首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
During the breeding season seabirds are constrained to coastal areas and are restricted in their movements, spending much of their time in near-shore waters either loafing or foraging. However, in using these areas they may be threatened by anthropogenic activities such as fishing, watersports and coastal developments including marine renewable energy installations. Although many studies describe large scale interactions between seabirds and the environment, the drivers behind near-shore, fine-scale distributions are not well understood. For example, Alderney is an important breeding ground for many species of seabird and has a diversity of human uses of the marine environment, thus providing an ideal location to investigate the near-shore fine-scale interactions between seabirds and the environment. We used vantage point observations of seabird distribution, collected during the 2013 breeding season in order to identify and quantify some of the environmental variables affecting the near-shore, fine-scale distribution of seabirds in Alderney’s coastal waters. We validate the models with observation data collected in 2014 and show that water depth, distance to the intertidal zone, and distance to the nearest seabird nest are key predictors in the distribution of Alderney’s seabirds. AUC values for each species suggest that these models perform well, although the model for shags performed better than those for auks and gulls. While further unexplained underlying localised variation in the environmental conditions will undoubtedly effect the fine-scale distribution of seabirds in near-shore waters we demonstrate the potential of this approach in marine planning and decision making.  相似文献   

2.
Accurate prediction of RNA pseudoknotted secondary structures from the base sequence is a challenging computational problem. Since prediction algorithms rely on thermodynamic energy models to identify low-energy structures, prediction accuracy relies in large part on the quality of free energy change parameters. In this work, we use our earlier constraint generation and Boltzmann likelihood parameter estimation methods to obtain new energy parameters for two energy models for secondary structures with pseudoknots, namely, the Dirks–Pierce (DP) and the Cao–Chen (CC) models. To train our parameters, and also to test their accuracy, we create a large data set of both pseudoknotted and pseudoknot-free secondary structures. In addition to structural data our training data set also includes thermodynamic data, for which experimentally determined free energy changes are available for sequences and their reference structures. When incorporated into the HotKnots prediction algorithm, our new parameters result in significantly improved secondary structure prediction on our test data set. Specifically, the prediction accuracy when using our new parameters improves from 68% to 79% for the DP model, and from 70% to 77% for the CC model.  相似文献   

3.
Conservation planners often wish to predict how species distributions will change in response to environmental changes. Species distribution models (SDMs) are the primary tool for making such predictions. Many methods are widely used; however, they all make simplifying assumptions, and predictions can therefore be subject to high uncertainty. With global change well underway, field records of observed range shifts are increasingly being used for testing SDM transferability. We used an unprecedented distribution dataset documenting recent range changes of British vascular plants, birds, and butterflies to test whether correlative SDMs based on climate change provide useful approximations of potential distribution shifts. We modelled past species distributions from climate using nine single techniques and a consensus approach, and projected the geographical extent of these models to a more recent time period based on climate change; we then compared model predictions with recent observed distributions in order to estimate the temporal transferability and prediction accuracy of our models. We also evaluated the relative effect of methodological and taxonomic variation on the performance of SDMs. Models showed good transferability in time when assessed using widespread metrics of accuracy. However, models had low accuracy to predict where occupancy status changed between time periods, especially for declining species. Model performance varied greatly among species within major taxa, but there was also considerable variation among modelling frameworks. Past climatic associations of British species distributions retain a high explanatory power when transferred to recent time--due to their accuracy to predict large areas retained by species--but fail to capture relevant predictors of change. We strongly emphasize the need for caution when using SDMs to predict shifts in species distributions: high explanatory power on temporally-independent records--as assessed using widespread metrics--need not indicate a model's ability to predict the future.  相似文献   

