首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Bactericera cockerelli (Sulc.) is an important pest of solanaceous crops and a vector of the pathogen Candidatus Liberibacter psyllaurous. Biocontrol of this pest has been attempted with either entomopathogenic fungi or the parasitoid Tamarixia triozae (Burks), but prior to this study, their potential impact in combination had not been studied. The aim of the present study was to evaluate T. triozae parasitism rates on B. cockerelli nymphs that were previously infected for different periods of time by three isolates of Beauveria bassiana (Bals.) Vuill. Two native isolates (BB40 and BB42) and one commercial isolate (GHA) were used. The virulence of these isolates was first estimated against B. cockerelli and T. triozae. LC50 values for the native isolates BB40 and BB42 against B. cockerelli were 9.5 × 105 and 2.42 × 106 conidia mL−1 respectively; they were significantly more virulent than isolate GHA with an LC50 of 1.97 × 107 conidia mL−1. However, isolate GHA was significantly more virulent against T. triozae with an LC50 of 1.11 × 107 conidia mL−1 compared with LC50s of 1.49 × 107 and 1.14 × 108 conidia mL−1 for the native isolates BB40 and BB42 respectively. Groups of nymphs were then inoculated with LC20, LC50 or LC90 concentrations of each isolate and presented to T. triozae as hosts either on the day of inoculation or 1, 2, 3, 4, 5, 6 days after inoculation. Subsequent levels of parasitism were recorded. Overall, parasitism rates were similar in inoculated and control nymphs. No parasitism occurred in nymphs 6 days after fungal inoculation. Parasitoids used to parasitize uninoculated B. cockerelli nymphs survived significantly longer (7.8 days) than parasitoids that had been used to parasitize fungus-inoculated nymphs (7.3 days). This suggests an inability of the parasitoid to avoid infection when foraging on inoculated nymphs. In conclusion, although the parasitism rate in control and fungus-treated nymphs was similar, suggesting a combination of both biological control agents is possible, we believe there are also negative implications for the parasitoid because its survival was greatly reduced after attacking infected nymphs.  相似文献   

2.
《Journal of Asia》2020,23(1):98-106
The Hemipteran predator, Cyrtorhinus lividipennis, feeds on the eggs and nymphs of rice planthoppers and leafhoppers. We previously demonstrated that sublethal concentrations of imidacloprid stimulated the reproduction of C. lividipennis. Considering the essential roles of juvenile hormone (JH) in insect reproduction, we speculated that sublethal concentrations of imidacloprid may stimulate the reproduction of C. lividipennis by regulating JH level. To test this, we cloned C. lividipennis JH acid methyl transferase (ClJHAMT) and JH esterase (ClJHE), which are responsible for JH biosynthesis and degradation genes, respectively. We then knocked down ClJHAMT by injecting dsRNA into C. lividipennis nymphs and found that emerging female adults exhibited 88.8% lower expression of the vitellogenin gene (ClVg) and the number of eggs was reduced by 41.5% as compared with controls. Silencing ClJHE increased ClVg mRNA expression by 275.0% but did not affect fecundity. A sublethal concentration of imidacloprid (LC20) increased the JH titer in females by 35.3% and 60.6% at 24 and 48 h post-emergence, respectively. In treatments containing both imidacloprid and dsJHAMT, the silencing of CLJHAMT reduced the number of eggs produced by adult females by 21.4% as compared to the control (imidacloprid + dsGFP). Our results indicated that sublethal concentration of imidacloprid may induce C. lividipennis reproduction by upregulating JH level via JHAMT. The finding could provide valuable information for improved integration of C. lividipennis and insecticides in pest management.  相似文献   

