首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Lucy I. Crouch  Michael R. Jones 《BBA》2012,1817(2):336-352
In well-characterised species of the Rhodobacter (Rba.) genus of purple photosynthetic bacteria it is known that the photochemical reaction centre (RC) is intimately-associated with an encircling LH1 antenna pigment protein, and this LH1 antenna is prevented from completely surrounding the RC by a single copy of the PufX protein. In Rba. veldkampii only monomeric RC–LH1 complexes are assembled in the photosynthetic membrane, whereas in Rba. sphaeroides and Rba. blasticus a dimeric form is also assembled in which two RCs are surrounded by an S-shaped LH1 antenna. The present work established that dimeric RC–LH1 complexes can also be isolated from Rba. azotoformans and Rba. changlensis, but not from Rba. capsulatus or Rba. vinaykumarii. The compositions of the monomers and dimers isolated from these four species of Rhodobacter were similar to those of the well-characterised RC–LH1 complexes present in Rba. sphaeroides. Pigment proteins were also isolated from strains of Rba. sphaeroides expressing chimeric RC–LH1 complexes. Replacement of either the Rba. sphaeroides LH1 antenna or PufX with its counterpart from Rba. capsulatus led to a loss of the dimeric form of the RC–LH1 complex, but the monomeric form had a largely unaltered composition, even in strains in which the expression level of LH1 relative to the RC was reduced. The chimeric RC–LH1 complexes were also functional, supporting bacterial growth under photosynthetic conditions. The findings help to tease apart the different functions of PufX in different species of Rhodobacter, and a specific protein structural arrangement that allows PufX to fulfil these three functions is proposed.  相似文献   

2.
In purple bacteria of the genus Rhodobacter (Rba.), an LH1 antenna complex surrounds the photochemical reaction centre (RC) with a PufX protein preventing the LH1 complex from completely encircling the RC. In membranes of Rba. sphaeroides, RC–LH1 complexes associate as dimers which in turn assemble into longer range ordered arrays. The present work uses linear dichroism (LD) and dark-minus-light difference LD (ΔLD) to probe the organisation of genetically altered RC–LH1 complexes in intact membranes. The data support previous proposals that Rba. capsulatus, and Rba. sphaeroides heterologously expressing the PufX protein from Rba. capsulatus, produce monomeric core complexes in membranes that lack long-range order. Similarly, Rba. sphaeroides with a point mutation in the Gly 51 residue of PufX, which is located on the membrane-periplasm interface, assembles mainly non-ordered RC–LH1 complexes that are most likely monomeric. All the Rba. sphaeroides membranes in their ΔLD spectra exhibited a spectral fingerprint of small degree of organisation implying the possibility of ordering influence of LH1, and leading to an important conclusion that PufX itself has no influence on ordering RC–LH1 complexes, as long-range order appears to be induced only through its role of configuring RC–LH1 complexes into dimers.  相似文献   

3.
The chromatophores of Rhodobacter (Rb.) sphaeroides represent a minimal bio-energetic system, which efficiently converts light energy into usable chemical energy. Despite extensive studies, several issues pertaining to the morphology and molecular architecture of this elemental energy conversion system remain controversial or unknown. To tackle these issues, we combined electron microscope tomography, immuno-electron microscopy and atomic force microscopy. We found that the intracellular Rb. sphaeroides chromatophores form a continuous reticulum rather than existing as discrete vesicles. We also found that the cytochrome bc1 complex localizes to fragile chromatophore regions, which most likely constitute the tubular structures that interconnect the vesicles in the reticulum. In contrast, the peripheral light-harvesting complex 2 (LH2) is preferentially hexagonally packed within the convex vesicular regions of the membrane network. Based on these observations, we propose that the bc1 complexes are in the inter-vesicular regions and surrounded by reaction center (RC) core complexes, which in turn are bounded by arrays of peripheral antenna complexes. This arrangement affords rapid cycling of electrons between the core and bc1 complexes while maintaining efficient excitation energy transfer from LH2 domains to the RCs.  相似文献   