4.
Biotic interactions have been considered as an important factor to be included in species distribution modelling, but little is known about how different types of interaction or different strategies for modelling affect model performance. This study compares different methods for including interspecific interactions in distribution models for bees, their brood parasites, and the plants they pollinate. Host–parasite interactions among bumble bees (genus Bombus: generalist pollinators and brood parasites) and specialist plant–pollinator interactions between Centris bees and Krameria flowers were used as case studies. We used 7 different modelling algorithms available in the BIOMOD R package. For Bombus, the inclusion of interacting species distributions generally increased model predictive accuracy. The improvement was better when the interacting species was included with its raw distribution rather than with its modeled suitability. However, incorporating the distributions of non‐interacting species sometimes resulted in similarly increased model accuracy despite their being no significance of any interaction for the distribution. For the Centris‐Krameria system the best strategy for modelling biotic interactions was to include the interacting species model‐predicted values. However, the results were less consistent than those for Bombus species, and most models including biotic interactions showed no significant improvement over abiotic models. Our results are consistent with previous studies showing that biotic interactions can be important in structuring species distributions at regional scales. However, correlations between species distributions are not necessarily indicative of interactions. Therefore, choosing the correct biotic information, based on biological and ecological knowledge, is critical to improve the accuracy of species distribution models and forecast distribution change.  相似文献   

5.
Simulation models of nutrient uptake of root systems starting with one-dimensional single root approaches up to complex three-dimensional models are increasingly used for examining the interacting of root distribution and nutrient uptake. However, their accuracy was seldom systematically tested. The objective of the study is to compare one-dimensional and two-dimensional modelling approaches and to test their applicability for simulation of nutrient uptake of heterogeneously distributed root systems giving particular attention to the impact of spatial resolution. Therefore, a field experiment was carried out with spring barley (Hordeum vulgare L. cv. Barke) in order to obtain data of in situ root distribution patterns as model input. Results indicate that a comparable coarse spatial resolution can be used with sufficient modelling results when a steady state approximation is applied to the sink cells of the two-dimensional model. Furthermore, the accuracy of the model was clearly improved compared to a simple zero sink approach assuming both near zero concentrations within the sink cell and a linear gradient between the sink cell and its adjacent neighbours. However, for modelling nitrate uptake of a heterogeneous root system a minimum number of grid cells is still necessary. The tested single root approach provided a computational efficient opportunity to simulate nitrate uptake of an irregular distributed root system. Nevertheless, two-dimensional models are better suited for a number of applications (e.g. surveys made on the impact of soil heterogeneity on plant nutrient uptake). Different settings for the suggested modelling techniques are discussed.  相似文献   

6.
In areas with regular fishing coastal fleets seabirds may benefit from the predictability of discards from fishing vessels, but it is not clear to what extent birds rely on this predictable resource and whether foraging is synchronized with the diel availability of discards. In this paper we investigate if a typical scavenger species, the yellow‐legged gull Larus michahellis, takes advantage of the temporal and spatial predictability of fish discards in the western Mediterranean Sea. The activity and distribution of the trawling fleet in this area is regulated and very predictable in time and space. We gathered aerial survey data across a relatively large area close to the coast to study the spatial distribution and density of L. michahellis, and modelled the density distribution of the species in relation to several oceanographic, ecological and temporal variables, using two different modelling approaches: MARS (multivariate adaptative regression splines) and GLM (generalized linear models). Our models suggest that the spatial density of trawlers at sea and the time of the day are the best explanatory variables of gull distribution, and that gulls concentrate in areas with vessels mainly during fish discarding time, supporting the hypothesis that gulls optimize time foraging to take advantage of fishery waste predictability. Additional surveys from the main gull roosting sites inshore support this hypothesis, as gulls start leaving to the sea just before fishing is completed and vessels begin discarding fish scraps when back to the harbour. This study represents one of the few examples of applying MARS to density distribution modelling, although its application to marine ecosystems should be conducted with caution because of large areas with real absence data. GLMs have shown to be more adaptable to such kind of data. Our data confirm the importance of fishery waste for L. michahellis, not only as a food resource but also as a major driver of their activity and distribution patterns. The ability of seabirds to predict accurately when a food resource will be available implies that modelling their distribution at sea needs to include such variables, both in spatial and temporal dimensions.  相似文献   

