首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The use of automated protein precipitation by filtration in the 96-well format as a rapid sample preparation technique for high throughput bioanalysis using liquid chromatography tandem mass spectrometry is reported. A robotic sample processor is used to aspirate sequentially a plasma sample and acetonitrile separated by air gaps. These are then mixed by being dispensed into individual channels of a 96-well filter block. The resulting supernatant is separated from the precipitated plasma proteins by the application of gentle vacuum using a custom manifold. The filtered supernatants are collected into a deep well microtitre plate, evaporated to dryness using a heated 96-well dry down station and reconstituted in water prior to analysis. The efficiency of the extraction procedure is measured by the Lowry method for determining protein concentration. This method was used to optimise both the volume and the order of reagent addition, and to compare several prototype 96-well filter blocks. Using the optimised procedure a specific, precise and accurate method was developed for the β-agonist salbutamol in rabbit plasma with a calibration range of 1 to 100 ng/ml from 100 μl of sample.  相似文献   

2.
3.
The cyclic nucleotide phosphodiesterases (PDEs) are intracellular enzymes that catalyze the hydrolysis of 3,'5'-cyclic nucleotides, such as cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP), to their corresponding 5'nucleotide monophosphates. These enzymes play an important role in controlling cellular concentrations of cyclic nucleotides and thus regulate a variety of cellular signaling events. PDEs are emerging as drug targets for several diseases, including asthma, cardiovascular disease, attention-deficit hyperactivity disorder, Parkinson's disease, and Alzheimer's disease. Although biochemical assays with purified recombinant PDE enzymes and cAMP or cGMP substrate are commonly used for compound screening, cell-based assays would provide a better assessment of compound activity in a more physiological context. The authors report the development and validation of a new cell-based PDE4 assay using a constitutively active G-protein-coupled receptor as a driving force for cAMP production and a cyclic nucleotide-gated cation channel as a biosensor in 1536-well plates.  相似文献   

4.
For future structural and functional genomics programs new tools will be required. The implementation of high-throughput (HTP) methods for protein production will be an essential element. Present HTP protein production developments in structural genomics are aimed at obtaining well-expressing and highly soluble proteins, which are preferred candidates for structure-function studies. Here, we describe a cheap and efficient procedure to identify well-expressing soluble proteins in Escherichia coli in a compact 96-well format. Reproducible lysis on filter plates, followed by a filtration step on 96-well filter plates, allows the efficient separation of inclusion bodies from the soluble fraction. In the following step a dot blot procedure using anti-RGS-His(4) antibody (Qiagen) to detect expression of recombinant His-tagged protein is applied allowing direct detection of the target protein in the soluble fraction. The method is well suited for automation and should be applicable to expression screening of most proteins and fusion domains to which specific antibodies are available.  相似文献   

5.
A growing need for sensitive and high-throughput methods for screening the expression and solubility of recombinant proteins exists in structural genomics. Originally, the emergency solution was to use immediately available techniques such as manual lysis of expression cells followed by analysis of protein expression by gel electrophoresis. However, these handmade methods quickly proved to be unfit for the high-throughput demand of postgenomics, and it is now generally accepted that the long-term solution to this problem will be based on automation, on industrial standard-formatted experiments, and on downsizing samples and consumables. In agreement with this consensus, we have set up a fully automated method based on a dot-blot technology and using 96-well format consumables for assessing by immunodetection the amount of total and soluble recombinant histidine (His)-tagged proteins expressed in Escherichia coli. The method starts with the harvest of expression cells and ends with the display of solubility/expression results in milligrams of recombinant protein per liter of culture using a three-color code to assist analysis. The program autonomously processes 160 independent cultures at a time.  相似文献   

6.
A novel parallel radio-frequency (RF) tag distributor has been developed which allows for distribution of RF tags into Irori microkans in 96-well format. The distributor has a holding capacity of approximately 1000 RF tags and distributes RF tags in groups of 12. Using the distributor, a block of 96 microkans can be filled with RF tags in less than 30 sec resulting in significant time savings over one-at-a-time manual RF tag distribution. The distributor may also be of utility as a solid-phase synthesis tool for dispensing resin enclosed in capsules (which have the same shape as RF tags). Copyright 1998 John Wiley & Sons, Inc.  相似文献   