4.
The photosynthetic apparatus of purple bacteria in the genus Rhodobacter includes a core complex consisting of the reaction centre (RC), light-harvesting complex 1 (LH1), and the PufX protein. PufX modulates LH1 structure and facilitates photosynthetic quinone/quinol exchange. We deleted RC/LH1 genes in pufX + and pufX ++ (merodiploid) strains of Rhodobacter capsulatus, which reduced PufX levels regardless of pufX gene copy number and location. Photosynthetic growth of RC-only strains and independent assembly kinetics of the RC and LH1 were unaffected by pufX merodiploidy, but the absorption spectra of strains expressing the RC plus either LH1 α or β indicated that PufX may influence bacteriochlorophyll binding environments. Significant self-association of the PufX transmembrane segment was detected in a hybrid protein expression system, consistent with a role of PufX in core complex dimerization, as proposed for other Rhodobacter species. Our results indicate that in R. capsulatus PufX has the potential to be a central, homodimeric core complex component, and its cellular level is increased by interactions with the RC and LH1.  相似文献   

5.
《BBA》2023,1864(4):149001
Phospholipid–protein interactions play important roles in regulating the function and morphology of photosynthetic membranes in purple phototrophic bacteria. Here, we characterize the phospholipid composition of intracytoplasmic membrane (ICM) from Rhodobacter (Rba.) sphaeroides that has been genetically altered to selectively express light-harvesting (LH) complexes. In the mutant strain (DP2) that lacks a peripheral light-harvesting (LH2) complex, the phospholipid composition was significantly different from that of the wild-type strain; strain DP2 showed a marked decrease in phosphatidylglycerol (PG) and large increases in cardiolipin (CL) and phosphatidylcholine (PC) indicating preferential interactions between the complexes and specific phospholipids. Substitution of the core light-harvesting (LH1) complex of Rba. sphaeroides strain DP2 with that from the purple sulfur bacterium Thermochromatium tepidum further altered the phospholipid composition, with substantial increases in PG and PE and decreases in CL and PC, indicating that the phospholipids incorporated into the ICM depend on the nature of the LH1 complex expressed. Purified LH1–reaction center core complexes (LH1–RC) from the selectively expressing strains also contained different phospholipid compositions than did core complexes from their corresponding wild-type strains, suggesting different patterns of phospholipid association between the selectively expressed LH1–RC complexes and those purified from native strains. Effects of carotenoids on the phospholipid composition were also investigated using carotenoid-suppressed cells and carotenoid-deficient species. The findings are discussed in relation to ICM morphology and specific LH complex–phospholipid interactions.  相似文献   

6.
In the photosynthetic purple bacterium Rhodobacter (Rba.) sphaeroides, light is absorbed by membrane-bound light-harvesting (LH) proteins LH1 and LH2. LH1 directly surrounds the reaction center (RC) and, together with PufX, forms a dimeric (RC-LH1-PufX)2 protein complex. In LH2-deficient Rba. sphaeroides mutants, RC-LH1-PufX dimers aggregate into tubular vesicles with a radius of ∼250-550 Å, making RC-LH1-PufX one of the few integral membrane proteins known to actively induce membrane curvature. Recently, a three-dimensional electron microscopy density map showed that the Rba. sphaeroides RC-LH1-PufX dimer exhibits a prominent bend at its dimerizing interface. To investigate the curvature properties of this highly bent protein, we employed molecular dynamics simulations to fit an all-atom structural model of the RC-LH1-PufX dimer within the electron microscopy density map. The simulations reveal how the dimer produces a membrane with high local curvature, even though the location of PufX cannot yet be determined uniquely. The resulting membrane curvature agrees well with the size of RC-LH1-PufX tubular vesicles, and demonstrates how the local curvature properties of the RC-LH1-PufX dimer propagate to form the observed long-range organization of the Rba. sphaeroides tubular vesicles.  相似文献   

