首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phloem loading in peach: Symplastic or apoplastic?   总被引:2,自引:0,他引:2  
Sorbitol and sucrose are the two main soluble carbohydrates in mature peach leaves. Both are translocated in the phloem, in peach as in other rosaceous trees. The respective role of these two soluble carbohydrates in the leaf carbon budget, and their phloem loading pathway, remain poorly documented. Though many studies have been carried out on the compartmentation and export of sucrose in sucrose-transporting species, far less is known about sorbitol in species transporting both sucrose and sorbitol. Sorbitol and sucrose concentrations were measured in several tissues and in sap, in 2-month-old peach (Prunus persica L. Batsch) seedlings, i.e. leaf blade, leaf main vein, petiole, xylem sap collected using a pressure bomb, and phloem sap collected by aphid stylets. The sorbitol to sucrose molar ratio depended on the tissue or sap, the highest value (about 7) found in the leaf main vein. Sorbitol concentration in the phloem sap was about 560 mM, whereas that of sucrose was about 140 mM. The lowest sorbitol and sucrose concentrations were observed in xylem sap collected from the shoot. The volume of the leaf apoplast, estimated by infiltration with 3H-inulin, represented about 17% of the leaf blade water content. This volume was used to calculate a global intracellular concentration for each carbohydrate in the leaf blade. Following these simplifying assumptions, the calculated concentration gradient between the leaf's intracellular compartment and phloem sap is nil for sorbitol and could thus allow for the symplastic loading of the phloem of this alditol. However, infiltration of 14C-labelled source leaves with 2 mMp-chloromercuribenzenesulfonic acid (PC-MBS), a potent inhibitor of the sucrose carrier responsible for phloem loading in sucrose-transporting plants, had a significant effect on the exudation of both labelled sucrose and sorbitol from the phloem. Therefore, in peach, which is a putative symplastic loader according to minor vein anatomy and sorbitol concentration gradients, apoplastic loading may predominate.  相似文献   

2.
Carbohydrate levels and activities of enzymes associated with starch, sucrose and sorbitol metabolism were assayed in leaves of peach [ Prunus persica (L.) Batsch cv. Redhaven] of different ages, in order to examine developmental changes in leaf carbohydrate metabolism. Dry matter, soluble protein, chlorophyll and the activities of key enzymes of the reductive pentose phosphate pathway increased during leaf development. The levels of leaf carbohydrates, especially sorbitol and starch, also increased. Changes of starch levels were related to increases in the activities of enzymes associated to starch metabolism, such as ADPglucose-pyrophosphorylase (E.C. 2.7.7.27) and amylase (E.C. 3.2.1.1. plus E.C. 3.2.1.2). The activities of enzymes involved in sucrose and sorbitol degradation decreased during leaf development, whereas the activities of aldose-6-phosphate reductase (E.C. 1.1.1.200) and cytosolic fructase-1,6-bisphosphatase (E.C. 3.1.3.11) increased. In contrast, the activity of sucrose-phosphate synthase (E.C. 2.4.1.14) did not vary in a significant manner. The results suggest that the ability to synthesize and utilize both sucrose and sorbitol changes as peach leaves mature, and also that there are differences in metabolism of these two transport sugars during leaf development.  相似文献   

3.
Modeling Carbon Export Out of Mature Peach Leaves   总被引:7,自引:0,他引:7       下载免费PDF全文
The characteristics of sorbitol and sucrose export out of mature leaves in seedlings of peach (Prunus persica L. Batsch cv GF 305) were investigated by simulating carbon fluxes through the leaf. Three treatments were employed: a control treatment and two treatments modifying leaf export, the latter using either shading or girdling. Photosynthesis and 14C partitioning into sorbitol and sucrose were measured during carbohydrate pool buildup at the beginning of the photoperiod, and the export rate of sorbitol and sucrose was modeled using a PSPICE (Simulation Program with Integrated Circuit Emphasis) simulator. The simulation allowed prediction of the resulting sorbitol and sucrose contents, which were compared to experimental carbohydrate contents. The apparent Km for sorbitol and sucrose phloem loading, estimated by carbon flux modeling, was 6.6 and 4 mol m-3, respectively. The predicted export capacity of the leaf, characterized by the estimated Vmax values for phloem loading of sorbitol and sucrose, was similar to the photosynthetic carbon flux measured under the leaf growth conditions. This export capacity was enhanced in plants in which all leaves except those studied were shaded. The mature leaf had a higher storage capacity for sorbitol than for sucrose in control plants, especially in the girdled treatment. Sucrose content appears to be tightly regulated.  相似文献   

