首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An ATPase with Mr of 360,000 was purified from plasma membranes of a thermophilic eubacterium Thermus thermophilus, and was characterized. ATP hydrolytic activity of the purified enzyme was extremely low, 0.07 mumol of Pi released mg-1 min-1, and it was stimulated up to 30-fold by bisulfite. The following properties of the enzyme indicate that it is not a usual F1-ATPase but that it belongs to the V-type ATPase family, another class of ATPases found in membranes of archaebacteria and eukaryotic endomembranes. Among its four kinds of subunits with approximate Mr values of 66,000 (alpha), 55,000 (beta), 30,000 (gamma), and 12,000 (delta), the alpha subunit had a similar molecular size to the catalytic subunits of the V-type ATPases but was significantly larger than the alpha subunit of F1-ATPases. ATP hydrolytic activity was not affected by azide, an inhibitor of F1-ATPases, but was inhibited by nitrate, an inhibitor of the V-type ATPase. N-terminal amino acid sequences determined for the purified alpha and beta subunits showed much higher similarity to those of the V-type ATPases than those of F1-ATPases. Thus the distribution of the V-type ATPase in the prokaryotic kingdom may not be restricted to archaebacteria.  相似文献   

2.
A membrane-associated ATPase with an M(r) of approximately 510,000 and containing subunits with M(r)s of 80,000 (alpha), 55,000 (beta), and 25,000 (gamma) was isolated from the methanogen Methanococcus voltae. Enzymatic activity was not affected by vanadate or azide, inhibitors of P- and F1-ATPase, respectively, but was inhibited by nitrate and bafilomycin A1, inhibitors of V1-type ATPases. Since dicyclohexylcarbodiimide inhibited the enzyme when it was present in membranes but not after the ATPase was solubilized, we suggest the presence of membrane-associated component analogous to the F0 and V0 components of both F-type and V-type ATPases. N-terminal amino acid sequence analysis of the alpha subunit showed a higher similarity to ATPases of the V-type family than to those of the F-type family.  相似文献   

3.
The nucleotide sequence of the operon of the ATPase complex of an acidothermophilic archaebacterium, Sulfolobus acidocaldarius, has been determined. In addition to the three previously reported genes for the alpha, beta, and c (proteolipid) subunits of the ATPase complex (Denda, K., Konishi, J., Oshima, T., Date, T., and Yoshida, M. (1989) J. Biol. Chem. 264, 7119-7121), the operon contained three other genes encoding hydrophilic proteins with molecular masses 25, 13, and 7 kDa. The 25-kDa protein is the third largest subunit (gamma), the 13-kDa protein is most likely the fourth subunit (delta), and the 7-kDa protein may correspond to an unknown subunit of the ATPase, tentatively named as epsilon subunit. They do not have significant sequence similarity to subunits in F0F1-ATPases and eukaryotic V-type ATPases, whereas the other three subunits, alpha, beta, and c, have homologous counterparts in F0F1- and V-type ATPases. The order of the genes in the operon was delta alpha beta gamma epsilon c. The S. acidocaldarius ATPase operon differed from the eucabacterial F0F1-ATPase operon in that the former contains only one gene for a hydrophobic subunit at the most downstream part of the operon whereas the latter has three hydrophobic F0 genes preceding five hydrophilic F1 genes.  相似文献   

4.
The gene which encodes the beta subunit of the novel membrane-associated ATPase has been identified and characterized. The beta subunit, which is most likely the soluble part of the non-F0F1 type H+-ATPase, was obtained from the archaebacterium, Sulfolobus acidocaldarius. In terms of its location, it follows just after the gene for its alpha subunit. It is comprised of 1398 nucleotides, corresponding to a protein of 465 amino acids, and the consensus sequence in the nucleotide binding proteins is poorly conserved. Together with previously described results, the distant homology of the S. acidocaldarius ATPase alpha and beta subunits when compared to those of F0F1-ATPases indicates that this archaebacterial ATPase belongs to an ion-translocating ATPase family uniquely different than F0F1-ATPases even if S. acidocaldarius ATPase and F0F1-ATPases have been derived from a common ancestral ATPase.  相似文献   