7.
Photosynthesis converts absorbed solar energy to a protonmotive force, which drives ATP synthesis. The membrane network of chlorophyll–protein complexes responsible for light absorption, photochemistry and quinol (QH2) production has been mapped in the purple phototrophic bacterium Rhodobacter (Rba.) sphaeroides using atomic force microscopy (AFM), but the membrane location of the cytochrome bc1 (cytbc1) complexes that oxidise QH2 to quinone (Q) to generate a protonmotive force is unknown. We labelled cytbc1 complexes with gold nanobeads, each attached by a Histidine10 (His10)-tag to the C-terminus of cytc1. Electron microscopy (EM) of negatively stained chromatophore vesicles showed that the majority of the cytbc1 complexes occur as dimers in the membrane. The cytbc1 complexes appeared to be adjacent to reaction centre light-harvesting 1-PufX (RC–LH1–PufX) complexes, consistent with AFM topographs of a gold-labelled membrane. His-tagged cytbc1 complexes were retrieved from chromatophores partially solubilised by detergent; RC–LH1–PufX complexes tended to co-purify with cytbc1 whereas LH2 complexes became detached, consistent with clusters of cytbc1 complexes close to RC–LH1–PufX arrays, but not with a fixed, stoichiometric cytbc1–RC–LH1–PufX supercomplex. This information was combined with a quantitative mass spectrometry (MS) analysis of the RC, cytbc1, ATP synthase, cytaa3 and cytcbb3 membrane protein complexes, to construct an atomic-level model of a chromatophore vesicle comprising 67 LH2 complexes, 11 LH1–RC–PufX dimers & 2 RC–LH1–PufX monomers, 4 cytbc1 dimers and 2 ATP synthases. Simulation of the interconnected energy, electron and proton transfer processes showed a half-maximal ATP turnover rate for a light intensity equivalent to only 1% of bright sunlight. Thus, the photosystem architecture of the chromatophore is optimised for growth at low light intensities.  相似文献   

8.
《BBA》2022,1863(2):148508
In the model purple phototrophic bacterium Rhodobacter (Rba.) sphaeroides, solar energy is converted via coupled electron and proton transfer reactions within the intracytoplasmic membranes (ICMs), infoldings of the cytoplasmic membrane that form spherical ‘chromatophore’ vesicles. These bacterial ‘organelles’ are ideal model systems for studying how the organisation of the photosynthetic complexes therein shape membrane architecture. In Rba. sphaeroides, light-harvesting 2 (LH2) complexes transfer absorbed excitation energy to dimeric reaction centre (RC)-LH1-PufX complexes. The PufX polypeptide creates a channel that allows the lipid soluble electron carrier quinol, produced by RC photochemistry, to diffuse to the cytochrome bc1 complex, where quinols are oxidised to quinones, with the liberated protons used to generate a transmembrane proton gradient and the electrons returned to the RC via cytochrome c2. Proximity between cytochrome bc1 and RC-LH1-PufX minimises quinone/quinol/cytochrome c2 diffusion distances within this protein-crowded membrane, however this distance has not yet been measured. Here, we tag the RC and cytochrome bc1 with yellow or cyan fluorescent proteins (YFP/CFP) and record the lifetimes of YFP/CFP Förster resonance energy transfer (FRET) pairs in whole cells. FRET analysis shows that that these complexes lie on average within 6 nm of each other. Complementary high-resolution atomic force microscopy (AFM) of intact, purified chromatophores verifies the close association of cytochrome bc1 complexes with RC-LH1-PufX dimers. Our results provide a structural basis for the close kinetic coupling between RC-LH1-PufX and cytochrome bc1 observed by spectroscopy, and explain how quinols/quinones and cytochrome c2 shuttle on a millisecond timescale between these complexes, sustaining efficient photosynthetic electron flow.  相似文献   

9.
The phototrophic capacity of aerobic anoxygenic phototrophic bacteria endows them with a selective advantage over other heterotrophic bacteria in the oligotrophic ocean. Here, we reported the phototrophic features and proteome of an aerobic phototrophic bacterium Roseobacter denitrificans under starvation stress. The fluorescence induction and relaxation measurements suggested that the photosynthetic capacity in R. denitrificans was preserved but was lower than in the photoautotrophic bacterium Rhodobacter sphaeroides. The existence of light-harvesting complexes (LH1 and LH2) and the reaction center (RC) in the native membrane were demonstrated through atomic force microscopy image analysis as direct evidence of their phototrophy. The homology-based LH1–RC complex structure was proposed in which RC was the Rb. sphaeroides homolog structure surrounded by the LH1. Moreover, the protein expression profiles of cells in the stationary phase under heterotrophic and mixotrophic conditions show that light enhanced or activated some proteins such as carbon monoxide dehydrogenase and NifU to cope with the low levels of amino acids and carbon sources under starvation conditions.  相似文献   