4.
In peach (Prunus persica [L.] Batsch.), sorbitol and sucrose are the two main forms of photosynthetic and translocated carbon and may have different functions depending on the organ of utilization and its developmental stage. The role and interaction of sorbitol and sucrose metabolism was studied in mature leaves (source) and shoot tips (sinks) of ‘Nemaguard’ peach under drought stress. Plants were irrigated daily at rates of 100, 67, and 33% of evapotranspiration (ET). The relative elongation rate (RER) of growing shoots was measured daily. In mature leaves, water potential (Ψw), osmotic potential (Ψs), sorbitol‐6‐phosphate dehydrogenase (S6PDH, EC 1.1.1.200), and sucrose‐phosphate synthase (SPS, EC 2.4.1.14) activities were measured weekly. Measurements of Ψs, sorbitol dehydrogenase (SDH, 1.1.1.14), sucrose synthase (SS, EC 2.4.1.13), acid invertase (AI, EC 3.2.1.26), and neutral invertase (NI, EC 3.2.1.27) activities were taken weekly in shoot tips. Drought stress reduced RER and Ψw of plants in proportion to water supply. Osmotic adjustment was detected by the second week of treatment in mature leaves and by the third week in shoot tips. Both SDH and S6PDH activities were reduced by drought stress within 4 days of treatment and positively correlated with overall Ψw levels. However, only SDH activity was correlated with Ψs. Among the sucrose enzymes, only SS was affected by drought, being reduced after 3 weeks. Sorbitol accumulation in both mature leaves and shoot tips of stressed plants was observed starting from the second week of treatment and reached up to 80% of total solutes involved in osmotic adjustment. Sucrose content was up to 8‐fold lower than sorbitol content and accumulated only occasionally. We conclude that a loss of SDH activity in sinks leads to osmotic adjustment via sorbitol accumulation in peach. We propose an adaptive role of sorbitol metabolism versus a maintenance role of sucrose metabolism in peach under drought stress.  相似文献   

5.
Enhancement of Phloem exudation from cut petioles by chelating agents   总被引:2,自引:0,他引:2  
The photosynthetic assimilates in leaves of Perilla crispa attached to the plant were labeled by treating the leaves with (14)CO(2). When subsequently detached, these leaves exuded a negligible amount of radioactivity from the cut petiole into water. Ethylenediaminetetraacetate (EDTA), citric acid, and ethyleneglycol-bis (beta-aminoethyl ether) N,N'-tetraacetate greatly increased exudation of labeled assimilates into a solution bathing the petioles. The optimal concentration of EDTA was 20 mm, and maximal exudation took place between 2 and 4 hours after excision. Up to 22% of the radioactivity fixed in the leaf was exuded into an EDTA solution as compared to an export of 38% from attached leaves. The amount of radioactivity in the exudate was much reduced at low temperature. Presence of EDTA was required in the collecting solution for only 1 to 2 hours; upon transfer to water, exudation continued as in continuous presence of EDTA. Ca(2+) completely inhibited the effect of EDTA.Anatomical studies indicated that callose formation on the sieve plates near the cut surface of the petioles was less in leaves on EDTA than on water.More than 95% of the radioactivity exuded by detached leaves was present in the sugars verbascose, stachyose, raffinose, and sucrose, which are translocated in the phloem of Perilla. Labeled glucose, fructose, and galactinol were detected in the leaf blade and petiole, but not in exudates.The addition of EDTA to a solution bathing the petiole of detached leaves of Chenopodium rubrum and Pharbitis nil also increased the exudation of labeled assimilates. In these two species, label appeared only in a compound that cochromatographed with sucrose.It is concluded that the radioactive products in the solution are actually exuded by the phloem. Possibly EDTA chelates Ca(2+) that otherwise participates in the reactions that seal cut phloem.  相似文献   