5.
V-type ATPase (V(o)V(1)) capable of ATP-driven H(+) pumping and of H(+) gradient driven ATP synthesis was isolated from a thermophilic eubacterium, Thermus thermophilus. When the enzyme was analyzed by gel electrophoresis in the presence of sodium dodecyl sulfate, it showed eight polypeptide bands of which four were subunits of V(1). We also isolated the V(o)V(1) operon, containing nine genes in the order of atpG-I-L-E-X-F-A-B-D, which encoded proteins with molecular sizes of 13, 43, 10, 20, 35, 11, 64, 53, and 25 kDa, respectively. The last four genes were identified as those for V(1) subunits; atpA, B, D, and F encoded the A, B, gamma, and delta subunits, respectively. The first five genes, atpG-atpX, were identified as genes for the V(o) subunits. The product of atpL, the proteolipid subunit, lacked a 19-amino acid presequence and, unlike V-type ATPases, contained two membrane-spanning domains rather than four. The hydrophobic 43-kDa product of atpI is the smallest member so far found of the eukaryotic 100-kDa subunit family. Its electrophoretic band overlapped with the band of the A subunit. Therefore, all the gene products were found in our purified V(o)V(1). We isolated the A(3)B(3) subcomplex reconstituted from the isolated subunits and the A(3)B(3)gamma subcomplex from subunit-expressing Escherichia coli. Electron microscopic observation of these subcomplexes revealed that the gamma subunit of V(1) filled the central cavity of A(3)B(3) and might be central subunit, similar to the gamma subunit of F(1)-ATPase.  相似文献   

6.
Satoh M  Koyama N 《Anaerobe》2005,11(1-2):115-121
The structural genes for A and B subunits of the V-type Na(+)-ATPase from a facultatively anaerobic alkaliphile (Amphibacillus sp.), strain M-12, were cloned and sequenced. Transformation of Escherichia coli with the genes overexpressed two proteins, which crossreacted with an antiserum against A and B subunits of the V-type Na(+)-ATPase from Enterococcus hirae. The deduced amino acid sequence (594 amino acids; Mr, 66,144) of A subunit of the M-12 enzyme exhibited 73%, 51%, 49% and 53% identities with those of V-type ATPases from E. hirae, Thermus thermophilus, Neurospora crassa and Drosophila melanogaster, respectively. The amino acid sequence (458 amino acids; Mr, 51,308) of B subunit of the M-12 enzyme was 74%, 53%, 52% and 54% identical with those of the ATPases from E. hirae, T. thermophilus, N. crassa and D. melanogaster, respectively. The fact indicates that the amino acid sequences of A and B subunits of the M-12 enzyme exhibit significantly higher homologies with those of the E. hirae Na(+)-ATPase as compared with those of the H(+)-ATPases from T. thermophilus, N. crassa and D. melanogaster.  相似文献   

7.
Isolation of novel membrane-associated ATPases, presumably soluble parts of the H+-ATPases, from archaebacteria has been recently reported, and their properties were found to be significantly different from the usual F1-ATPase. In order to assess the relationship of the archaebacterial ATPases to the F1-ATPases and other known ATPases, the amino acid sequence of the alpha subunit of the ATPase from Sulfolobus acidocaldarius, an acidothermophilic archaebacterium, was compared with the sequences of other ATPases. The gene encoding its alpha subunit was cloned from the genomic library of S. acidocaldarius, and the nucleotide sequence was determined. The 591-amino acid sequence deduced from the nucleotide sequence contains a small number of short stretches that shows sequence similarity to the alpha and beta subunits of F1-ATPase. However, the overall similarity is too weak to consider it to be a typical member of the F1-ATPase family when the highly conserved sequences of the F1-ATPase subunits among various organisms are taken into account. Moreover, most of these stretches overlap the consensus sequences that are commonly found in some nucleotide-binding proteins. There is no significant sequence similarity to the ion-translocating ATPases, which form phosphorylated intermediates, such as animal Na+,K+-ATPases. Thus, the S. acidocaldarius ATPase and probably other archaebacterial ATPases also appear to belong to a new group of ion-translocating ATPases that has only a distant relationship to F1-ATPase.  相似文献   