10.
The protein components of the reaction center (RC) and core light-harvesting (LH 1) complexes of photosynthetic bacteria have evolved to specifically, but non-covalently, bind bacteriochlorophyll (Bchl). The contribution to binding of specific structural elements in the protein and Bchl may be determined for the LH 1 complex because its subunit can be studied by reconstitution under equilibrium conditions. Important to the determination and utilization of such information is the characterization of the interacting molecular species. To aid in this characterization, a fluorescent probe molecule has been covalently attached to each of the LH 1 polypeptides. The fluorescent probes were selected for optimal absorption and emission properties in order to facilitate their unique excitation and to enable the detection of energy transfer to Bchl. Oregon Green 488 carboxylic acid and 7-diethylaminocoumarin-3-carboxylic acid seemed to fulfill these requirements. Each of these probes were utilized to derivatize the LH1 β-polypeptide of Rhodobacter sphaeroides. It was demonstrated that the β-polypeptides did not interact with each other in the absence of Bchl. When Bchl was present, the probe-labeled β-polypeptides interacted with Bchl to form subunit-type complexes much as those formed with the native polypeptides. Energy transfer from the probe to Bchl occurred with a high efficiency. The α-polypeptide from LH 1 of Rb. sphaeroides and that from Rhodospirillum rubrum were also derivatized in the same manner. Since these polypeptides do not oligomerize in the absence of a β-polypeptide, reversible binding of a single Bchl to a single polypeptide could be measured. Dissociation constants for complex formation were estimated. The relevance of these data to earlier studies of equilibria involving subunit complexes is discussed. Also involved in the photoreceptor complex of Rb. sphaeroides and Rhodobacter capsulatus is another protein referred to as PufX. Two large segments of this protein were chemically synthesized, one reproducing the amino acid sequence of the core segment predicted for Rb. sphaeroides PufX and the other reproducing the amino acid sequence predicted for the core segment of Rb. capsulatus PufX. Each polypeptide was covalently labeled with a fluorescent probe and tested for energy transfer to Bchl. Each was found to bind Bchl with an affinity similar to the affinity of the LH 1 polypeptides for Bchl. It is suggested that PufX binds Bchl and interacts with a Bchlċα-polypeptide component of LH 1 to truncate, or interupt, the LH 1 ring adjacent to the location of the QB binding site of the RC. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

11.
RC–LH1–PufX complexes from a genetically modified strain of Rhodobacter sphaeroides that accumulates carotenoids with very long conjugation were studied by ultrafast transient absorption spectroscopy. The complexes predominantly bind the carotenoid diketospirilloxanthin, constituting about 75% of the total carotenoids, which has 13 conjugated C=C bonds, and the conjugation is further extended to two terminal keto groups. Excitation of diketospirilloxanthin in the RC–LH1–PufX complex demonstrates fully functional energy transfer from diketospirilloxanthin to BChl a in the LH1 antenna. As for other purple bacterial LH complexes having carotenoids with long conjugation, the main energy transfer route is via the S2–Qx pathway. However, in contrast to LH2 complexes binding diketospirilloxanthin, in RC–LH1–PufX we observe an additional, minor energy transfer pathway associated with the S1 state of diketospirilloxanthin. By comparing the spectral properties of the S1 state of diketospirilloxanthin in solution, in LH2, and in RC–LH1–PufX, we propose that the carotenoid-binding site in RC–LH1–PufX activates the ICT state of diketospirilloxanthin, resulting in the opening of a minor S1/ICT-mediated energy transfer channel.  相似文献   