3.
The broad-spectrum insecticides greatly influence the control of cotton aphids; however, due to frequent chemical control, Aphis gossypii (Hemiptera: Aphididae) has developed resistance against several classes of synthetic insecticides. In this study, we explored the sub-lethal effects of imidacloprid and pirimicarb, two commonly used insecticides for aphid control, on a parasitoid wasp, Lysiphlebus fabarum (Marshall) (Braconidae: Aphidiinae), when simultaneously used to control melon aphid on cucumber plants, as part of a comprehensive study for integrated pest management. Bioassays of imidacloprid and pirimicarb were performed to calculate LC50 with third instars of A. gossypii. The LC50 of these insecticides (110.55 and 250.89 μg/lit, respectively) were used to expose the wasp larvae, pupae, and adult parasitoids on a cucumber leaf. The percent mortality, percent adult emergence, and sex ratio were calculated during each exposure test. Moreover, the body size, egg load, and mature egg size of wasps surviving the insecticide treatments, as well as the sex ratio of the second generation was evaluated. Regardless of the host aphid mortality, none of the insecticides caused mortality of larval stage of the parasitoid. The insecticide application on pupal stage revealed that the percentage of mortality, sex ratio, body size, and egg load of surviving wasps, as well as the sex ratio of their offspring was adversely affected by imidacloprid, but not by pirimicarb. The present study suggests pirimicarb as a preferred insecticide, with less harmful effects on the fitness components of L. fabarum, for integrated pest management of cotton aphids.  相似文献   

4.
The bio-efficacy of Aloe vera leaf extract and bacterial insecticide, Bacillus sphaericus larvicidal activity was assessed against the first to fourth instars larvae of Aedes aegypti, under the laboratory conditions. The plant material was shade dried at room temperature and powdered coarsely. A. vera and B. sphaericus show varied degrees of larvicidal activity against various instars larvae of A. aegypti. The LC50 of A. vera against the first to fourth instars larvae were 162.74, 201.43, 253.30 and 300.05 ppm and the LC90 442.98, 518.86, 563.18 and 612.96 ppm, respectively. B. sphaericus against the first to fourth instars larvae the LC50 values were 68.21, 79.13, 93.48, and 107.05 ppm and the LC90 values 149.15, 164.67, 183.84, and 201.09 ppm, respectively. However, the combined treatment of A. vera + B. sphaericus (1:2) material shows highest larvicidal activity of the LC50 values 54.80, 63.11, 74.66 and 95.10 ppm; The LC90 values of 145.29, 160.14, 179.74 and 209.98 ppm, against A. aegypti in all the tested concentrations than the individuals and clearly established that there is a substantial amount of synergist act. The present investigation clearly exhibits that both A. vera and B. sphaericus materials could serve as a potential larvicidal agent. Since, A. aegypti is a container breeder vector mosquito this user and eco-friendly and low-cost vector control strategy could be a viable solution to the existing dengue disease burden. Therefore, this study provides first report on the mosquito larvicidal activity the combined effect of A. vera leaf extract and B. sphaericus against as target species of A. aegypti.  相似文献   

5.
Habitat management is an important element in sustainable agriculture and can be used to maximize a range of ecosystem services that support crop production. An important example of such ecosystem services is biological control of pests which can be enhanced by providing arthropod natural enemies with suitable floral resources. The potential risk of this approach, however, is that flowering plants may enhance the fitness of the targeted pests as well. We conducted experiments to identify selective plant species that would improve the longevity and parasitization rate of the parasitoid wasp Microplitis mediator without benefiting its host pest, the cabbage moth Mamestra brassicae. Effects on longevity were also assessed for Diadegma fenestrale, a generalist parasitoid wasp attacking lepidopteran pests. Additionally, we compared the effects of floral and extrafloral nectar, the latter being formed in some plant species and can significantly prolong the duration of nectar availability for natural enemies. Longevity of M. mediator and D. fenestrale as well as parasitization rates of M. mediator were significantly increased by the presence of Fagopyrum esculentum (floral nectar), Centaurea cyanus (floral and extrafloral nectar) and non-flowering Vicia sativa (extrafloral nectar). M. mediator parasitized 202.3 ± 29.7 M. brassicae larvae during its lifetime when presented F. esculentum, compared to 14.4 ± 3.4 larvae in the absence of floral resources. Extrafloral nectar of C. cyanus and V. sativa was as suitable for M. mediator as floral nectar and significantly increased longevity and parasitization rates. Longevity and fecundity of M. brassicae were not supported by the plant species tested. These results stress the importance of plant screening to achieve plant selectivity and to maximize biological control. F. esculentum, C. cyanus and V. sativa are recommended as selective plant species to enhance parasitoids of M. brassicae.  相似文献   