8.
In partially purified preparations of the vacuolar ATPase from Neurospora crassa, the two most prominent components are polypeptides of Mr = 70,000 and 60,000. We previously reported the isolation of the gene vma-1, which encodes the Mr = 70,000 polypeptide, and presented evidence that the polypeptide contains the site of ATP hydrolysis (Bowman, E. J., Tenney, K., and Bowman, B. J. (1988) J. Biol. Chem. 263, 13994-14001). We now report the isolation of a gene (designated vma-2), that encodes the Mr = 60,000 polypeptide. Analysis of the DNA sequence shows that the polypeptide has 513 amino acids and a molecular mass of 56,808 daltons (and will thus be referred to as the 57-kDa polypeptide). It is fairly rich in polar amino acids and has no apparent membrane-spanning domains. The vma-2 gene contains five short introns (55-71 bases), all clustered in the 5' end of the coding region. The gene maps to the right arm of linkage group II, near 5 S RNA gene 3. Thus, it is unlinked to vma-1 and to other known ATPase genes in N. crassa. The 57-kDa polypeptide shows 25% amino acid sequence identity with the vma-1 gene product. It shows essentially the same degree of similarity (25-28%) to both the alpha and beta subunits of F0F1 ATPases. Analysis of specific regions of the 57-kDa polypeptide, however, suggests it may have a function like that of the alpha subunit in F0F1 ATPases. The data indicate that all four types of ATPase polypeptides have evolved from a common ancestor and that the vacuolar-type ATPases have a structure surprisingly similar to that of the F0F1 ATPases.  相似文献   

9.
The vacuolar membrane of Neurospora crassa contains a H+-translocating ATPase composed of at least three subunits with approximate molecular weights of 70,000, 60,000, and 15,000. Both genomic and cDNA clones encoding the largest subunit, which appears to contain the active site of the enzyme, have been isolated and sequenced. The gene for this subunit, designated vma-1, contains six small introns (60-131 base pairs) and encodes a hydrophilic protein of 607 amino acids, Mr 67,121. Within the sequence is a putative nucleotide-binding region, consistent with the proposal that this subunit contains the site of ATP hydrolysis. This 67-kDa polypeptide shows high homology (62% identical residues overall and 84% in the middle of the protein) to the analogous polypeptide of a higher plant vacuolar ATPase. The hypothesis that the vacuolar ATPase is related to F0F1 ATPases is strongly supported by the finding of considerable homology between the 67-kDa subunit of the Neurospora vacuolar ATPase and both the alpha and beta subunits of F0F1 ATPases.  相似文献   

10.
The atpA and atpB genes coding for the alpha and beta subunits, respectively, of membrane ATPase were cloned from a methanogen Methanosarcina barkeri, and the amino acid sequences of the two subunits were deduced from the nucleotide sequences. The methanogenic alpha (578 amino acid residues) and beta (459 amino acid residues) subunits were highly homologous to the large and small subunits, respectively, of vacuolar H+-ATPases; 52% of the residues of the methanogenic alpha subunit were identical with those of the large subunit of vacuolar enzyme of carrot or Neurospora crassa, respectively, and 59, 60, and 59% of the residues of the methanogenic beta subunit were identical with those of the small subunits of N. crassa, Arabidopsis thaliana, and Sacharomyces cerevisiae, respectively. The methanogenic subunits were also highly homologous to the corresponding subunits of Sulfolobus acidocaldarius ATPase. The methanogenic alpha and beta subunits showed 22 and 24% identities with the beta and the alpha subunits of Escherichia coli F1, respectively. Furthermore, important amino acid residues identified genetically in the E. coli enzyme were conserved in the methanogenic enzyme. This sequence conservation suggests that vacuolar, F1, methanogenic, and S. acidocaldarius ATPases were derived from a common ancestral enzyme.  相似文献   

11.
A sequence of 10 amino acids (I-C-S-D-K-T-G-T-L-T) of ion motive ATPases such as Na+/K+-ATPase is similar to the sequence of the beta subunit of H+-ATPases, including that of Escherichia coli (I-T-S-T-K-T-G-S-I-T) (residues 282-291). The Asp (D) residue phosphorylated in ion motive ATPase corresponds to Thr (T) of the beta subunit. This substitution may be reasonable because there is no phosphoenzyme intermediate in the catalytic cycle of F1-ATPase. We replaced Thr-285 of the beta subunit by an Asp residue by in vitro mutagenesis and reconstituted the alpha beta gamma complex from the mutant (or wild-type) beta and wild-type alpha and gamma subunits. The uni- and multisite ATPase activities of the alpha beta gamma complex with mutant beta subunits were about 20 and 30% of those with the wild-type subunit. The rate of ATP binding (k1) of the mutant complex under uni-site conditions was about 10-fold less than that of the wild-type complex. These results suggest that Thr-285, or the region in its vicinity, is essential for normal catalysis of the H+-ATPase. The mutant complex could not form a phosphoenzyme under the conditions where the H+/K+-ATPase is phosphorylated, suggesting that another residue(s) may also be involved in formation of the intermediate in ion motive ATPase. The wild-type alpha beta gamma complex had slightly different kinetic properties from the wild-type F1, possibly because it did not contain the epsilon subunit.  相似文献   