6.
The 2 major photosynthetic products and translocated carbohydrates in celery ( Apium graveolens L.) are sucrose and the sugar alcohol, mannitol. Sucrose is produced and utilized in leaves of all ages. Mannitol, however, is synthesized primarily in mature leaves, utilized in young leaves and stored in all leaves. Here we show that mannitol export was lower from young, expanding leaves than from older leaves. After a 10 min pulse of 14CO2 and a 2 h chase in the light or dark there was more radioactivity in sucrose than in mannitol in petiole tissues from leaves of all ages. However, after a chase of 15 h in the dark or 6 h in the light followed by 9 h in the dark, mannitol was the predominant [14C]-labeled carbohydrate remaining in all leaf and petiole tissues. Thus, newly synthesized sucrose was apparently exported at a faster rate than mannitol and more mannitol was partitioned into vacuolar storage pools than was sucrose. It also appears that in the light both sucrose and mannitol were exported, but in the dark, once sucrose pools were depleted, mannitol remained as the predominant substance translocated. Both mannitol and sucrose were unloaded into petiole storage parenchyma tissue, but sucrose was hydrolyzed prior to storage.  相似文献   

7.
8.
Nadwodnik J  Lohaus G 《Planta》2008,227(5):1079-1089
Sugar and sugar alcohol concentrations were analyzed in subcellular compartments of mesophyll cells, in the apoplast, and in the phloem sap of leaves of Plantago major (common plantain), Plantago maritima (sea plantain), Prunus persica (peach) and Apium graveolens (celery). In addition to sucrose, common plantain, sea plantain, and peach also translocated substantial amounts of sorbitol, whereas celery translocated mannitol as well. Sucrose was always present in vacuole and cytosol of mesophyll cells, whereas sorbitol and mannitol were found in vacuole, stroma, and cytosol in all cases except for sea plantain. The concentration of sorbitol, mannitol and sucrose in phloem sap was 2- to 40-fold higher than that in the cytosol of mesophyll cells. Apoplastic carbohydrate concentrations in all species tested were in the low millimolar range versus high millimolar concentrations in symplastic compartments. Therefore, the concentration ratios between the apoplast and the phloem were very strong, ranging between 20- to 100-fold for sorbitol and mannitol, and between 200- and 2000-fold for sucrose. The woody species, peach, showed the smallest concentration ratios between the cytosol of mesophyll cells and the phloem as well as between the apoplast and the phloem, suggesting a mixture of apoplastic and symplastic phloem loading, in contrast to the herbal plant species (common plantain, sea plantain, celery) which likely exhibit an active loading mode for sorbitol and mannitol as well as sucrose from the apoplast into the phloem.  相似文献   

9.
To determine the selectivity of movement of amino acids from source leaves to sink tissues in soybeans (Glycine max [L.] Merr. `Wells'), 14C-labeled serine, leucine, or lysine was applied to an abraded spot on a fully expanded trifoliolate leaflet, and an immature sink leaf three nodes above was monitored with a GM tube for arrival of radioactivity. Comparisons were made with 14C-sucrose and 14CO2 assimilates. Radioactivity was detected in the sink leaf for all compounds applied to the source leaflet. A heat girdle at the source leaf petiole essentially blocked movement of applied compounds, suggesting phloem transport. Transport velocities were similar (ranged from 0.75 to 1.06 cm/min), but mass transfer rates for sucrose were much higher than those for amino acids. Hence, the quantity of amino acids entering the phloem was much smaller than that of sucrose. Extraction of source, path, and sink tissues at the conclusion of the experiments revealed that 80 to 90% of the radioactivity remained in the source leaflet. Serine was partially metabolized in the transport path, whereas lysine and leucine were not. Although serine is found in greater quantities than leucine and lysine in the source leaf and path of soybeans, applied leucine and lysine were transported at comparable velocities and in only slightly lower quantities than was applied serine. Thus, no selective barrier against entry of these amino acids into the phloem exists.  相似文献   

