

Conclusion

Increasing urinary sulfate could theoretically reduce CaOx and CaP stone risk. Although STS may reduce CaP stone risk by decreasing urinary pH, it might also paradoxically increase iCa and CaOx SS. As such, STS may not be a viable treatment option for stone disease.  相似文献   

19.
A purified and electrophoretically homogeneous blue laccase from the litter-decaying basidiomycete Stropharia rugosoannulata with a molecular mass of approximately 66 kDa oxidized Mn2+ to Mn3+, as assessed in the presence of the Mn chelators oxalate, malonate, and pyrophosphate. At rate-saturating concentrations (100 mM) of these chelators and at pH 5.0, Mn3+ complexes were produced at 0.15, 0.05, and 0.10 μmol/min/mg of protein, respectively. Concomitantly, application of oxalate and malonate, but not pyrophosphate, led to H2O2 formation and tetranitromethane (TNM) reduction indicative for the presence of superoxide anion radical. Employing oxalate, H2O2 production, and TNM reduction significantly exceeded those found for malonate. Evidence is provided that, in the presence of oxalate or malonate, laccase reactions involve enzyme-catalyzed Mn2+ oxidation and abiotic decomposition of these organic chelators by the resulting Mn3+, which leads to formation of superoxide and its subsequent reduction to H2O2. A partially purified manganese peroxidase (MnP) from the same organism did not produce Mn3+ complexes in assays containing 1 mM Mn2+ and 100 mM oxalate or malonate, but omitting an additional H2O2 source. However, addition of laccase initiated MnP reactions. The results are in support of a physiological role of laccase-catalyzed Mn2+ oxidation in providing H2O2 for extracellular oxidation reactions and demonstrate a novel type of laccase-MnP cooperation relevant to biodegradation of lignin and xenobiotics.  相似文献   

20.
This research studies the crystalline compounds present in nopal (Opuntia ficus-indica) cladodes. The identification of the crystalline structures was performed using X-ray diffraction, scanning electron microscopy, mass spectrometry, and Fourier transform infrared spectroscopy. The crystalline structures identified were calcium carbonate (calcite) [CaCO3], calcium-magnesium bicarbonate [CaMg(CO3)2], magnesium oxide [MgO], calcium oxalate monohydrate [Ca(C2O4)•(H2O)], potassium peroxydiphosphate [K4P2O8] and potassium chloride [KCl]. The SEM images indicate that calcite crystals grow to dipyramidal, octahedral-like, prismatic, and flower-like structures; meanwhile, calcium-magnesium bicarbonate structures show rhombohedral exfoliation and calcium oxalate monohydrate is present in a drusenoid morphology. These calcium carbonate compounds have a great importance for humans because their bioavailability. This is the first report about the identification and structural analysis of calcium carbonate and calcium-magnesium bicarbonate in nopal cladodes, as well as the presence of magnesium oxide, potassium peroxydiphosphate and potassium chloride in these plants. The significance of the study of the inorganic components of these cactus plants is related with the increasing interest in the potential use of Opuntia as a raw material of products for the food, pharmaceutical, and cosmetic industries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号