6.
《Journal of Asia》2014,17(4):787-791
Encapsulation of temephos ranging from 1% to 16% and imidacloprid from 1% to 8% within biodegradable and biocompatible, polyethylene glycol in different ratios was done by using melt-dispersion method. The efficacy of encapsulated forms was evaluated and compared with their non-capsulated forms against larvae of Culex quinquefasciatus. The encapsulated temephos was more toxic than the encapsulated imidacloprid with LC50 values of 0.013, 0.010 and 0.003 mg/L after 24, 48 and 72 h, respectively. No doubt, the non-capsulated temephos and imidacloprid were more effective as compared to their encapsulated forms. However, the same mortality rate was achieved by the slow release of lesser amount of pesticides after encapsulation, e.g., 0.003 mg/L for 8% temephos formulation and 0.019 mg/L for 4% imidacloprid as compared to their non-capsulated form of temephos and imidacloprid (0.004 and 0.021 mL/L) after 72 h of exposure. Thus, encapsulated forms are more economical and eco-friendly due to controlled slow release of their nanoparticles.  相似文献   

7.
Acute toxicity and genotoxicity of imidacloprid (IMI) was evaluated on Hypsiboas pulchellus (Anura: Hylidae) tadpoles exposed under laboratory conditions. A lethal effect was used as the end point for lethality, whereas the frequency of micronuclei (MNs) and DNA single-strand breaks evaluated by the single cell gel electrophoresis assay were employed as end points for genotoxicity. Experiments were performed on tadpoles at stage 36 (range, 35–37) according to the classification proposed by Gosner. Mortality studies revealed an LC50 (96 h) value of 84.91 mg/L IMI (95% confidence limits, 77.20–93.04). While increased frequency of MNs was observed when 15 and 30 mg/L were assayed for 48 h, only 15 mg/L increased the frequency of MNs in tadpoles exposed for 96 h. Furthermore, other nuclear abnormalities, i.e., binucleated cells and blebbed and notched nuclei, were induced in tadpoles exposed for both 48 h when treated with 15 mg/L and 96 h when treated with 15 and 30 mg/L. An increase in the genetic damage index was observed in tadpoles treated with 30 mg/L for 48 and 96 h. This study represents the first evidence of acute lethal and sublethal effects exerted by IMI on tadpoles of an amphibian species native to Argentina. Finally, our findings highlight the hazardous properties of this insecticide for nontarget living species exposed to this agrochemical.  相似文献   

8.
The parasitoid Diachasmimorpha longicaudata complex in Thailand contains at least 3 cryptic species informally designated as species D. longicaudata A, B and BB. DNA sequence data of nuclear ITS2 (second internal transcribed spacer) were used to characterize members of this D. longicaudata complex. The polymerase chain reaction (PCR) amplicon of ITS2 region of D. longicaudata B (≈ 650 bp) clearly differentiated this species from A and BB (amplicon of  590 bp). Sequence alignment of individual parasitoids revealed that low intraspecies differences ranged from 0.457 to 3.991%, but interspecies differences ranged from 7.566 to 12.989%. Phylogenetic trees constructed using Neighbor-Joining (NJ) and Maximum Parsimony (MP) methods, taking the parasitoid Psyttalia concolor complex as an outgroup, revealed that D. longicaudata A, B and BB formed a monophyletic group, with species A and BB being more closely related than species B. ITS2 characterization of D. longicaudata complex has revealed an interesting divergence of the three cryptic sibling species in Thailand.  相似文献   

9.
The insect kinins are a class of multifunctional insect neuropeptides present in a diverse variety of insects. Insect kinin analogs showed multiple bioactivities, especially, the aphicidal activity. To find a biostable and bioactive insecticide candidate with simplified structure, a series of N-terminal modified insect kinin analogs was designed and synthesized based on the lead compound [Aib]-Phe-Phe-[Aib]-Trp-Gly-NH2. Their aphicidal activity against the soybean aphid Aphis glycines was evaluated. The results showed that all the analogs maintained the aphicidal activity. In particular, the aphicidal activity of the pentapeptide analog X Phe-Phe-[Aib]-Trp-Gly-NH2 (LC50 = 0.045 mmol/L) was similar to the lead compound (LC50 = 0.048 mmol/L). This indicated that the N-terminal protective group may not play an important role in the activity and the analogs structure could be simplified to pentapeptide analogs while retaining good aphicidal activity. The core pentapeptide analog X can be used as the lead compound for further chemical modifications to discover potential insecticides.  相似文献   