12.
We have characterized the vma-10 gene which encodes the G subunit of the vacuolar ATPase in Neurospora crassa. The gene is somewhat unusual in filamentous fungi because it contains five introns, comprising 71% of the region between the translation start and stop codons. The 5 untranslated region of the gene contains several elements that have been identified in other genes that encode subunits of the vacuolar ATPase in N. crassa. A comparison of G subunits from N. crassa, S. cerevisiae, and animal cells showed that the N-terminal half of the polypeptide shows the highest degree of sequence conservation. Most striking is the observation that this region could form an alpha helix in which all of the conserved residues are clustered on one face. Subunit G appears to be homologous to the b subunit found in F-type ATPases. The major difference between the b and G subunits is the lack of a membrane-spanning region in the G subunit. We have also identified homologous subunits in the operons which encode V-type ATPases in a eubacterium, Enterrococcus hirae, and an archaebacterium, Methanococcus jannaschii. As in eukaryotic vacuolar ATPases the G subunit homologs lack a membrane-spanning region. Although the b and G subunits appear to be derived from a common ancestor, significant changes have evolved. In F-type and V-type ATPases these subunits can have zero, one, or two membrane-spanning regions and can also differ significantly in the number of copies per enzyme.  相似文献   

13.
The head piece of the A-type ATP synthase in an extremely halophilic archaebacterium, namely Halobacterium salinarium (halobium), is composed of two kinds of subunit, alpha and beta, and is associated with ATP-hydrolyzing activity. The genes encoding these subunits with hydrolytic activity have been cloned and sequenced. The putative amino acid sequences of the alpha and beta subunits deduced from the nucleotide sequences of the genomic DNA consist of 585 and 471 residues, respectively. The amino acid sequence of the alpha subunit of the halobacterial ATPase is 63 and 49% identical to the alpha subunits of ATPases from two other archaebacteria, Methanosarcina barkeri and Sulfolobus acidocaldarius, respectively. The sequence of the beta subunit is 66 and 55% identical to the beta subunits from these respective organisms. The homology between the alpha and beta subunits is around 30%. In contrast, the sequences of the halobacterial ATPase is less than 30% identical to F1 ATPase when any combination of subunits is considered. However, they are greater than 50% identical to a eukaryotic vacuolar ATPase when alpha and a, beta and b combinations are considered. These data fully confirm the first demonstration of this kind of relationship which was achieved by immunoblotting with an antibody raised against the halobacterial ATPase. We concluded that the archaebacterial ATP synthase is an A-type and not an F-type ATPase. This classification is also demonstrated by a "rooted" phylogenetic tree where halobacteria locate close to other archaebacteria and eukaryotes and distant from eubacteria.  相似文献   

14.
C Urban  M R Salton 《Microbios》1985,44(177):21-32
Limited trypsin and chymotrypsin digestions were performed on the latent F1-ATPase from M. lysodeikticus, and subsequent analysis on SDS-polyacrylamide gels revealed subunit profiles with degraded alpha and delta subunits similar to those of ATPase preparations with spontaneously occurring lower degrees of latency. The ATPase obtained from M. lysodeikticus membranes after n-butanol extraction was also non-latent with similar SDS-gel patterns to the aforementioned ATPases. In addition, the sensitive technique of crossed immunoelectrophoresis was used to show that all of the above ATPases contained alpha, beta, gamma, delta and epsilon subunits but some of them were in degraded forms. Although the delta subunit was the first to be cleaved, the loss of latency can be attributed to the degradation of the alpha subunit.  相似文献   