7.
Within the field of species distribution modelling an apparent dichotomy exists between process‐based and correlative approaches, where the processes are explicit in the former and implicit in the latter. However, these intuitive distinctions can become blurred when comparing species distribution modelling approaches in more detail. In this review article, we contrast the extremes of the correlative–process spectrum of species distribution models with respect to core assumptions, model building and selection strategies, validation, uncertainties, common errors and the questions they are most suited to answer. The extremes of such approaches differ clearly in many aspects, such as model building approaches, parameter estimation strategies and transferability. However, they also share strengths and weaknesses. We show that claims of one approach being intrinsically superior to the other are misguided and that they ignore the process–correlation continuum as well as the domains of questions that each approach is addressing. Nonetheless, the application of process‐based approaches to species distribution modelling lags far behind more correlative (process‐implicit) methods and more research is required to explore their potential benefits. Critical issues for the employment of species distribution modelling approaches are given, together with a guideline for appropriate usage. We close with challenges for future development of process‐explicit species distribution models and how they may complement current approaches to study species distributions.  相似文献   

8.
A general comparison of relaxed molecular clock models   总被引:4,自引:0,他引:4  
Several models have been proposed to relax the molecular clock in order to estimate divergence times. However, it is unclear which model has the best fit to real data and should therefore be used to perform molecular dating. In particular, we do not know whether rate autocorrelation should be considered or which prior on divergence times should be used. In this work, we propose a general bench mark of alternative relaxed clock models. We have reimplemented most of the already existing models, including the popular lognormal model, as well as various prior choices for divergence times (birth-death, Dirichlet, uniform), in a common Bayesian statistical framework. We also propose a new autocorrelated model, called the "CIR" process, with well-defined stationary properties. We assess the relative fitness of these models and priors, when applied to 3 different protein data sets from eukaryotes, vertebrates, and mammals, by computing Bayes factors using a numerical method called thermodynamic integration. We find that the 2 autocorrelated models, CIR and lognormal, have a similar fit and clearly outperform uncorrelated models on all 3 data sets. In contrast, the optimal choice for the divergence time prior is more dependent on the data investigated. Altogether, our results provide useful guidelines for model choice in the field of molecular dating while opening the way to more extensive model comparisons.  相似文献   

9.
10.
Species distribution models are popular and widely applied ecological tools. Recent increases in data availability have led to opportunities and challenges for species distribution modelling. Each data source has different qualities, determined by how it was collected. As several data sources can inform on a single species, ecologists have often analysed just one of the data sources, but this loses information, as some data sources are discarded. Integrated distribution models (IDMs) were developed to enable inclusion of multiple datasets in a single model, whilst accounting for different data collection protocols. This is advantageous because it allows efficient use of all data available, can improve estimation and account for biases in data collection. What is not yet known is when integrating different data sources does not bring advantages. Here, for the first time, we explore the potential limits of IDMs using a simulation study integrating a spatially biased, opportunistic, presence-only dataset with a structured, presence–absence dataset. We explore four scenarios based on real ecological problems; small sample sizes, low levels of detection probability, correlations between covariates and a lack of knowledge of the drivers of bias in data collection. For each scenario we ask; do we see improvements in parameter estimation or the accuracy of spatial pattern prediction in the IDM versus modelling either data source alone? We found integration alone was unable to correct for spatial bias in presence-only data. Including a covariate to explain bias or adding a flexible spatial term improved IDM performance beyond single dataset models, with the models including a flexible spatial term producing the most accurate and robust estimates. Increasing the sample size of presence–absence data and having no correlated covariates also improved estimation. These results demonstrate under which conditions integrated models provide benefits over modelling single data sources.  相似文献   