10.
《Journal of Asia》2014,17(4):853-856
Water-distilled essential oil from the dried bulbs of Allium chinense (Liliaceae) was analyzed by gas chromatography–mass spectrometry (GC–MS). Eighteen compounds, accounting for 98.4% of the total oil, were identified and the main components of the essential oil of A. chinense were methyl allyl trisulfide (30.7%), dimethyl trisulfide (24.1%), methyl propyl disulfide (12.8%) and dimethyl disulfide (9.6%) followed by methyl allyl disulfide (3.4%) and methyl propyl trisulfide (3.6%). The essential oil exhibited contact toxicity against the booklice (Liposcelis bostrychophila) with an LC50 value of 441.8 μg/cm2 while the two major constituents, dimethyl trisulfide and methyl propyl disulfide had LC50 values of 153.0 μg/cm2 and 738.0 μg/cm2 against the booklice, respectively. The essential oil of A. chinense possessed strong fumigant toxicity against the booklice with an LC50 value of 186.5 μg/l while methyl allyl trisulfide (LC50 = 90.4 μg/l) and dimethyl trisulfide (LC50 = 114.2 μg/l) exhibited stronger fumigant toxicity than methyl propyl disulfide (LC50 = 243.4 μg/l) and dimethyl disulfide (LC50 = 340.8 μg/l) against the booklice. The results indicated that the essential oil and its major constituents have potential for development into natural insecticides or fumigants for control of insects in stored grains.  相似文献   

11.
12.
Four different extracts of Aloe vera L. leaves were evaluated for acaricidal activity against female adults of carmine spider mite, Tetranychus cinnabarinus (Boisduval), by slide-dip bioassay. At 72 h after treatment, the acetone extract showed the strongest acaricidal activity with LC50 value of 90 ppm. The LC50 values for ethyl acetate, water, and ethanol extracts were 113, 340, and 391 ppm, respectively. The acetone extract was fractionated using a silica gel column. Among the twenty-two fractions obtained the fifth, tenth, eleventh, twelfth, fifteenth, and seventeenth fractions showed strong acaricidal activity, causing 80.39 to 92.16% mortality at 72 h after treatment. The tenth and eleventh fractions had the strong activity, with LC50 values of 44 ppm and 33 ppm, respectively. The results suggested that A. vera has a great potential for development as a botanical acaricide for T. cinnabarinus control.  相似文献   

13.
The host-defense peptide, esculentin-2CHa (GFSSIFRGVA10KFASKGLGK D20LAKLGVDLVA30 CKISKQC) shows potent (MIC  6 μM) growth inhibitory activity against clinical isolates of multidrug-resistant strains of Staphylococcus aureus, Acinetobacter baumannii, and Stenotrophomonas maltophilia and differential cytotoxic activity against human erythrocytes (LC50 = 150 μM) and human non-small cell lung adenocarcinoma A549 cells (LC50 = 10 μM). Esculentin-2CHa significantly (P < 0.01) stimulates the release of the anti-inflammatory cytokine IL-10 by mouse lymphoid cells and elevates its production after stimulation with concanavalin A and significantly (P < 0.05) stimulates TNF-α production by peritoneal macrophages. Effects on IL-6 and IL-1β production were not significant. Removal of the hydrophobic N-terminal hexapeptide (GFSSIF) from esculentin-2CHa results in abolition of growth inhibitory activity against S. aureus and cytotoxic activity against erythrocytes and A549 cells as well as a marked (≥16-fold) reduction in potency against A. baumannii and S. maltophilia. The primary structure of esculentin-2 has been poorly conserved between frog species but evolutionary pressure has acted to maintain the hydrophobic character of this N-terminal hexapeptide sequence. Removal of the cyclic C-terminal domain (CKISKQC) and replacement of the Cys31 and Cys37 residues by serine resulted in appreciable decreases in cytotoxicity against all microorganisms and against mammalian cells. The more cationic [D20K, D27K] analog showed a modest increase in potency against all microorganisms (up to 4-fold) but a marked increase in cytotoxicity against erythrocytes (LC50 = 11 μM) and A549 cells (LC50 = 3 μM).  相似文献   