10.
Along with sucrose, sorbitol represents the main photosynthetic product and form of translocated carbon in peach. This study aimed at determining whether peach fruit carbohydrate metabolism is affected by changes in source–sink balance , and specifically whether sorbitol or sucrose availability regulates fruit enzyme activities and growth. In various trials, different levels of assimilate availability to growing fruits were induced in vivo by varying crop load of entire trees, leaf : fruit ratio (L:F) of fruiting shoots, or by interrupting the phloem stream (girdling) to individual fruits. In vitro, fruit tissue was incubated in presence/absence of sorbitol and sucrose. Relative growth rate (RGR), enzyme activities and carbohydrates were measured at different fruit growth stages of various peach cultivars in different years. At stage III, high crop load induced higher acid invertase (AI, EC 3.2.1.26) activities and hexose : sucrose ratios. Both sorbitol and sucrose contents were proportional to L:F, while sorbitol dehydrogenase (SDH, EC 1.1.1.14) activity was the only enzyme activity directly related to L:F in both fruit growth stages. Girdling reduced fruit RGR and all major carbohydrates after 4 days and SDH activity already after 48 h, but it did not affect sucrose synthase (SS, EC 2.4.1.13), AI and neutral invertase (NI, EC 3.2.1.27). Fruit incubation in sorbitol for 24 h induced higher SDH activities than in buffer alone. In general, assimilate availability affected both sorbitol and sucrose metabolism in peach fruit, and sorbitol may function as a signal for modulating SDH activity. Under highly competitive conditions, AI activity may be enhanced by assimilate depletion, providing a mechanism to increase fruit sink strength by increasing hexose concentrations.  相似文献   

11.
The movement of the radioactivity from sucrose, indole-3-acetic acid (IAA) and phosphate has been examined in excised bean leaves. Preferential translocation of the labelled materials toward the base of leaf and petiole was demonstrated, suggesting a natural mobilization gradient down the leaf and petiole. Establishment of other mobilization centers in the leaf by local application of N6-benzyladenine diverted the movement of the sucrose label and, to a lesser extent, the phosphate label. There was no apparent mobilization of IAA by benzyladenine. Evidence is provided that there is a continuity of label from the source to the sink regions, and it is suggested that reported instances of noncontinuity of label may be attributable to the refixation of respired C14O2 by tissue treated with benzyladenine. The observations appear to substantiate the concept that the unloading of solutes from the phloem can regulate the direction and intensity of translocation.  相似文献   

12.
Sorbitol is a major photosynthetic product and a major phloem-translocated component in Rosaceae (e.g. apple, pear, peach, and cherry). We isolated the three cDNAs, MdSOT3, MdSOT4, and MdSOT5 from apple (Malus domestica) source leaves, which are homologous to plant polyol transporters. Yeasts transformed with the MdSOTs took up sorbitol significantly. MdSOT3- and MdSOT5-dependent sorbitol uptake was strongly inhibited by xylitol and myo-inositol, but not or only weakly by mannitol and dulcitol. Apparent K(m) values of MdSOT3 and MdSOT5 for sorbitol were estimated to be 0.71 mM and 3.2 mM, respectively. The protonophore, carbonyl cyanide m-chlorophenylhydrazone (CCCP), strongly inhibited the sorbitol transport. MdSOT3 was expressed specifically in source leaves, whereas MdSOT4 and MdSOT5 were expressed in source leaves and also in some sink organs. MdSOT4 and MdSOT5 expressions were highest in flowers. Fruits showed no or only weak MdSOT expression. Although MdSOT4 and MdSOT5 were also expressed in immature leaves, MdSOT expressions increased with leaf maturation. In addition, in situ hybridization revealed that all MdSOTs were expressed to high levels in phloem of minor veins in source leaves. These results suggest that these MdSOTs are involved in sorbitol loading in Rosaceae.  相似文献   

13.
NII  N. 《Annals of botany》1997,79(2):139-144
Changes in contents of nonstructural carbohydrates in leaves,as well as some characteristics of leaves before and after fruitremoval, were investigated in potted peach (Prunus persica L.)trees. Leaf area and dry mass per unit leaf area (SLW) at thefruit-maturation stage decreased with increasing numbers ofpeaches per tree, whereas the chlorophyll content per unit areain leaves of fruiting trees increased. The chlorophyll contentdecreased more rapidly upon removal of fruit than that in leavesof fruiting trees. The starch content per unit dry mass in leavesof fruiting trees at the fruit-maturation stage was lower thanthat in leaves of non-fruiting trees. Starch accumulated significantlyin leaves within 1 d of removal of fruit during the fruit-maturationstage and continued to increase thereafter. The accumulationof starch after removal of fruit occurred more rapidly thanthe decrease in chlorophyll content. Reducing and non-reducingsugars (total sugars) per unit dry mass in the leaves were higherin fruiting trees than in non-fruiting trees. After fruit removal,the total sugar content of leaves increased temporarily andthen gradually decreased. The sorbitol content per unit freshmass in leaves of fruiting trees during the fruit-maturationstage was slightly higher than that in leaves of non-fruitingtrees. One day after removal of fruit, the sorbitol contentincreased in parallel with the accumulation of starch and remainedhigh. The sucrose content of leaves did not change markedlyupon removal of fruit. Prunus persica L.; peach leaves; nonstructural carbohydrate; starch and sorbitol; fruit removal  相似文献   