11.
Protein–protein interactions are a fundamental aspect of many biological processes. The advent of recombinant protein and computational techniques has allowed for the rational design of proteins with novel binding capabilities. It is therefore desirable to predict which designed proteins are capable of binding in vitro. To this end, we have developed a learned classification model that combines energetic and non‐energetic features. Our feature set is adapted from specialized potentials for aromatic interactions, hydrogen bonds, electrostatics, shape, and desolvation. A binding model built on these features was initially developed for CAPRI Round 21, achieving top results in the independent assessment. Here, we present a more thoroughly trained and validated model, and compare various support‐vector machine kernels. The Gaussian kernel model classified both high‐resolution complexes and designed nonbinders with 79–86% accuracy on independent test data. We also observe that multiple physical potentials for dielectric‐dependent electrostatics and hydrogen bonding contribute to the enhanced predictive accuracy, suggesting that their combined information is much greater than that of any single energetics model. We also study the change in predictive performance as the model features or training data are varied, observing unusual patterns of prediction in designed interfaces as compared with other data types. Proteins 2013; 81:1919–1930. © 2013 Wiley Periodicals, Inc.  相似文献   

12.
Model complexity in ecological niche modelling has been recently considered as an important issue that might affect model performance. New methodological developments have implemented the Akaike information criterion (AIC) to capture model complexity in the Maxent algorithm model. AIC is calculated based on the number of parameters and likelihoods of continuous raw outputs. ENMeval R package allows users to perform a species-specific tuning of Maxent settings running models with different combinations of regularization multiplier and feature classes and finally, all these models are compared using AIC corrected for small sample size. This approach is focused to find the “best” model parametrization and it is thought to maximize the model complexity and therefore, its predictability. We found that most niche modelling studies examined by us (68%) tend to consider AIC as a criterion of predictive accuracy in geographical distribution. In other words, AIC is used as a criterion to choose those models with the highest capacity to discriminate between presences and absences. However, the link between AIC and geographical predictive accuracy has not been tested so far. Here, we evaluated this relationship using a set of simulated (virtual) species. We created a set of nine virtual species with different ecological and geographical traits (e.g., niche position, niche breadth, range size) and generated different sets of true presences and absences data across geography. We built a set of models using Maxent algorithm with different regularization values and features schemes and calculated AIC values for each model. For each model, we obtained binary predictions using different threshold criteria and validated using independent presence and absences data. We correlated AIC values against standard validation metrics (e.g., Kappa, TSS) and the number of pixels correctly predicted as presences and absences. We did not find a correlation between AIC values and predictive accuracy from validation metrics. In general, those models with the lowest AIC values tend to generate geographical predictions with high commission and omission errors. The results were consistent across all species simulated. Finally, we suggest that AIC should not be used if users are interested in prediction more than explanation in ecological niche modelling.  相似文献   

13.
Many attempts to relate animal foraging patterns to landscape heterogeneity are focused on the analysis of foragers movements. Resource detection patterns in space and time are not commonly studied, yet they are tightly coupled to landscape properties and add relevant information on foraging behavior. By exploring simple foraging models in unpredictable environments we show that the distribution of intervals between detected prey (detection statistics) is mostly determined by the spatial structure of the prey field and essentially distinct from predator displacement statistics. Detections are expected to be Poissonian in uniform random environments for markedly different foraging movements (e.g. Lévy and ballistic). This prediction is supported by data on the time intervals between diving events on short-range foraging seabirds such as the thick-billed murre (Uria lomvia). However, Poissonian detection statistics is not observed in long-range seabirds such as the wandering albatross (Diomedea exulans) due to the fractal nature of the prey field, covering a wide range of spatial scales. For this scenario, models of fractal prey fields induce non-Poissonian patterns of detection in good agreement with two albatross data sets. We find that the specific shape of the distribution of time intervals between prey detection is mainly driven by meso and submeso-scale landscape structures and depends little on the forager strategy or behavioral responses.  相似文献   

