首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chinese hamster cells were treated with ethyl methanesulfonate or N-methyl-N'-nitro-N-nitrosoguanidine, and mutants resistant to 8-azaguanine were selected and characterized. Hypoxanthine-guanine phosphoribosyltransferase activity of sixteen mutants is extremely negative, making them suitable for reversion to HGPRTase(+). Ten of the extremely negative mutants revert at a frequency higher than 10(-7) suggesting their point mutational character. The remaining mutants have demonstrable HGPRTase activity and are not useful for reversion analysis. Five of these mutants have < 2% HGPRTase and are presumably also HGPRTase point mutants. The remaining 14 mutants utilize exogenous hypoxanthine for nucleic acid synthesis poorly, and possess 20-150% of wild-type HGPRTase activity in in vitro. Their mechanism of 8-azaguanine resistance is not yet defined.  相似文献   

2.
Pseudomonas aeruginosa mutants unable to assimilate or dissimilate nitrate were isolated. Transduction and reversion analyses of these mutants revealed that single genetic lesions are responsible for the double phenotypes. The mutants were divided into two classes based on the ability to utilize hypoxanthine. It can be concluded from this study that at least two genes are shared between the two nitrate reduction systems.  相似文献   

3.
4.
《Experimental mycology》1992,16(4):308-315
Twenty-four single-spore isolates ofFusarium graminearum were obtained from scabby wheat seeds or glumes collected from 23 locations in Kansas in 1990. All isolates were sexually fertile and homothallic. Nitrate-nonutilizing (nit) mutants of each isolate were generated on a medium amended with 1.5% KCIO3. Of 378 mutants, 161 were able to utilize nitrite and hypoxanthine (nit1), 165 utilized hypoxanthine but not nitrite (nit3), 47 utilized nitrite but not hypoxanthine (NitM), and 5 appeared to be global nitrogen regulatory mutants similar to the previously describednnu mutant. Complementation was tested by pairingnit1 mutants of each isolate with either a NitM or anit3 mutant from each isolate on media containing nitrate as the sole nitrogen source. Complementation was more pronounced whennit1 and NitM mutants were paired. Mutants were only able to complement with other mutants from the same wild-type isolate. Therefore, each wild-type isolate belonged to a genetically distinct vegetative compatibility group. The genetic diversity suggests that sexual genetic recombination may be important in the field.  相似文献   

5.
Clones of cells resistant to 2,6-diaminopurine were detected in skin fibroblast cultures derived from 13 of 21 normal humans of both sexes from 17 unrelated families. Almost all of the cultures that yielded mutants were chosen for further study from among a total of 83 surveyed because they displayed a slight resistance to low concentrations of diaminopurine. The incidences of mutant colonies ranged between about 10(-5) and 10(-4) per cell surviving prior mutagenic treatment with MNNG. The incidences of spontaneous mutants were about 10(-7) to 10(-5) in three unrelated cultures. Most independent mutants had distinctly reduced activity of adenine phosphoribosyltransferase but some had apparently normal amounts of activity. Two mutants from unrelated boys had little or no detectable enzyme activity and were unable to effectively use exogenous adenine for growth when purine biosynthesis was blocked with azaserine. Most mutants could utilize exogenous adenine, just as most azaguanine-resistant fibroblast mutants can utilize exogenous hypoxanthine, even when their hypoxanthine-guanine phosphoribosyltransferase activity is reduced. Diverse genetic changes conferred diaminopurine resistance but their specific natures are still undefined. Gross numerical or structural chromosome abnormalities were not observed in the mutants examined so far. Since at least one gene responsible for adenine phosphoribosyltransferase activity is on autosome No. 16 our results suggest that at least some of the cultures yielding mutants were heterozygous and that alleles conferring diaminopurine resistance may be frequent enough to comprise a polymorphism.  相似文献   