7.
8.
This article discusses the development of homogeneous, miniaturized assays for the identification of novel kinase inhibitors from very large compound collections. In particular, the suitability of time-resolved fluorescence resonance energy transfer (TR-RET) based on phospho-specific antibodies, an antibody-independent fluorescence polarization (FP) approach using metal-coated beads (IMAP technology), and the determination of adenosine triphosphate consumption through chemiluminescence is evaluated. These readouts are compared with regard to assay sensitivity, compound interference, reagent consumption, and performance in a 1536-well format, and practical considerations for their application in primary screening or in the identification of kinase substrates are discussed. All of the tested technologies were found to be suitable for miniaturized high-throughput screening (HTS) in principle, but each of them has distinct limitations and advantages. Therefore, the target-specific selection of the most appropriate readout technology is recommended to ensure maximal relevance of HTS campaigns.  相似文献   

9.
Sample homogenization is an essential step for genomic DNA extraction, with multiple downstream applications in Molecular Biology. Genotyping hundreds or thousands of samples requires an automation of this homogenization step, and high throughput homogenizer equipment currently costs 7000 euros or more. We present an apparatus for homogenization of individual Drosophila adult flies in 96-well micro-titer dishes, which was built from a small portable paint-shaker (F5 portable paint-shaker, Ushake). Single flies are disrupted in each well that contains extraction buffer and a 4-mm metal ball. Our apparatus can hold up to five 96-well micro-titer plates. Construction of the homogenizer apparatus takes about 3–4 days, and all equipment can be obtained from a home improvement store. The total material cost is approximately 700 euros including the paint-shaker. We tested the performance of our apparatus using the ZR-96 Quick-gDNA™ kit (Zymo Research) homogenization buffer and achieved nearly complete tissue homogenization after 15 minutes of shaking. PCR tests did not detect any cross contamination between samples of neighboring wells. We obtained on average 138 ng of genomic DNA per fly, and DNA quality was adequate for standard PCR applications. In principle, our tissue homogenizer can be used for isolation of DNA suitable for library production and high throughput genotyping by Multiplexed Shotgun Genotyping (MSG), as well as RNA isolation from single flies. The sample adapter can also hold and shake other items, such as centrifuge tubes (15–50 mL) or small bottles.  相似文献   

10.
《Fly》2013,7(3):138-144
Sample homogenization is an essential step for genomic DNA extraction, with multiple downstream applications in Molecular Biology. Genotyping hundreds or thousands of samples requires an automation of this homogenization step, and high throughput homogenizer equipment currently costs 7000 euros or more. We present an apparatus for homogenization of individual Drosophila adult flies in 96-well micro-titer dishes, which was built from a small portable paint-shaker (F5 portable paint-shaker, Ushake). Single flies are disrupted in each well that contains extraction buffer and a 4-mm metal ball. Our apparatus can hold up to five 96-well micro-titer plates. Construction of the homogenizer apparatus takes about 3–4 days, and all equipment can be obtained from a home improvement store. The total material cost is approximately 700 euros including the paint-shaker. We tested the performance of our apparatus using the ZR-96 Quick-gDNA? kit (Zymo Research) homogenization buffer and achieved nearly complete tissue homogenization after 15 minutes of shaking. PCR tests did not detect any cross contamination between samples of neighboring wells. We obtained on average 138 ng of genomic DNA per fly, and DNA quality was adequate for standard PCR applications. In principle, our tissue homogenizer can be used for isolation of DNA suitable for library production and high throughput genotyping by Multiplexed Shotgun Genotyping (MSG), as well as RNA isolation from single flies. The sample adapter can also hold and shake other items, such as centrifuge tubes (15–50 mL) or small bottles.  相似文献   

11.
For structural and functional genomics programs, new high-throughput methods to obtain well-expressing and highly soluble proteins are essential. Here, we describe a rapid procedure to express recombinant proteins in an Escherichia coli cell-free system using a 96-well format. The identification of soluble proteins is performed by the Dot Blot procedure using an anti-His tag antibody. The applications and the automation of this method are described.  相似文献   