14.
《Journal of Asia》2014,17(3):531-535
The dichloromethane/methanol (1:1) extract of the stem bark of Millettia usaramensis subspecies usaramensis was tested for its larvicidal activity against the 4th instar Aedes aegypti larvae and demonstrated activity with LC50 value of 50.8 ± 0.06 μg/mL at 48 h. Compounds isolated from the extract were also tested for their larvicidal activities, and the rotenoid usararotenoid-A (LC50 4.3 ± 0.8 μg/mL at 48 h) was identified as the most active principle. This compound appears to be the first rotenoid having a trans-B/C ring junction and methylenedioxy group at C-2/C-3 with high larvicidal activity. Related rotenoids with the same configuration at the B/C-ring junction did not show significant activity at 100 μg/mL.  相似文献   

15.
Alternative control strategies for the dengue vector Aedes aegypti L. (Diptera: Culicidae) include botanical insecticides. They are believed to pose little threat to the environment or to human health and may provide practical substitutes for synthetic insecticides. In this study, we determined the biological activities of methanol extracts of Acalypha indica L. (Euphorbiaceae) and Achyranthes aspera L (Amaranthaceae) leaves individually and in combination as botanical insecticides against Ae. aegypti. Based on LC50 values for 4th instar Ae. aegypti, the combined extracts showed the strongest larvicidal activity (277 ppm). A. aspera and A. indica extracts individually gave similar results (409 and 420 ppm, respectively). Respective LC50 values for pupae were 326 ppm, 456 ppm, and 467 ppm. In studies of smoke toxicity, 64% of females exposed to negative control smoke (no extract) blood fed on chicken, whereas 17% blood fed when exposed to smoke containing A. aspera extract and to positive control smoke (0.2% d-allethrin). In the field, treatment of water storage tanks (≈ 0.5 m3) with combined plant extract reduced larval and pupal populations by 97% and 81%, respectively, after 5 days. Given the results of this study, further evaluation of the combined (A. indica + A. aspera) extract as a mosquito larvicide is warranted. Mosquito coils with A. aspera extract also show promise as a practical and potentially economical means for mitigating mosquito blood feeding.  相似文献   

16.
Currently, there is concern about declining bee populations and the sustainability of pollination services. One potential threat to bees is the unintended impact of systemic insecticides, which are ingested by bees in the nectar and pollen from flowers of treated crops. To establish whether imidacloprid, a systemic neonicotinoid and insect neurotoxin, harms individual bees when ingested at environmentally realistic levels, we exposed adult worker bumble bees, Bombus terrestris L. (Hymenoptera: Apidae), and honey bees, Apis mellifera L. (Hymenoptera: Apidae), to dietary imidacloprid in feeder syrup at dosages between 0.08 and 125 μg l?1. Honey bees showed no response to dietary imidacloprid on any variable that we measured (feeding, locomotion and longevity). In contrast, bumble bees progressively developed over time a dose-dependent reduction in feeding rate with declines of 10–30% in the environmentally relevant range of up to 10 μg l?1, but neither their locomotory activity nor longevity varied with diet. To explain their differential sensitivity, we speculate that honey bees are better pre-adapted than bumble bees to feed on nectars containing synthetic alkaloids, such as imidacloprid, by virtue of their ancestral adaptation to tropical nectars in which natural alkaloids are prevalent. We emphasise that our study does not suggest that honey bee colonies are invulnerable to dietary imidacloprid under field conditions, but our findings do raise new concern about the impact of agricultural neonicotinoids on wild bumble bee populations.  相似文献   

17.
The contribution of a bee plant species to honey production depends on the plant’s nectar secretion quality and quantity, which is mainly governed by biotic and abiotic factors. The aim of the current study, was to investigate the nectar secretion dynamics and honey production potential of 14 major bee plant species of the target area. We examined the quantity and dynamics of nectar sugar per flower five times a day using a nectar sugar washing technique and direct measuring of nectar with calibrated capillary tubes. The average nectar sugar amount of the species varied from 0.41 mg/flower to 7.7 mg/flower (P < 0.0001). The honey sugar per flower was used to extrapolate the honey production potential per plant and per hectare of land. Accordingly the honey production potential of the species observed to vary from 14 kg/hectare in Otostegia fruticosa to 829 kg/hectare in Ziziphus spina-christi. The nectar secretion dynamics of the species generally showed an increasing trend early in the morning, peaking toward midday, followed by a decline but different species observed to have different peak nectar secretion times. Generally, the tree species secreted more nectar sugar/flower than the herbs. The nectar secretion amount of the species was positively correlated with the ambient temperature, indicating the adaptation of the species to hot climatic conditions. However, different species were observed to have a different optimum temperature for peak nectar secretion. Despite the limited rainfall and high temperature of the area, many plants were found to have good potential for honey production. The monetary value of honey per hectare of the studied honeybee plant species can be of equal or greater than the per-hectare monetary value of some cultivated crops that require numerous inputs. In addition, the information generated is believed to be useful in apiary site selection and to estimate the honey bee colony carrying capacity of an area.  相似文献   