6.
Bacteroides thetaiotaomicron, an obligate anaerobe found in high numbers in human colons, can utilize a variety of polysaccharides. To determine which type of polysaccharide contributes most to the nutrition of B. thetaiotaomicron in vivo, we isolated and characterized transposon-generated mutants deficient in the ability to use different polysaccharides. Some mutants were deficient in polysaccharide utilization because of the inability to utilize a component monosaccharide. These mutants included a mutant that was unable to utilize L-fucose (a component of goblet cell mucin), a mutant that was unable to utilize D-galactose (a component of raffinose, stachyose, arabinogalactan, and goblet cell mucin), and a mutant that was unable to utilize either glucuronic acid (a component of mucopolysaccharides) or galacturonic acid (a component of polygalacturonic acid or pectin). Other mutants were unable to use the polysaccharide but could use the component sugars. These included four mutants that were unable to utilize starch and one mutant that was unable to utilize polygalacturonic acid. The mutants were tested for the ability to compete with the wild type for colonization of the intestinal tracts of germfree mice. The only mutants against which the wild type competed successfully in the intestinal tracts of germfree mice were a galactose-negative mutant and a uronic acid-negative mutant. These mutations differed from the others tested in that they affected utilization of more than one type of polysaccharide.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Bacteroides thetaiotaomicron, an obligate anaerobe found in high numbers in human colons, can utilize a variety of polysaccharides. To determine which type of polysaccharide contributes most to the nutrition of B. thetaiotaomicron in vivo, we isolated and characterized transposon-generated mutants deficient in the ability to use different polysaccharides. Some mutants were deficient in polysaccharide utilization because of the inability to utilize a component monosaccharide. These mutants included a mutant that was unable to utilize L-fucose (a component of goblet cell mucin), a mutant that was unable to utilize D-galactose (a component of raffinose, stachyose, arabinogalactan, and goblet cell mucin), and a mutant that was unable to utilize either glucuronic acid (a component of mucopolysaccharides) or galacturonic acid (a component of polygalacturonic acid or pectin). Other mutants were unable to use the polysaccharide but could use the component sugars. These included four mutants that were unable to utilize starch and one mutant that was unable to utilize polygalacturonic acid. The mutants were tested for the ability to compete with the wild type for colonization of the intestinal tracts of germfree mice. The only mutants against which the wild type competed successfully in the intestinal tracts of germfree mice were a galactose-negative mutant and a uronic acid-negative mutant. These mutations differed from the others tested in that they affected utilization of more than one type of polysaccharide.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Summary The range of incidences of azaguanine-resistant colonies in cultures of fibroblasts from 16 unrelated humans was 0.4×10-6 to 19×10-6 and the mean value was 4.1×10-6. A fluctuation test showed that most or all of the mutant colonies derived from mutations that occurred during in vitro proliferation of the fibroblasts and before exposure to azaguanine. The estimated rate of spontaneous mutation was 0.45×10-6 to 1.8×10-6 per cell generation. At least ten independent mutants, comprising two general classes, were studied. Class I mutants were a minority and resembled cells from boys having the Lesch-Nyhan syndrome: they had very little HG-PRT activity, showed maximum resistance to azaguanine and could not utilize hypoxanthine for growth. At least 90% of the mutants were in Class II: their apparent HG-PRT activities ranged between normal and Lesch-Nyhan amounts, they were partially sensitive to azaguanine and they could utilize hypoxanthine. Some Class II mutants resembled cells cultured from a family having an X-chromosomal mutant gene that does not cause the Lesch-Nyhan syndrome but does confer resistance to azaguanine, although the quantity of HG-PRT activity is apparently normal and hypoxanthine can be utilized. Electrophoretic differences between the HG-PRT activities of normal and mutant strains were not detected but other qualitative alterations were observed in some mutants.Paper No. 1558 from the Laboratory of Genetics.Supported by N.I.H. Grants GM-06983 and GM-15422 and by a grant from the Food Research Institute of The University of Wisconsin, Madison, Wisconsin.Supported by Grant He 753-1 from Die Deutsche Forschungsgemeinschaft.  相似文献   

9.
Mutants (car) isolated from Salmonella typhimurium were unable to utilize or ferment the following carbohydrates (all d-configuration): glucose, fructose, mannose, N-acetylglucosamine, sorbitol, mannitol, maltose, melibiose, and glycerol. The mutants did utilize galactose, glucose 6-phosphate, gluconic acid, glucuronic acid, pyruvate, and l-lactate. Biochemical analysis showed that there were two classes of mutants, each lacking one component of a phosphotransferase system. CarA mutants were deficient in enzyme I; carB lacked the phosphate carrier protein, HPr. Mapping experiments showed that the carA gene was located near pro; the carB gene mapped near purC.  相似文献   