12.
Dysregulation of the brain-specific tau protein kinase II (TPK II)/cdk5 is reported to play an important role in the pathogenesis of Alzheimer's disease. We report here a quantitative scintillation proximity assay (SPA), which is suitable for determining TPK II/cdk5 activity and its inhibition. It depends upon the phosphorylation of a synthetic histone-based peptide substrate (PKTPKKAKKL), which has been biotinylated at its C-terminus. When this biotinylated peptide is incubated with [γ-33P] ATP and TPK II/cdk5 under defined assay conditions, product formation is linear with respect to time and enzyme concentration. The production of [33P] phosphorylated peptide is inhibited in the presence of a known TPK II/cdk5 inhibitor but is unaffected in the presence of 1% DMSO. A signal-to-noise ratio of 16:1 was obtained in a 60-min assay with an intra-assay variability of <10% in the 96-well microtiter format. The TPK II/cdk5 SPA is very robust, sensitive and simple to perform.  相似文献   

13.
Most steps in plant nucleic acid isolation are easily adapted to 96-well format; however, tissue disruption typically is performed on samples individually and often is the rate-limiting step in sample processing. We have found that DNA and RNA isolation from Arabidopsis tissue can be carried out in 96-well format using a paint shaker fitted with an adapter for tissue disruption.  相似文献   

14.
A 96-well protein precipitation, liquid chromatography-tandem mass spectrometry (LC-MS/MS) method has been developed and fully validated for the determination of fudosteine in human plasma. After protein precipitation of the plasma samples (50 microL) by the methanol (150 microL) containing the internal standard (IS), erdosteine, the 96-well plate was vortexed for 5 min and centrifuged for 15 min. The 100 microL supernatant and 100 microL mobile phase were added to another plate and mixed and then the mixture was directly injected into the LC-MS/MS system in the negative ionization mode. The separation was performed on a XB-CN column for 3.0 min per sample using an eluent of methanol-water (60:40, v/v) containing 0.005% formic acid. Multiple reaction monitoring (MRM) using the precursor-product ion transitions m/z 178-->91 and m/z 284-->91 was performed to quantify fudosteine and erdosteine, respectively. The method was sensitive with a lower limit of quantification (LLOQ) of 0.02 microg mL(-1), with good linearity (r>0.999) over the linear range of 0.02-10 microg mL(-1). The within- and between-run precision was less than 5.5% and accuracy ranged from 94.2 to 106.7% for quality control (QC) samples at three concentrations of 0.05, 1 and 8 microg mL(-1). The method was employed in the clinical pharmacokinetic study of fudosteine formulation product after oral administration to healthy volunteers.  相似文献   

15.
We describe a protocol for performing RNA interference (RNAi) screens in Caenorhabditis elegans in liquid culture in 96-well plates. The procedure allows a single researcher to set-up and score RNAi experiments at approximately 2,000 genes per day. By comparing RNAi phenotypes between wild-type worms and worms carrying a defined genetic mutation, we have used this protocol to identify synthetic lethal interactions between genes systematically. We also describe how the protocol can be adapted to target two genes simultaneously by combinatorial RNAi.  相似文献   

16.
A simplified method to determine clarithromycin concentrations in human plasma using protein precipitation in a 96-well plate and liquid chromatography-tandem mass spectrometry was developed and validated. Plasma proteins were precipitated with acetonitrile and roxithromycin was used as the internal standard. After vortex mixing and centrifugation, the supernatants were directly injected onto a Phenomenex Luna Phenyl-Hexyl column (50 mm x 2.0 mm ID, 3 microm). The mobile phase consisted of water and methanol (30:70, v/v) containing 0.1% formic acid and 5mM ammonium acetate. The flow rate was 0.22 mL/min and the total run time (injection to injection) was less than 3 min. Detection of the analytes was achieved using positive ion electrospray tandem mass spectrometry in selected reaction monitoring (SRM) mode. The linear standard curve ranged from 100 to 5000 ng/mL and the precision and accuracy (inter- and intra-run) were within 7.9% and 4.9%, respectively. The method was successfully used to determine clarithromycin concentrations in human plasma samples obtained from healthy subjects who were given clarithromycin 500 mg for 3 days. The method is rapid, simple, precise and directly applicable to clarithromycin pharmacokinetic studies.  相似文献   