15.
Spinach leaf mitochondrial F0F1 ATPase has been purified and is shown to consist of twelve polypeptides. Five of the polypeptides constitute the F1 part of the enzyme. The remaining polypeptides, with molecular masses of 28 kDa, 23 kDa, 18.5 kDa, 15 kDa, 10.5 kDa, 9.5 kDa and 8.5 kDa, belong to the F0 part of the enzyme. This is the first report concerning identification of the subunits of the plant mitochondrial F0. The identification of the components is achieved on the basis of the N-terminal amino acid sequence analysis and Western blot technique using monospecific antibodies against proteins characterized in other sources. The 28-kDa protein crossreacts with antibodies against the subunit of bovine heart ATPase with N-terminal Pro-Val-Pro- which corresponds to subunit F0b of Escherichia coli F0F1. Sequence analysis of the N-terminal 32 amino acids of the 23-kDa protein reveals that this protein is similar to mammalian oligomycin-sensitivity-conferring protein and corresponds to the F1 delta subunit of the chloroplast and E. coli ATPases. The 18.5-kDa protein crossreacts with antibodies against subunit 6 of the beef heart F0 and its N-terminal sequence of 14 amino acids shows a high degree of sequence similarity to the conserved regions at N-terminus of the ATPase subunits 6 from different sources. ATPase subunit 6 corresponds to subunit F0a of the E. coli enzyme. The 15-kDa protein and the 10.5-kDa protein crossreact with antibodies against F6 and the endogenous ATPase inhibitor protein of beef heart F0F1-ATPase, respectively. The 9.5-kDa protein is an N,N'-dicyclohexylcarbodiimide-binding protein corresponding to subunit F0c of the E. coli enzyme. The 8.5-kDa protein is of unknown identity. The isolated spinach mitochondrial F0F1 ATPase catalyzes oligomycin-sensitive ATPase activity of 3.5 mumol.mg-1.min-1. The enzyme catalyzes also hydrolysis of GTP (7.5 mumol.mg-1.min-1) and ITP (4.4 mumol.mg-1.min-1). Hydrolysis of ATP was stimulated fivefold in the presence of amphiphilic detergents, however the hydrolysis of other nucleotides could not be stimulated by these agents. These results show that the plant mitochondrial F0F1 ATPase complex differs in composition from the other mitochondrial, chloroplast and bacterial ATPases. The enzyme is, however, more closely related to the yeast mitochondrial ATPase and to the animal mitochondrial ATPase than to the chloroplast enzyme. The plant mitochondrial enzyme, however, exhibits catalytic properties which are characteristic for the chloroplast enzyme.  相似文献   

16.
M Sumi  M H Sato  K Denda  T Date  M Yoshida 《FEBS letters》1992,314(3):207-210
A 490 bp DNA fragment was amplified from Methanosarcina barkeri genomic DNA by the polymerase chain reaction (PCR) using oligonucleotide primers designed based on conserved amino acid sequences of the F1-ATPase beta subunits. The amino acid sequence deduced from the DNA sequence of this fragment was highly homologous to a portion of the F1-ATPase beta subunit. This indicates that this archaebacterium has a gene of F-type ATPase in addition to a gene of V-type ATPase.  相似文献   

17.
The archaeal (A)-ATPase has been described as a chimeric energy converter with close relationship to both the vacuolar ATPase class in higher eukaryotes and the coupling factor (F)-ATPase class in eubacteria, mitochondria and chloroplasts. With respect to their structure and some inhibitor responses, A-ATPases are more closely related to the vacuolar ATPase type than to F-ATPase. Their function, ATP synthesis at the expense of an ion gradient, however, is a typical attribute of the F-ATPase class. V-type ATPases serve as generators of a proton gradient driving the accumulation of solutes within vesicles such as the vacuoles of plant cells. The three catalytic subunits (A) of the archaeal ATPases are the largest subunits of the A1-part and, like in V-ATPases, closer related to the F-ATPase -subunits, whereas B corresponds to F-ATPase . The catalytic subunits A of archaeal ATPases contain an insert of about 80 amino acids in their primary structures that may be aligned to comparable structures in V-ATPases. The location of this additional peptide in Haloferax volcanii is shown using the 2.8 Å X-ray resolution of the bovine mitochondrial F-ATPase [Abrahams et al. (1994) Nature 370: 621-628]. A three dimensional structure for the catalytic subunit of Haloferax volcanii ATPase is proposed using the Swiss-Model Automated Protein Modelling Server. The halobacterial ATPase is a halophilic protein; it contains about 20% negatively charged amino acid residues. A large portion of acidic residues is located on the outer surface of the protein as well as in the insert of subunit A. This result is discussed in terms of protein stability under high salt stress conditions.  相似文献   

