首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Fly》2013,7(3):253-257
Understanding the causes of aging is a complex problem due to the multiple factors that influence aging, which include genetics, environment, metabolism and reproduction, among others. These multiple factors create logistical difficulties in the evaluation of anti-aging agents. There is a need for good model systems to evaluate potential anti-aging compounds. The model systems used should represent the complexities of aging in humans, so that the findings may be extrapolated to human studies, but they should also present an opportunity to minimize the variables so that the experimental results can be accurately interpreted. In addition to positively affecting lifespan, the impact of the compound on the physiologic confounders of aging, including fecundity and the health span-the period of life where an organism is generally healthy and free from serious or chronic illness-of the model organism needs to be evaluated. Fecundity is considered a major confounder of aging in fruit flies. It is well established that female flies that are exposed to toxic substances typically reduce their dietary intake and their reproductive output and display an artifactual lifespan extension. As a result, drugs that achieve longevity benefits by reducing fecundity as a result of diminished food intake are probably not useful candidates for eventual treatment of aging in humans and should be eliminated during the screening process.  相似文献   

2.
Asymmetric cell division (ACD) is one of the processes creating the overall diversity of cell types in multicellular organisms. The essence of this process is that the daughter cells exit from it being different from both the parental cell and one another in their ability to further differentiation and specialization. The large bristles (macrochaetae) that are regularly arranged on the surface of the Drosophila adult function as mechanoreceptors, and since their development requires ACD, they have been extensively used as a model system for studying the genetic control of this process. Each macrochaete is composed of four specialized cells, the progeny resulting from several ACDs from a single sensory organ precursor (SOP) cell, which differentiates from the ectodermal cells of the wing imaginal disc in the third-instar larva and pupa. In this paper we review the experimental data on the genes and their products controlling the ACDs of the SOP cell and its daughter cells, and their further specialization. We discuss the main mechanisms determining the time when the cell enters ACD, as well as the mechanisms providing for the structural characteristics of asymmetric division, namely, polar distribution of protein determinants (Numb and Neuralized), orientation of the division spindle relative to these determinants, and unequal segregation of the determinants specifying the direction of daughter cell development.  相似文献   

3.
Many human diseases are caused by malfunction of basic types of cellular activity such as proliferation, differentiation, apoptosis, cell polarization, and migration. In turn, these processes are associated with different routes of intracellular signal transduction. A number of model systems have been designed to study normal and abnormal cellular and molecular processes associated with pathogenesis. The developing eye of the fruit fly Drosophila melanogaster is one of these systems. The sequential development of compound eyes of this insect makes it possible to model human neurodegenerative diseases and mechanisms of carcinogenesis. In this paper we overview the program of the eye development in Drosophila, with emphasis on intracellular signaling pathways that regulate this complex process. We discuss in detail the roles of the Notch, Hedgehog, TGFβ, Wnt, and receptor tyrosine kinase signaling pathways in Drosophila eye development and human pathology. We also briefly describe the modern methods of experimentation with this model organism to analyze the function of human pathogenic proteins.  相似文献   

4.
The development of the tracheal system of Drosophila melanogaster represents a paradigm for studying the molecular mechanisms involved in the formation of a branched tubular network. Tracheogenesis has been characterized at the morphological, cellular and genetic level and a series of successive, but linked events have been described as the basis for the formation of the complex network of tubules which extend over the entire organism. Tracheal cells stop to divide early in the process of tracheogenesis and the formation of the interconnected network requires highly controlled cell migration events and cell shape changes. A number of genes involved in these two processes have been identified but in order to obtain a more complete view of branching morphogenesis, many more genes carrying essential functions have to be isolated and characterized. Here, we provide a progress report on our attempts to identify further genes expressed in the tracheal system. We show that empty spiracles (ems), a head gap gene, is required for the formation of a specific tracheal branch, the visceral branch. We also identified a Sulfotransferase and a Multiple Inositol Polyphosphate phosphatase that are strongly upregulated in tracheal cells and discuss their possible involvement in tracheal development.  相似文献   