17.
Results of a complete survey of the more than 2-million-member Pharmacopeia compound collection in a 1536-well microvolume screening assay format are reported. A complete technology platform, enabling the performance of ultra-high throughput screening in a miniaturized 1536-well assay format, has been assembled and utilized. The platform consists of tools for performing microvolume assays, including assay plates, liquid handlers, optical imagers, and data management software. A fluorogenic screening assay for inhibition of a protease enzyme target was designed and developed using this platform. The assay was used to perform a survey screen of the Pharmacopeia compound collection for active inhibitors of the target enzyme. The results from the survey demonstrate the successful implementation of the ultra-high throughout platform for routine screening purposes. Performance of the assay in the miniaturized format is equivalent to that of a standard 96-well assay, showing the same dependence on kinetic parameters and ability to measure enzyme inhibition. The survey screen identified an active class of compounds within the Pharmacopeia compound collection. These results were confirmed using a standard 96-well assay.  相似文献   

18.
A semi-automatic, high-throughput method has been developed to rapidly assess plasma protein binding of new chemical entities in drug discovery phase. New chemical entities are mixed with plasma and the unbound fractions are separated from the bound fraction by ultrafiltration in a 96-well filtrate assembly. The unbound fractions are then analyzed by fast liquid chromatography-tandem mass spectrometry (LC-MS/MS). Sample handling is automated by a robotic system. Employing a cocktail approach where multiple new chemical entities are allowed to bind to plasma proteins in the same well has further increased the throughput. We have validated the method with 12 commercially available compounds. The plasma protein binding data obtained by this method are comparable with the literature values. This method enables the determination of protein binding for 32 compounds in one single experiment instead of 1-2 compounds using the conventional methods.  相似文献   

19.
An analytical method was developed for the determination, in blood plasma, of a novel peroxisome proliferator-activated receptor (PPAR) agonist drug, tesaglitazar. The drug and the isotope labelled internal standard were isolated by solid-phase extraction (SPE) on hexylsilica, separated by reversed-phase liquid chromatography and quantified by tandem mass spectrometry. Factorial design and a robotic sample processor were employed in the exploration and optimisation of the SPE procedure in the 96-well format. This allowed rapid development of the method, notably limiting the process to four experiments before validation. The detectability was greatly improved by utilising the formation of sodium adducts in atmospheric pressure positive ionisation mass spectrometry. Absolute recovery was more than 95% with a coefficient of variation of 5% at a level of 8.7 nM. The accuracy and precision of the automated SPE method presented here matched the excellence of the previously used method based on manual liquid-liquid extraction. Furthermore, the method resulted in an increased sample throughput.  相似文献   

20.
Mitogen-activated protein (MAP) kinases of the extracellular signal-regulated kinase (ERK) family are activated in response to many growth and differentiation factors as well as some oncogenes. ERK activation follows phosphorylation by a class of specific upstream MAP kinase/ERK kinase (MEK) exemplified by MEK-1. Activated ERKs control many short- and long-term changes in cell function through phosphorylating a number of intracellular target substrates which include stathmin, a phosphoprotein regulating microtubule stability. We report here the development of a simple, 96-well plate, quantitative in vitro assay measuring purified ERK2 catalytic activation by a constitutive MEK-1 mutant (S218E S222E). Enzymatic activity was detected by 33P phosphorylation of purified biotinylated stathmin captured on streptavidin-coated scintillation proximity assay beads which eliminates the need for wash steps. The assay was optimized and the K0.5 value for ATP was found to be 0.9 microM and the Km for stathmin was determined to be 16 microM. The assay was also used to determine IC50 values for the protein kinase inhibitors PD98059 and staurosporine. This simple assay allows several hundred quantitative measurements of MEK1-dependent ERK2 activation to be performed in a day.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号