10.
1. Absorption of purines and their metabolism by the small intestine were estimated by using the everted gut sacs from the duodenum, jejunum and ileum of the chicken. 2. When no purine was added to the mucosal fluid, large amounts of uric acid, much less but appreciable adenine, hypoxanthine and xanthine and no detectable guanine were released from both sides of all segments of the small intestine, and these released amounts were largest in the duodenum. 3. Similar absorption rates of adenine from the jejunum and ileum were about 1.7-3.0 times as high as those of hypoxanthine and uric acid from these intestines and those of adenine and uric acid from the duodenum (P less than 0.05). 4. Guanine was not absorbed unchanged from any segments of the intestine and a little xanthine was absorbed only from the jejunum and ileum. 5. Guanine and xanthine seem to be absorbed in uric acid form, hypoxanthine in xanthine and uric acid forms and adenine in hypoxanthine form, from the small intestine especially from the jejunum. 6. Adenine, guanine, xanthine and hypoxanthine were greatly metabolized in the mucosa of the duodenum, and the conversions of hypoxanthine to xanthine and uric acid were most active.  相似文献   

11.
Aspergillus mutants resistant to various purine analogues (purine, 8-azaguanine, 2-thioxanthine, and 2-thiouric acid) are defective in at least one step of purine uptake or breakdown. The properties of these mutants show that there are two uptake systems for purines, one which mediates the uptake of hypoxanthine, guanine, and adenine, and the other, xanthine and uric acid. Allantoinase-less strains are sensitive to the toxic effects of allantoin accumulation. They are severely inhibited when grown in the presence of naturally occurring purines. Mutant strains derived from these, resistant to naturally occurring purines, may be isolated. These are either wild-type revertants, or carry a second metabolic block in the uptake or breakdown of purines. The properties of these double mutants confirm the interpretation of the nature of the analogue-resistant mutants.  相似文献   

12.
Although germinated conidia of Neurospora crassa transport adenine through two different systems, only one of these, namely, the general purine transport system, which transports adenine, hypoxanthine, guanine, and 6-methylpurine, is present in freshly harvested conidia of the wild type. The second system develops during germination. The latter system can transport adenine and 6-methylpurine. Time course and kinetic studies of adenine transport in freshly harvested conidia of an ad-8 mutant indicated that, in contrast to the wild type, the general purine transport activity is very low in this strain and that the second adenine transport system is possibly present in the ungerminated conidia. A study of adenine and hypoxanthine uptake in ad-8 and ad-4 mutants, both of which cannot utilize hypoxanthine for growth, isolated that the two transport systems may be under different metabolic controls.  相似文献   

13.
Site-directed mutagenesis was used to investigate the control of 2-oxoacid cosubstrate selectivity by deacetoxycephalosporin C synthase. The wild-type enzyme has a requirement for 2-oxoglutarate and cannot efficiently use hydrophobic 2-oxoacids (e.g. 2-oxohexanoic acid, 2-oxo-4-methyl-pentanoic acid) as the cosubstrate. The following mutant enzymes were produced: R258A, R258L, R258F, R258H and R258K. All of the mutants have broadened cosubstrate selectivity and were able to utilize hydrophobic 2-oxoacids. The efficiency of 2-oxoglutarate utilization by all mutants was decreased as compared to the wild-type enzyme, and in some cases activity was abolished with the natural cosubstrate.  相似文献   