5.
Endocytosis is the membrane trafficking process by which plasma membrane components and extracellular material are internalized into cytoplasmic vesicles and delivered to early and late endosomes, eventually either recycling back to the plasma membrane or arriving at the lysosome/vacuole. The budding yeast Saccharomyces cerevisiae has proven to be an invaluable system for identifying proteins involved in endocytosis and elucidating the mechanisms underlying internalization and postinternalization events. Through genetic studies in yeast and biochemical studies in mammalian cells, it has become apparent that multiple cellular processes are linked to endocytosis, including actin cytoskeletal dynamics, ubiquitylation, lipid modification, and signal transduction. In this review, we will highlight the most exciting recent findings in the field of yeast endocytosis. Specifically, we will address the involvement of the actin cytoskeleton in internalization, the role of ubiquitylation as a regulator of multiple steps of endocytosis in yeast, and the sorting of endocytosed proteins into the recycling and vacuolar pathways.  相似文献   

6.
Omelianchuk LV  Iudina OS 《Genetika》2011,47(7):869-873
Studies in which Drosophila melanogaster individuals carrying transgenes of animal viruses were used to analyze the action of animal viral proteins on the cell are reviewed. The data presented suggest that host specificity of viruses is determined by their proteins responsible for the penetration of the virus into the cell, while viral proteins responsible for interactions with the host cell are much less host-specific. Due to this, the model of Drosophila with its developed system of searching for genetic interactions can be used to find intracellular targets for the action of viral proteins of the second group.  相似文献   

7.
Drosophila oogenesis is a complex developmental process involving the coordinated differentiation of germ line and somatic cells. Correct execution and timing of cell fate specification and patterning events is achieved during this process by the integration of different cell-cell signalling pathways, eventually leading to the generation of positional information inside the oocyte, that is instrumental for the establishment of embryonic polarity. The large body of data accumulated at both cellular and molecular levels in the last decade clearly demonstrated how Drosophila oogenesis is a genetically tractable system particularly suited for the investigation of key developmental biology questions. Our recent contribution to the field relies on the characterisation of three different mutants named tegamino (teg), hold hup (hup) and tulipano (tip), identifying novel gene functions required during oogenesis. Specifically, teg is implicated in the morphogenesis of the follicular epithelium surrounding the germ line cells in the egg chamber, hup is involved in the establishment of egg chamber polarity and tip in the regulation of the dynamic germ cell chromatin organisation.  相似文献   

8.
Understanding the relationship between brain and behavior is the fundamental challenge in neuroscience. We focus on chemosensation and chemosensory learning in larval Drosophila and review what is known about its molecular and cellular bases. Detailed analyses suggest that the larval olfactory system, albeit much reduced in cell number, shares the basic architecture, both in terms of receptor gene expression and neuronal circuitry, of its adult counterpart as well as of mammals. With respect to the gustatory system, less is known in particular with respect to processing of gustatory information in the central nervous system, leaving generalizations premature. On the behavioral level, a learning paradigm for the association of odors with food reinforcement has been introduced. Capitalizing on the knowledge of the chemosensory pathways, we review the first steps to reveal the genetic and cellular bases of olfactory learning in larval Drosophila. We argue that the simplicity of the larval chemosensory system, combined with the experimental accessibility of Drosophila on the genetic, electrophysiological, cellular, and behavioral level, makes this system suitable for an integrated understanding of chemosensation and chemosensory learning.  相似文献   

9.
AX Santos  H Riezman 《FEBS letters》2012,586(18):2858-2867
Lipids are essential eukaryotic cellular constituents. Lipid metabolism has a strong impact on cell physiology, and despite good progress in this area, many important basic questions remain unanswered concerning the functional diversity of lipid species and on the mechanisms that cells employ to sense and adjust their lipid composition. Combining convenient experimental tractability, a large degree of conservation of metabolic pathways with other eukaryotes and the relative simplicity of its genome, proteome and lipidome, yeast represents the most advantageous model organism for studying lipid homeostasis and function. In this review we will focus on the importance of yeast as a model organism and some of the innovative advantages for the lipid research field.  相似文献   