12.
The mature architecture of the photosynthetic membrane of the purple phototroph Rhodobacter sphaeroides has been characterised to a level where an atomic‐level membrane model is available, but the roles of the putative assembly proteins LhaA and PucC in establishing this architecture are unknown. Here we investigate the assembly of light‐harvesting LH2 and reaction centre‐light‐harvesting1‐PufX (RC‐LH1‐PufX) photosystem complexes using spectroscopy, pull‐downs, native gel electrophoresis, quantitative mass spectrometry and fluorescence lifetime microscopy to characterise a series of lhaA and pucC mutants. LhaA and PucC are important for specific assembly of LH1 or LH2 complexes, respectively, but they are not essential; the few LH1 subunits found in ΔlhaA mutants assemble to form normal RC‐LH1‐PufX core complexes showing that, once initiated, LH1 assembly round the RC is cooperative and proceeds to completion. LhaA and PucC form oligomers at sites of initiation of membrane invagination; LhaA associates with RCs, bacteriochlorophyll synthase (BchG), the protein translocase subunit YajC and the YidC membrane protein insertase. These associations within membrane nanodomains likely maximise interactions between pigments newly arriving from BchG and nascent proteins within the SecYEG‐SecDF‐YajC‐YidC assembly machinery, thereby co‐ordinating pigment delivery, the co‐translational insertion of LH polypeptides and their folding and assembly to form photosynthetic complexes.  相似文献   

13.
In purple bacteria, photosynthesis is carried out on large indentations of the bacterial plasma membrane termed chromatophores. Acting as primitive organelles, chromatophores are densely packed with the membrane proteins necessary for photosynthesis, including light harvesting complexes LH1 and LH2, reaction center (RC), and cytochrome bc1. The shape of chromatophores is primarily dependent on species, and is typically spherical or flat. How these shapes arise from the protein-protein and protein-membrane interactions is still unknown. Now, using molecular dynamics simulations, we have observed the dynamic curvature of membranes caused by proteins in the chromatophore. A membrane-embedded array of LH2s was found to relax to a curved state, both for LH2 from Rps. acidophila and a homology-modeled LH2 from Rb. sphaeroides. A modeled LH1-RC-PufX dimer was found to develop a bend at the dimerizing interface resulting in a curved shape as well. In contrast, the bc1 complex, which has not been imaged yet in native chromatophores, did not induce a preferred membrane curvature in simulation. Based on these results, a model for how the different photosynthetic proteins influence chromatophore shape is presented.  相似文献   

14.
Electron microscopy and single-particle averaging were performed on isolated reaction centre (RC)—antenna complexes (RC–LH1–PufX complexes) of Rhodobaca bogoriensis strain LBB1, with the aim of establishing the LH1 antenna conformation, and, in particular, the structural role of the PufX protein. Projection maps of dimeric complexes were obtained at 13 Å resolution and show the positions of the 2 × 14 LH1 α- and β-subunits. This new dimeric complex displays two open, C-shaped LH1 aggregates of 13 αβ polypeptides partially surrounding the RCs plus two LH1 units forming the dimer interface in the centre. Between the interface and the two half rings are two openings on each side. Next to the openings, there are four additional densities present per dimer, considered to be occupied by four copies of PufX. The position of the RC in our model was verified by comparison with RC–LH1–PufX complexes in membranes. Our model differs from previously proposed configurations for Rhodobacter species in which the LH1 ribbon is continuous in the shape of an S, and the stoichiometry is of one PufX per RC.  相似文献   

15.
16.
Geyer T 《Biophysical journal》2007,93(12):4374-4381
Some species of purple bacteria as, e.g., Rhodobacter sphaeroides contain the protein PufX. Concurrently, the light harvesting complexes 1 (LH1) form dimers of open rings. In mutants without PufX, the LH1s are closed rings and photosynthesis breaks down, because the ubiquinone exchange at the reaction center is blocked. However, the main purpose of the LH1 is light harvesting. We therefore investigate the effects that the PufX-induced dimerization has on the absorption properties of the core complexes. Calculations with a dipole model, which compare the photosynthetic efficiency of various configurations of monomeric and dimeric core complexes, show that the dimer can absorb photons directly into the reaction centers more efficiently, but that the performance of the more sophisticated dimeric LH1 antenna degrades faster with structural perturbations. The calculations predict an optimal orientation of the reaction centers relative to the LH1 dimer, which agrees well with the experimentally found configuration. Based on experimental observations indicating that the dimeric core complexes are indeed rather rigid, we hypothesize that in PufX+ species the association between the LH1 and the reaction centers is enhanced. This mechanical stabilization of the core complexes would lead to the observed quinone blockage, when PufX is missing.  相似文献   