14.
We report the identification of a number of mutations that result in amino acid replacements (and their phenotypic characterization) in either the MogA-like domain or domains 2 and 3 of the MoeA-like region of the Aspergillus nidulans cnxE gene. These domains are functionally required since mutations that result in amino acid substitutions in any one domain lead to the loss or to a substantial reduction in all three identified molybdoenzyme activities (i.e., nitrate reductase, xanthine dehydrogenase, and nicotinate hydroxylase). Certain cnxE mutants that show partial growth with nitrate as the nitrogen source in contrast do not grow on hypoxanthine or nicotinate. Complementation between mutants carrying lesions in the MogA-like domain or the MoeA-like region, respectively, most likely occurs at the protein level. A homology model of CnxE based on the dimeric structure of E. coli MoeA is presented and the position of inactivating mutations (due to amino acid replacements) in the MoeA-like functional region of the CnxE protein is mapped to this model. Finally, the activity of nicotinate hydroxylase, unlike that of nitrate reductase and xanthine dehydrogenase, is not restored in cnxE mutants grown in the presence of excess molybdate.  相似文献   

15.
Fusarium oxysporum is a soil-borne pathogen that infects plants through the roots and uses the vascular system for host ingress. Specialized for this route of infection, F. oxysporum is able to adapt to the scarce nutrient environment in the xylem vessels. Here we report the cloning of the F. oxysporum global nitrogen regulator, Fnr1 , and show that it is one of the determinants for fungal fitness during in planta growth. The Fnr1 gene has a single conserved GATA-type zinc finger domain and is 96% and 48% identical to AREA-GF from Gibberella fujikuroi , and NIT2 from Neurospora crassa , respectively. Fnr1 cDNA, expressed under a constitutive promoter, was able to complement functionally an N. crassa nit-2 RIP mutant, restoring the ability of the mutant to utilize nitrate. Fnr1 disruption mutants showed high tolerance to chlorate and reduced ability to utilize several secondary nitrogen sources such as amino acids, hypoxanthine and uric acid, whereas growth on favourable nitrogen sources was not affected. Fnr1 disruption also abolished in vitro expression of nutrition genes , normally induced during the early phase of infection. In an infection assay on tomato seedlings, infection rate of disruption mutants was significantly delayed in comparison with the parental strain. Our results indicate that FNR1 mediates adaptation to nitrogen-poor conditions in planta through the regulation of secondary nitrogen acquisition, and as such acts as a determinant for fungal fitness during infection.  相似文献   

16.
Bacillus subtilis mutants defective in purine metabolism have been isolated by selecting for resistance to purine analogs. Mutants resistant to 2-fluoroadenine were found to be defective in adenine phosphoribosyltransferase (apt) activity and slightly impaired in adenine uptake. By making use of apt mutants and mutants defective in adenosine phosphorylase activity, it was shown that adenine deamination is an essential step in the conversion of both adenine and adenosine to guanine nucleotides. Mutants resistant to 8-azaguanine, pbuG mutants, appeared to be defective in hypoxanthine and guanine transport and normal in hypoxanthine-guanine phosphoribosyltransferase activity. Purine auxotrophic pbuG mutants grew in a concentration-dependent way on hypoxanthine, while normal growth was observed on inosine as the purine source. Inosine was taken up by a different transport system and utilized after conversion to hypoxanthine. Two mutants resistant to 8-azaxanthine were isolated: one was defective in xanthine phosphoribosyltransferase (xpt) activity and xanthine transport, and another had reduced GMP synthetase activity. The results obtained with the various mutants provide evidence for the existence of specific purine base transport systems. The genetic lesions causing the mutant phenotypes, apt, pbuG, and xpt, have been located on the B. subtilis linkage map at 243, 55, and 198 degrees, respectively.  相似文献   

17.
Adenine phosphoribosyltransferase mutants in Saccharomyces cerevisiae   总被引:4,自引:0,他引:4  
Mutants of Saccharomyces cerevisiae deficient in adenine phosphoribosyltransferase (A-PRT, EC 2,4,2,7) have been isolated following selection for resistance to 8-azaadenine in a prototrophic strain carrying the ade4-su allele of the gene coding for amidophosphoribosyltransferase (EC 2,4,2,14). The mutants were recessive and defined a single gene, apt1. They did not excrete purine when combined with ade4+. The mutants appeared to retain some A-PRT activity in crude extracts, and strains of the genotype ade2 apt1 responded to both adenine and hypoxanthine. Mutants deficient in adenine aminohydrolase (EC 3,5,4,2) activity, aah1, and hypoxanthine:guanine phosphoribosyltransferase (EC 2,4,2,8) activity, hpt1, were used to synthesize the genotypes apt1 hpt1 aah+ and apt1 hpt+ aah1. The absence of A-PRT activity in strains with these genotypes confirmed the hypothesis that the residual A-PRT activity of apt1 mutants was due to adenine aminohydrolase and hypoxanthine:guanine phosphoribosyltransferase acting in concert.  相似文献   