18.
Permethrin resistance status of a laboratory strain, a permethrin-selected strain and three field strains of Aedes aegypti collected in Kuala Lumpur, Malaysia were evaluated using three standard laboratory bioassays: WHO larval bioassay, WHO adult mosquito bioassay, and mixed function oxidase (MFO) enzyme microassay. The LC50 values of field strains from the WHO larval bioassay did not differ significantly. The highest LC50 value was from the Taman Melati field strain (0.39 mg/L). The resistance ratio for the permethrin-selected strain and the field strains ranged from 1.86 fold to 5.57 fold. Pre-exposure to piperonyl butoxide (PBO) in the WHO adult bioassay and MFOs enzyme microassay reduced the LT50 values and reduced the mean optical density of elevated oxidase activity (0.28–0.42) at 630 nm. The LC50 or LT50 values and the level of oxidases were significantly correlated (r = 0.825; p< 0.05). This study confirmed the presence of permethrin resistance in these mosquito populations.  相似文献   

19.
In support of an ongoing study to evaluate potential farmscaping plants for utilization in organic vegetable production systems, we examined the effects of the nectar of three flowering plant species, sweet alyssum (Lobularia maritima), buckwheat (Fagopyrum sagittatum), and licorice mint (Agastache foeniculum), on the lifespan and body nutrient levels of the wasp, Microplitis croceipes (Cresson) (Hymenoptera: Braconidae), a key parasitoid of some caterpillar pests of vegetable crops in the USA. The greatest longevity (~16 days) was recorded for honey-fed wasps (positive control). Buckwheat significantly increased the lifespan of female and male wasps by at least two-fold relative to wasps provided water only (longevity = 3–4 days). Licorice mint significantly increased female longevity and numerically increased male longevity. Sweet alyssum slightly increased longevity of both sexes but this was not significantly different from the water only control. Females had a significantly longer longevity than males on all the diet treatments. The greatest carbohydrate nutrient levels (sugar content and glycogen) were recorded in honey-fed wasps followed by wasps fed buckwheat, whereas very little nutrients were detected in wasps provided sweet alyssum, licorice mint or water only. However, female wasps were observed to attempt to feed on all three flowering plant species. Thus, the low nutrient levels detected in wasps provided sweet alyssum or licorice mint may be because the nectars were not accessible or were of poor quality. Further studies will evaluate the effects of the promising farmscaping plants on the beneficial and pest insect communities in the field.  相似文献   

20.
Parasitoid adults can directly feed on floral nectar and honeydew containing monosaccharides and disaccharides. Oligosaccharides such as maltose, melezitose and raffinose are also found in honeydew but are rare in floral nectar. The effects of six different sugar resources on the longevity, fecundity and nutrient reserves of Microplitis mediator, a larval endoparasitoid in the cotton bollworm Helicoverpa armigera (Hübner) were determined in our laboratory. The results showed that both food and sex affected longevity of this wasp. Females and males of M. mediator fed with 1 M sucrose solution survived longer than controls fed with water (5.7- and 3.7-fold longer, respectively). When provided with sucrose, glucose or fructose solutions, the parasitoid generated 3.6- to 3.7-fold more offspring than controls, and 60–75% of these progenies were produced during the first 5 days. When separately given fructose, sucrose or glucose, this wasp accumulated fructose and total sugar at the highest level, which means a high sugar levels might lead to prolonging longevity and more offspring in M. mediator. In addition, compared with organisms fed galactose or raffinose, M. mediator fed sucrose or fructose accumulated high glycogen levels. Furthermore, in M. mediator, the lipid content declined with the advancing age. Females showed the slowest lipid metabolic rates when fed with sucrose, glucose, fructose, mannose and galactose solutions versus when fed with raffinose and control. In addition, only sucrose had a significant effect on lipid levels in males nearing the end of life.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号