17.
The photosynthetic apparatus of purple bacteria is contained within organelles called chromatophores, which form as extensions of the cytoplasmic membrane. The shape of these chromatophores can be spherical (as in Rhodobacter sphaeroides), lamellar (as in Rhodopseudomonas acidophila and Phaeospirillum molischianum), or tubular (as in certain Rb. sphaeroides mutants). Chromatophore shape is thought to be influenced by the integral membrane proteins Light Harvesting Complexes I and II (LH1 and LH2), which pack tightly together in the chromatophore. It has been suggested that the shape of LH2, together with its close packing in the membrane, induces membrane curvature. The mechanism of LH2-induced curvature is explored via molecular dynamics simulations of multiple LH2 complexes in a membrane patch. LH2s from three species—Rb. sphaeroides, Rps. acidophila, and Phsp. molischianum—were simulated in different packing arrangements. In each case, the LH2s pack together and tilt with respect to neighboring LH2s in a way that produces an overall curvature. This curvature appears to be driven by a combination of LH2's shape and electrostatic forces that are modulated by the presence of well-conserved cytoplasmic charged residues, the removal of which inhibits LH2 curvature. The interaction of LH2s and an LH1 monomer is also explored, and it suggests that curvature is diminished by the presence of LH1 monomers. The implications of our results for chromatophore shape are discussed.  相似文献   

18.
19.
The core complex of Rhodobacter sphaeroides is formed by the association of the light-harvesting antenna 1 (LH1) and the reaction center (RC). The PufX protein is essential for photosynthetic growth; it is located within the core in a 1 : 1 stoichiometry with the RC. PufX is required for a fast ubiquinol exchange between the Q(B) site of the RC and the Qo site of the cytochrome bc1 complex. In vivo the LH1-PufX-RC complex is assembled in a dimeric form, where PufX is involved as a structural organizer. We have modified the PufX protein at the N and the C-terminus with progressive deletions. The nine mutants obtained have been characterized for their ability for photosynthetic growth, the insertion of PufX in the core LH1-RC complex, the stability of the dimers and the kinetics of flash-induced reduction of cytochrome b561 of the cytochrome bc1 complex. Deletion of 18 residues at the N-terminus destabilizes the dimer in vitro without preventing photosynthetic growth. The dimer (or a stable dimer) does not seem to be a necessary requisite for the photosynthetic phenotype. Partial C-terminal deletions impede the insertion of PufX, while the complete absence of the C-terminus leads to the insertion of a PufX protein composed of only its first 53 residues and does not affect the photosynthetic growth of the bacterium. Overall, the results point to a complex role of the N and C domains in the structural organization of the core complex; the N-terminus is suggested to be responsible mainly for dimerization, while the C-terminus is thought to be involved mainly in PufX assembly.  相似文献   

20.
In Rhodobacter (Rba.) sphaeroides, the subunit PufX is involved in the dimeric organization of the core complex. Here, we report the 3D reconstruction at 12 A by cryoelectron microscopy of the core complex of Rba. veldkampii, a complex of approximately 300 kDa without symmetry. The core complex is monomeric and constituted by a light-harvesting complex 1 (LH1) ring surrounding a uniquely oriented reaction center (RC). The LH1 consists of 15 resolved alpha/beta heterodimers and is interrupted. Within the opening, PufX polypeptide is assigned at a position facing the Q(B) site of the RC. This core complex is different from a dissociated dimer of the core complex of Rba. sphaeroides revealing that PufX in Rba. veldkampii is unable to dimerize. The absence in PufX of Rba. veldkampii of a G(31)XXXG(35) dimerization motif highlights the transmembrane interactions between PufX subunits involved in the dimerization of the core complexes of Rhodobacter species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号