18.
1. The metabolism of xanthine and hypoxanthine in excised shoot tips of tea was studied with micromolar amounts of [2(-14)C]xanthine or [8(-14)C]hypoxanthine. Almost all of the radioactive compounds supplied were utilized by tea shoot tips by 30 h after their uptake. 2. The main products of [2(-14)C]xanthine and [8(-14)C]hypoxanthine metabolism in tea shoots were urea, allantoin and allantoic acid. There was also incorporation of the label into theobromine, caffeine and RNA purine nucleotides. 3. The results indicate that tea plants can catabolize purine bases by the same pathways as animals. It is also suggested that tea plants have the ability to snythesize purine nucleotides from glycine by the pathways of purine biosynthesis de novo and from hypoxanthine and xanthine by the pathway of purine salvage. 4. The results of incorporation of more radioactivity from [8(-14)C]hypoxanthine than from [2(-14)C]xanthine into RNA purine nucleotides and caffeine suggest that hypoxanthine is a more effective precursor of caffeine biosynthesis than xanthine. The formation of caffeine from hypoxanthine is a result of nucleotide synthesis via the pathway of purine salvage.  相似文献   

19.
8 uridine-requiring pyr mutants were isolated from Aspergillus nidulans under nitrosoguanidine treatment. All the mutants are capable to grow on the medium containing 20 mkg/ml of uridine or cytidine, or 100 mkg/ml of uracil, and they do not utilize thymidine, thymine, cytosine and deoxyuridine. Their ability to grow in the presence of orotic acid demonstrates that the pyrimidine synthesis in all the mutants is blocked at stages preceding the conversion of orotic acid into orotidine monophosphate. All the pyr mutants are of nuclear nature, they are recessive and represent three complementation groups located in the VIII chromosome. Unlike U. maydis mutant, the requirement in pyrimidines does not increase the sensitivity of A. nidulans pyr mutants to UV-irradiation.  相似文献   

20.
The purine-cytosine permease from Saccharomyces cerevisiae mediates the active transport through the plasma membrane of adenine, hypoxanthine, guanine and cytosine using the proton electrochemical potential difference as an energy source. Analysis of the activity of strains mutated in a hydrophilic segment (371-377) of the polypeptidic chain has shown the involvement of this segment in the maintenance of the active three-dimensional structure of the carrier. In an attempt to identify permease domains that could interact functionally and/or physically with this segment, we looked for second-site mutations that could suppress the effects of amino acid changes in this region. This paper describes a positive screen that has allowed the isolation of one suppressor from a permease mutant displaying the N374I change (fcy2-20 allele), a substitution that induces a dramatic decrease in the affinity of the carrier for adenine, cytosine and hypoxanthine. The second-site mutation corresponds to the replacement of the Ser272 residue by Leu. Its suppressive effect is shown to be a partial restoration of the binding of cytosine and hypoxanthine to the permease. To test whether this second-site mutation is specific for the fcy2-20 allele, two double mutants were constructed (Fcy2pT213I, S272L and Fcy2pS272L, N377G). Results obtained with these two double mutants showed that the suppressive effect of S272 L replacement was not specific for the original N374I change. To understand the general effect of this amino acid replacement for the three distinct double mutants, a strain overexpressing Fcy2pS272I, was constructed. Kinetic analysis of this strain showed that, by itself, the S272 L change induced an improvement in the base-binding step that could account for its global suppressive effect. Moreover, S272 L induced a decrease in the turnover of the permease, thus showing the involvement of S272 in the translocation process. Taking into account the topological model of the permease proposed here, this Ser residue is probably located in a transmembrane amphipathic alpha-helix (TM5). The location and the observed decrease in the turnover of the carrier observed with the S272 L change lead us to propose that S272 could be part of a hydrophilic pore involved in the translocation of the base and/or the proton.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号