14.
Sugar export by broadbean ( Vicia faba L. cv. Aguadulce) was blocked by a cold jacket (1 cm-width, 1°C) applied on the petiole of a mature leaf or by heat-girdling the petiole. A time course study was made on the effects of these treatments on apoplastic and intracellular soluble sugars of the leaf in relation to phloem loading and photosynthesis. Blocking of export by heat-girdling induced an inhibition of phloem loading within 10 min, an accumulation of starch within 30 min and a rise in apoplastic sucrose within 60 min. By contrast, apoplastic hexoses and photosynthesis were not affected by this treatment within 8 h and intracellular sugars were not affected within 2 h. The cold jacket also increased the sucrose content of the apoplast. The increase in apoplastic sucrose induced by the cold barrier is reversed upon rewarming and less marked when the sink/source ratio is increased by defoliating all but the leaves studied. The results are discussed in terms of sink/source relationships. They show that the increase in apoplastic sucrose resulting from inhibition of loading is not part of the events leading from blocking of transport to change in carbon partitioning.  相似文献   

15.
The movement of systemin, the 18-amino-acid polypeptide inducer of proteinase inhibitors in tomato (Lycopersicon esculentum L.) plants, was investigated in young tomato plants following the application of [14C]systemin to wounds on the surface of leaves. Wholeleaf autoradiographic analyses revealed that [14C]systemin was distributed throughout the wounded leaf within 30 min, and then during the next several hours was transported to the petiole, to the main stem, and to the upper leaves. The movement of [14C]systemin was similar to the movement of [14C]sucrose when applied to leaf wounds, except that sucrose was slightly more mobile than systemin. Analyses of the radioactivity in the petiole phloem exudates at intervals over a 5-h period following the application of [14C]systemin to a wound demonstrated that intact [14C]systemin was present in the phloem over the entire time, indicating that the polypeptide was either stable for long periods in the phloem or was being continually loaded into the phloem from the source leaf. The translocation pathway of systemin was also investigated at the cellular level, using light microscopy and autoradiography. Within 15 min after application of [3H]systemin to a wound on a terminal leaflet, it was found distributed throughout the wounded leaf and was primarily concentrated in the xylem and phloem tissues within the leaf veins. After 30 min, the radioactivity was found mainly associated with vascular strands of phloem tissue in the petiole and, at 90 min, label was found in the phloem of the main stem. Altogether, these and previous results support a role for systemin as a systemic wound signal in tomato plants.The authors acknowledge the Washington State University Electron Microscope Center and staff for their technical advice and collaboration. We also thank Greg Wichelns for growing our plants and Dr. Steven Doares for providing [3H]systemin. This research was supported in part by the Washington State College of Agriculture and Home Economics Project No. 1791 and National Science Foundation grants IBN 9117795 and IBN 9104542  相似文献   

16.
The effect of the transport of sucrose from leaves of higher plants on the width of the spectra of induction of delayed luminescence was studied. It was shown that the duration of the induction period decreases when the sucrose outflow from the leaves is limited by cooling the leaf petiole for two hours under light. It was concluded that the accumulation of sucrose in the conducting tissues of the leaf stimulates the increase in the CO2 fixation rate on rellumination after dark adaptation.  相似文献   

17.
In apple (Malus domestica Borkh.) sorbitol is the primary product of photosynthesis, the major translocated form of carbon, and a common fruit constituent and storage compound. Previous work on sorbitol metabolism has revealed a NADPH-dependent aldose 6-phosphate reductase (A6PR) in green tissues, and a NAD-dependent sorbitol dehydrogenase in nongreen tissues. Results here show a decrease in sorbitol dehydrogenase activity and an increase in A6PR activity as leaves developing in the spring undergo the transition from sink to source. Sorbitol dehydrogenase activity reached a minimum as A6PR peaked. These changes were related to increases in leaf carbohydrate levels, especially sorbitol, and to increases in rates of net photosynthesis. Studies conducted in the autumn on senescing leaves also showed changes in enzyme activites, leaf carbohydrate levels, and photosynthesis. At this time, however, sorbitol dehydrogenase increased in specific activity, whereas A6PR activity, leaf carbohydrates, and photosynthetic rates all decreased substantially. Other experiments showed differences in the ability of young and mature leaves to metabolize sorbitol and in the distribution of sorbitol enzymes in leaves at transitional developmental stages. The results suggest that sorbitol metabolism in apple is tightly controlled and may be related to mechanisms regulating partitioning or source and sink activity.  相似文献   