10.
Aquaporins (AQPs) are integral membrane proteins that serve as selective pores through which water and small solutes cross the plasma membranes of many human tissue and cell types. They have been identified in epithelia and endothelia involved in fluid transport, such as kidney tubules and glandular epithelia, glial cells, epidermis, and adipocytes. The pathophysiological roles of these proteins and the primary and secondary involvement of AQPs are becoming apparent in diverse clinical disorders, from diabetes insipidus to various forms of edema. The advanced understanding of aquaporin biology, from the structural determinants of channel permeability to the assignment of their physiological function in different organs, will allow the use of AQPs as targets for the therapy of a wide array of diseases. In this review, the mode of action of clinically-effective plant formulae on human AQPs-related diseases at the molecular, cellular, and organism levels is explored. The use of pharmacological plant-derived compounds as a possible strategy in the therapy of diseases related to altered water homeostasis should stimulate debate and further research objectives.  相似文献   

11.
The organization of chromosomes into euchromatin and heterochromatin is one of the most enigmatic aspects of genome evolution. For a long time, heterochromatin was considered to be a genomic wasteland, incompatible with gene expression. However, recent studies--primarily conducted in Drosophila melanogaster--have shown that this peculiar genomic component performs important cellular functions and carries essential genes. New research on the molecular organization, function and evolution of heterochromatin has been facilitated by the sequencing and annotation of heterochromatic DNA. About 450 predicted genes have been identified in the heterochromatin of D. melanogaster, indicating that the number of active genes is higher than had been suggested by genetic analysis. Most of the essential genes are still unknown at the molecular level, and a detailed functional analysis of the predicted genes is difficult owing to the lack of mutant alleles. Far from being a peculiarity of Drosophila, heterochromatic genes have also been found in Saccharomyces cerevisiae, Schizosaccharomyces pombe, Oryza sativa and Arabidopsis thaliana, as well as in humans. The presence of expressed genes in heterochromatin seems paradoxical because they appear to function in an environment that has been considered incompatible with gene expression. In the future, genetic, functional genomic and proteomic analyses will offer powerful approaches with which to explore the functions of heterochromatic genes and to elucidate the mechanisms driving their expression.  相似文献   

12.
13.
Mutations in the DNMT3B DNA methyltransferase gene cause the ICF immunodeficiency syndrome. The targets of this DNA methyltransferase are CpG-rich heterochromatic regions, including pericentromeric satellites and the inactive X chromosome. The abnormal hypomethylation in ICF cells provides an important model system for determining the relationships between replication time, CpG island methylation, chromatin structure, and gene silencing in X chromosome inactivation.  相似文献   

14.
15.
16.
Caenorhabditis elegans has a number of distinct advantages that are useful for understanding the basis for cellular and organismal dysfunction underlying age-associated diseases of protein misfolding. Although protein aggregation, a key feature of human neurodegenerative diseases, has been typically explored in vivo at the single-cell level using cells in culture, there is now increasing evidence that proteotoxicity has a non-cell-autonomous component and is communicated between cells and tissues in a multicellular organism. These discoveries have opened up new avenues for the use of C. elegans as an ideal animal model system to study non-cell-autonomous proteotoxicity, prion-like propagation of aggregation-prone proteins, and the organismal regulation of stress responses and proteostasis. This Review focuses on recent evidence that C. elegans has mechanisms to transmit certain classes of toxic proteins between tissues and a complex stress response that integrates and coordinates signals from single cells and tissues across the organism. These findings emphasize the potential of C. elegans to provide insights into non-cell-autonomous proteotoxic mechanisms underlying age-related protein-misfolding diseases.KEY WORDS: Caenorhabditis elegans, Cell non-autonomous proteotoxicity, Prion-like spreading  相似文献   

17.
Neuroblastoma is a tumor arising in the peripheral sympathetic nervous system and is the most common cancer in childhood. Since most of the cellular and molecular mechanisms underlying neuroblastoma onset and progression remain unknown, the generation of new in vivo models might be appropriate to better dissect the peripheral sympathetic nervous system development in both physiological and disease states. This review is focused on the use of zebrafish as a suitable and innovative model to study neuroblastoma development. Here, we briefly summarize the current knowledge about zebrafish peripheral sympathetic nervous system formation, focusing on key genes and cellular pathways that play a crucial role in the differentiation of sympathetic neurons during embryonic development. In addition, we include examples of how genetic changes known to be associated with aggressive neuroblastoma can mimic this malignancy in zebrafish. Thus, we note the value of the zebrafish model in the field of neuroblastoma research, showing how it can improve our current knowledge about genes and biological pathways that contribute to malignant transformation and progression during embryonic life.  相似文献   