14.
This paper introduces a mathematical framework for modelling genome expression and regulation. Starting with a philosophical foundation, causation is identified as the principle of explanation of change in the realm of matter. Causation is, therefore, a relationship, not between components, but between changes of states of a system. We subsequently view genome expression (formerly known as 'gene expression') as a dynamic process and model aspects of it as dynamic systems using methodologies developed within the areas of systems and control theory. We begin with the possibly most abstract but general formulation in the setting of category theory. The class of models realised are state-space models, input--output models, autoregressive models or automata. We find that a number of proposed 'gene network' models are, therefore, included in the framework presented here. The conceptual framework that integrates all of these models defines a dynamic system as a family of expression profiles. It becomes apparent that the concept of a 'gene' is less appropriate when considering mathematical models of genome expression and regulation. The main claim of this paper is that we should treat (model) the organisation and regulation of genetic pathways as what they are: dynamic systems. Microarray technology allows us to generate large sets of time series data and is, therefore, discussed with regard to its use in mathematical modelling of gene expression and regulation.  相似文献   

15.
Growth of regular echinoids, expressed as test diameter through time, generally shows a sigmoidal pattern. However, when urchin size is considered in terms of test volume we show that growth of the deep-sea echinoid Echinus affinis is ultimately linear, rather than saturating. We construct a simple allometric model of energy allocation that produces linear growth in volume in mature urchins by allocating an increasing proportion of net assimilate to reproduction. This model provides an excellent fit to the observed growth curve data. Data on gonad weight as a function of test diameter allow us to test the relationship between allocation to reproduction and urchin size predicted from the growth curve fit. Simultaneous fitting of the growth curve and gonad weight data allow us to consider a model where the allometry of net assimilation is allowed to vary. We investigate possible explanations for the fact that net assimilation appears to rise faster than linearly with weight in E. affinis. We conclude that strategic models of individual energetics provide a useful tool for the analysis of the limited data available on deep-sea populations.  相似文献   

16.
In spite of increasing application of presence-only models in ecology and conservation and the growing number of such models, little is known about the relative performance of different modelling methods, and some of the leading models (e.g. GARP and ENFA) have never been compared with one another. Here we compare the performance of six presence-only models that have been selected to represent an increasing level of model complexity [BIOCLIM, HABITAT, Mahalanobis distance (MD), DOMAIN, ENFA, and GARP] using data on the distribution of 42 species of land snails, nesting birds, and insectivorous bats in Israel. The models were calibrated using data from museum collections and observation databases, and their predictions were evaluated using Cohen's Kappa based on field data collected in a standardized sampling design covering most parts of Israel. Predictive accuracy varied between modelling methods with GARP and MD showing the highest accuracy, BIOCLIM and ENFA showing the lowest accuracy, and HABITAT and DOMAIN showing intermediate accuracy levels. Yet, differences between the various models were relatively small except for GARP and MD that were significantly more accurate than BIOCLIM and ENFA. In spite of large differences among species in prevalence and niche width, neither prevalence nor niche width interacted with the modelling method in determining predictive accuracy. However, species with relatively narrow niches were modelled more accurately than species with wider niches. Differences among species in predictive accuracy were highly consistent over all modelling methods, indicating the need for a better understanding of the ecological and geographical factors that influence the performance of species distribution models.  相似文献   

17.
Coloniality has mainly been studied from an evolutionary perspective, but relatively few studies have developed methods for modelling colony dynamics. Changes in number of colonies over time provide a useful tool for predicting and evaluating the responses of colonial species to management and to environmental disturbance. Probabilistic Markov process models have been recently used to estimate colony site dynamics using presence–absence data when all colonies are detected in sampling efforts. Here, we define and develop two general approaches for the modelling and analysis of colony dynamics for sampling situations in which all colonies are, and are not, detected. For both approaches, we develop a general probabilistic model for the data and then constrain model parameters based on various hypotheses about colony dynamics. We use Akaike's Information Criterion (AIC) to assess the adequacy of the constrained models. The models are parameterised with conditional probabilities of local colony site extinction and colonization. Presence–absence data arising from Pollock's robust capture–recapture design provide the basis for obtaining unbiased estimates of extinction, colonization, and detection probabilities when not all colonies are detected. This second approach should be particularly useful in situations where detection probabilities are heterogeneous among colony sites. The general methodology is illustrated using presence–absence data on two species of herons. Estimates of the extinction and colonization rates showed interspecific differences and strong temporal and spatial variations. We were also able to test specific predictions about colony dynamics based on ideas about habitat change and metapopulation dynamics. We recommend estimators based on probabilistic modelling for future work on colony dynamics. We also believe that this methodological framework has wide application to problems in animal ecology concerning metapopulation and community dynamics.  相似文献   