18.
Nitrate reductase was found in leaves of apricot Prunus armeniaca, sour cherry P. cerasus, sweet cherry P. avium, and plum P. domestica, but not in peach P. persica, from trees grown in sand culture receiving a nitrate containing nutrient solution. Nitrate was found in the leaves of all species. Nitrate and nitrate reductase were found in leaves of field-grown apricot, sour cherry, and plum trees. The enzyme-extracting medium contained insoluble polyvinylpyrrolidone, and including dithiothreitol or mercaptobenzothiazole did not improve enzyme recovery. Inclusion of cherry leaf extract diminished, and peach leaf extract abolished, recovery of nitrate reductase from oat tissue. Low molecular weight phenols liberated during extraction were probably responsible for inactivation of the enzyme. The enzyme from apricot was two to three times as active as from the other species. Both nicotine adenine diphosphopyridine nucleotide and flavin mononucleotide were effective electron donors. The enzyme was readily induced in apricot leaves by 10 mm nitrate supplied through the leaf petiole.  相似文献   

19.
Leaf sucrose, starch, hexose and maximum extractable soluble acid invertase activity were compared throughout the day in source leaves of 13 plant species chosen for their putative phloem-loading type (apoplastic or symplastic). Four species which represent the different phloem-loading types (tomato, barley, maize and Fuchsia ) were studied in detail. Using this information we wished to determine whether a positive correlation between foliar carbohydrates and acid invertase activity exists in leaves from different species and, furthermore, whether this relationship is determined by phloem-loading type. Acid invertase activity was relatively constant throughout the day in all species. The extent of sucrose, hexose and starch accumulation and the sucrose: starch ratio measured at a given time were species-dependent. No correlations were found between foliar soluble acid invertase activity and the hexose, sucrose or starch content of the leaves in any of the species, regardless of phloem-loading type. The species examined could be divided into three distinct groups: (1) high sucrose, low invertase; (2) low sucrose, low invertase; and (3) low sucrose, high invertase. The absence of an inverse relationship between leaf sucrose, hexose or starch contents and endogenous soluble acid invertase suggests that this enzyme is not directly involved in carbon partitioning in leaves but serves an auxiliary function.  相似文献   

20.
Experiments were conducted in controlled growth chambers to evaluate how increases in CO2 concentration ([CO2]) affected carbon metabolism and partitioning into sorbitol, sucrose, and starch in various ages of apple leaves. Apple plants (Malus domestica), 1 year old, were exposed to [CO2] of 200, 360, 700, 1000, and 1600 μl l−1 up to 8 days. Six groups of leaves (counted from the shoot apex): leaves 1–5 (sink), 6–7 (sink to source transition), 8–9 (sink to source transition), 10–11 (nearly-matured source), 21–22 (mid-age source), and 30–32 (aged source), were sampled at 1, 2, 4, and 8 days after [CO2] treatments for carbohydrate analysis. Increases in [CO2] from a sub-ambient (200 μl l−1) to an ambient level (360 μl l−1) significantly increased the concentrations of sorbitol, sucrose, glucose, and fructose tested in all ages of leaves. Continuous increase in [CO2] from ambient to super-ambient levels up to 1600 μl l−1 also increased sorbitol concentration by ≈50% in source leaves, but not in sink and sink to source transition leaves. Increases in [CO2] from 360 to 1600 μl l−1, however, had little effect on sucrose content in all ages of leaves. Starch concentrations increased in all ages of leaves as [CO2] increased. Rapid starch increases (e.g. 5-, 6-, 20-, and 50-fold increases for leaf groups 1–5, 6–7, 10–11, and 21–22, respectively) occurred from 700 to 1600 μl l−1 [CO2] during which increases in sorbitol concentration either ceased or slowed down. Our results indicate that changes in carbohydrates were much more responsive to CO2 enrichment in source leaves than in sink and sink to source transition leaves. Carbon partitioning was favored into starch and sorbitol over sucrose in all ages of leaves when [CO2] was increased from 200 to 700 μl l−1, and was favored into starch over sorbitol from 700 to 1600 μl l−1 [CO2].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号