18.
This review concerns the catalytic sector of F1 factor of the H+-dependent ATPases in mitochondria (MF1), bacteria (BF1) and chloroplasts (CF1). The three types of F1 have many similarities with respect to the structural parameters, subunit composition and catalytic mechanism. An alpha 3 beta 3 gamma delta epsilon stoichiometry is now accepted for MF1 and BF1; the alpha 2 beta 2 gamma 2 delta 2 epsilon 2 stoichiometry for CF1 remains as matter of debate. The major subunits alpha, beta and gamma are equivalent in MF1, BF1 and CF1; this is not the case for the minor subunits delta and epsilon. The delta subunit of MF1 corresponds to the epsilon subunit of BF1 and CF1, whereas the mitochondrial subunit equivalent to the delta subunit of BF1 and CF1 is probably the oligomycin sensitivity conferring protein (OSCP). The alpha beta gamma assembly is endowed with ATPase activity, beta being considered as the catalytic subunit and gamma as a proton gate. On the other hand, the delta and epsilon subunits of BF1 and CF1 most probably act as links between the F1 and F0 sectors of the ATPase complex. The natural mitochondrial ATPase inhibitor, which is a separate protein loosely attached to MF1, could have its counterpart in the epsilon subunit of BF1 and CF1. The generally accepted view that the catalytic subunit in the different F1 species is beta comes from a number of approaches, including chemical modification, specific photolabeling and, in the case of BF1, use of mutants. The alpha subunit also plays a central role in catalysis, since structural alteration of alpha by chemical modification or mutation results in loss of activity of the whole molecule of F1. The notion that the proton motive force generated by respiration is required for conformational changes of the F1 sector of the H+-ATPase complex has gained acceptance. During the course of ATP synthesis, conversion of bound ADP and Pi into bound ATP probably requires little energy input; only the release of the F1-bound ATP would consume energy. ADP and Pi most likely bind at one catalytic site of F1, while ATP is released at another site. This mechanism, which underlines the alternating cooperativity of subunits in F1, is supported by kinetic data and also by the demonstration of partial site reactivity in inactivation experiments performed with selective chemical modifiers. One obvious advantage of the alternating site mechanism is that the released ATP cannot bind to its original site.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

19.
Trypsin cleavage has been used to probe structure-function relationships of the Escherichia coli ATP synthase (ECF1F0). Trypsin cleaved all five subunits, alpha, beta, gamma, delta, and epsilon, in isolated ECF1. Cleavage of the alpha subunit involved the removal of the N-terminal 15 residues, the beta subunit was cleaved near the C-terminus, the gamma subunit was cleaved near Ser202, and the delta and epsilon subunits appeared to be cleaved at several sites to yield small peptide fragments. Trypsin cleavage of ECF1 enhanced the ATPase activity between 6- and 8-fold in different preparations, in a time course that followed the cleavage of the epsilon subunit. This removal of the epsilon subunit increased multisite ATPase activity but not unisite ATPase activity, showing that the inhibitory role of the epsilon subunit is due to an effect on cooperativity. The detergent lauryldimethylamine oxide was found to increase multisite catalysis and also increase unisite catalysis more than 2-fold. Prolonged trypsin cleavage left a highly active ATPase containing only the alpha and beta subunits along with two fragments of the gamma subunit. All of the subunits of ECF1 were cleaved by trypsin in preparations of ECF1F0 at the same sites as in isolated ECF1. Two subunits, the beta and epsilon subunits, were cleaved at the same rate in ECF1F0 as in ECF1 alone. The alpha, gamma, and delta subunits were cleaved significantly more slowly in ECF1F0.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
A procedure for the preparation of coupling factor 1 (F1) from Escherichia coli lacking subunits delta and epsilon is described. Using chloroform and dimethyl sulfoxide, we can isolate F1 containing only subunits alpha, beta, and gamma [F1(alpha beta gamma)] directly from membrane vesicles in 10-mg quantities. Pure and active subunits delta and epsilon were prepared from five-subunit F1 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. After addition of these subunits, F1(alpha beta gamma) is as active in reconstituting ATP-dependent transhydrogenase as five-subunit F1. The ATPase activity of F1 (alpha beta gamma) is inhibited by subunit epsilon in a 1:1 stoichiometry to the same extent (approximately equal to 90%) and with the same affinity (Ki = 0.2-0.8 nM) as reported earlier [Dunn, S.D. (1982) J. Biol. Chem. 257, 7354-7359]. In the presence of either delta or epsilon, F1(alpha beta gamma) binds to F1-depleted membrane vesicles and to liposomes containing the membrane sector (F0) of the ATP synthase to an extent commensurate with the F0 content. The binding ratios epsilon/F1 (alpha beta gamma) and probably also delta/F1 (alpha beta gamma) are close to unity. The specific, delta- or epsilon-deficient F1.F0 complexes presumably formed show ATPase activities sensitive to subunit epsilon but not to dicyclohexylcarbodiimide, and no energy-transfer capabilities. Binding studies at different pH values suggest that F1-F0 interactions in the presence of both subunits delta and epsilon are similar to a combination of those mediated by delta or epsilon alone.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号