18.
Knowing where species occur is fundamental to many ecological and environmental applications. Species distribution models (SDMs) are typically based on correlations between species occurrence data and environmental predictors, with ecological processes captured only implicitly. However, there is a growing interest in approaches that explicitly model processes such as physiology, dispersal, demography and biotic interactions. These models are believed to offer more robust predictions, particularly when extrapolating to novel conditions. Many process–explicit approaches are now available, but it is not clear how we can best draw on this expanded modelling toolbox to address ecological problems and inform management decisions. Here, we review a range of process–explicit models to determine their strengths and limitations, as well as their current use. Focusing on four common applications of SDMs – regulatory planning, extinction risk, climate refugia and invasive species – we then explore which models best meet management needs. We identify barriers to more widespread and effective use of process‐explicit models and outline how these might be overcome. As well as technical and data challenges, there is a pressing need for more thorough evaluation of model predictions to guide investment in method development and ensure the promise of these new approaches is fully realised.  相似文献   

19.
B Lesyng  E F Meyer 《Biopolymers》1990,30(7-8):773-780
The variety of results of crystallographic studies of the serine proteases complexed with isocoumarin inhibitors presents a challenging problem to modeling methods and molecular energetics. Therefore, the thermodynamic cycle-perturbation technique has been used to study a model system of elastase and two peptidic inhibitors. Using the program AMBER, the technique correctly predicts changes of the binding constants for the trifluoroacetyl dipeptide inhibitors in comparison with available experimental (kinetic and crystallographic) data. However, the absolute values obtained are shown to be sensitive to the specific electrostatic interaction potential parameters used in the simulations. The reader and user are cautioned that thermodynamic cycle-perturbation results may be too optimistic by underestimating the accuracy of free energy values. This is especially a matter of concern for those cases where a direct comparison with experimental values is not possible, viz., (1) the stimulation of binding of novel compounds, (2) structurally uncertain binding sites, or (3) structurally different binding modes. With our best 4-31G* ESP (electrostatic potential) charges we were able to reproduce experimentally determined free energy differences (delta delta A) with an accuracy of about 1.5 kcal/mol. Dynamically induced structural changes in the binding site of elastase, and particularly changes in hydrogen-bond patterns of the binding site, are also reported.  相似文献   

20.
Species distribution models are a very popular tool in ecology and biogeography and have great potential to help direct conservation efforts. Models are traditionally tested by using half the original species records to build the model and half to evaluate it. However, this can lead to overly optimistic estimates of model accuracy, particularly when there are systematic biases in the data. It is better to evaluate models using independent data. This study used independent species records from a new to survey to provide a more rigorous evaluation of distribution‐model accuracy. Distribution models were built for reptile, amphibian, butterfly and mammal species. The accuracy of these models was evaluated using the traditional approach of partitioning the original species records into model‐building and model‐evaluating datasets, and using independent records collected during a new field survey of 21 previously unvisited sites in diverse habitat types. We tested whether variation in distribution‐model accuracy among species could be explained by species detectability, range size, number of records used to build the models, and body size. Estimates of accuracy derived using the new species records correlated positively with estimates generated using the traditional data‐partitioning approach, but were on average 22% lower. Model accuracy was negatively related to range size and number of records used to build the models, and positively related to the body size of butterflies. There was no clear relationship between species detectability and model accuracy. The field data generally validated the species distribution models. However, there was considerable variation in model accuracy among species, some of which could be explained by the characteristics of species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号