18.
The aim of this study was to investigate the toxic effects of aluminum (A1) on the model organism-Drosophila melanogaster. The study is especially concerned with the effects of aluminum on the fruit fly's development, life span, and circadian rhythm in rest and activity. Flies were exposed to aluminum in concentrations from 40 to 280 mg/kg in rearing media or the flies were raised on control medium. Moreover, the life span of insects exposed to aluminum containing 40, 120, or 240 mg/kg of A1 in the medium, only during their larval development, during the whole life cycle and only in their adult life was tested. To check if aluminum and aging cause changes in D. melanogaster behavior, the locomotor activity of flies at different ages was recorded. Results showed that aluminum is toxic in concentrations above 160 mg/kg in the rearing medium. Depending on A1 concentration and time of exposure, the life span of the flies was shortened. At intermediate concentrations (120 mg/kg), however, A1 had a stimulating effect on males increasing their life span and level of locomotor activity. At higher concentration the aluminum exposure increased or decreased the level of locomotor activity ofD. melanogaster depending on age of flies. In addition, in the oldest insects reared on aluminum supplemented media and in mid-aged flies reared on the highest concentration of A1 the daily rhythm of activity was disrupted.  相似文献   

19.
Kang TJ  Suga H 《FEBS letters》2011,585(14):2269-2274
We found that the synthesis of histone H3 N-terminal peptide (tail) in a reconstituted protein synthesis system yielded fragmented peptides along with the full-length product. With the combined use of MALDI-TOF analysis and peptidyl-tRNA hydrolase cleavage of the Flag tagged product species, we concluded that the fragments were generated by peptidyl-tRNA drop-off at specific sites and subsequent translation continuation. Using the histone H3 tail we also found that peptidyl-tRNA drop-off is strongly correlated with the amino acid context. We envision that the system described here would be useful as a model system for studying peptidyl-tRNA drop-off events.  相似文献   

20.

Background

Doubly Uniparental Inheritance (DUI) of mitochondria occurs when both mothers and fathers are capable of transmitting mitochondria to their offspring, in contrast to the typical Strictly Maternal Inheritance (SMI). DUI was found in some bivalve molluscs, in which two mitochondrial genomes are inherited, one through eggs, the other through sperm. During male embryo development, spermatozoon mitochondria aggregate in proximity of the first cleavage furrow and end up in the primordial germ cells, while they are dispersed in female embryos.

Methodology/Principal Findings

We used MitoTracker, microtubule staining and transmission electron microscopy to examine the mechanisms of this unusual distribution of sperm mitochondria in the DUI species Ruditapes philippinarum. Our results suggest that in male embryos the midbody deriving from the mitotic spindle of the first division concurs in positioning the aggregate of sperm mitochondria. Furthermore, an immunocytochemical analysis showed that the germ line determinant Vasa segregates close to the first cleavage furrow.

Conclusions/Significance

In DUI male embryos, spermatozoon mitochondria aggregate in a stable area on the animal-vegetal axis: in organisms with spiral segmentation this zone is not involved in cleavage, so the aggregation is maintained. Moreover, sperm mitochondria reach the same embryonic area in which also germ plasm is transferred. In 2-blastomere embryos, the segregation of sperm mitochondria in the same region with Vasa suggests their contribution in male germ line formation. In DUI male embryos, M-type mitochondria must be recognized by egg factors to be actively transferred in the germ line, where they become dominant replacing the Balbiani body mitochondria. The typical features of germ line assembly point to a common biological mechanism shared by DUI and SMI organisms. Although the molecular dynamics of the segregation of sperm mitochondria in DUI species are unknown, they could be a variation of the mechanism regulating the mitochondrial bottleneck in all metazoans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号