首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
选用大鼠右肾切除、左侧肾蒂夹闭60min继之再灌流不同时间动物模型,用光镜组化、电镜组化和计算机显微图像分析方法观察肾小管上皮Na+、K+┐ATP酶活性的变化及TAD(还原型谷胱甘肽)对它们的影响。结果显示:正常肾组织光镜下Na+、K+┐ATP酶主要分布在髓质外带、髓袢升支粗段的肾小管上皮细胞;电镜下Na+、K+┐ATP酶分布在细胞基部质膜内褶的胞浆面。60min肾缺血后再灌流15min、24h可致肾小管上皮Na+、K+┐ATP酶活性呈进行性降低,给予自由基清除剂TAD后,肾小管上皮Na+、K+┐ATP酶活性损伤有所减轻。结果提示:自由基可能损害肾上管上皮Na+、K+┐ATP酶活性,TAD可能保护肾小管Na+、K+┐ATP酶活性  相似文献   

2.
运用酶组织化学方法结合计算机图像分析,对自发性高血压大鼠(SHR)和正常血压的SD大鼠在大脑中动脉迅速阻断之后皮质细胞的代谢变化进行了比较观察。实验结果显示在缺血15min,皮质细胞的细胞色素C氧化酶(CCO)和乳酸脱氢酶(LDH)的活性即已发生变化,而且随缺血时间的延长而更加明显,SHR酶活性的变化更为显著,提示SHR皮质细胞对缺血缺氧更为敏感。  相似文献   

3.
目的探讨灵芝孢子和一氧化氮合酶 (NOS)抑制剂L-NNA联合应用对大鼠脊髓半横断后受损伤的背核线粒体细胞色素氧化酶活性的影响.方法将20只SD成年雌性大鼠(200-250g)行右侧T11脊髓半横断30d后,对受损伤脊髓做细胞色素氧化酶酶组化染色;用图像分析方法检测L1脊髓段背核线粒体细胞色素氧化酶活性的变化,用酶组化电镜技术观察L1脊髓段背核细胞色素氧化酶活性的分布位置.结果与对照组相比,L-NNA组和灵芝孢子组L1脊髓损伤侧背核线粒体细胞色素氧化酶活性有所提高,灵芝孢子 L-NNA组损伤侧背核线粒体细胞色素氧化酶活性最大.各组L1脊髓背核细胞色素氧化酶活性均出现在线粒体内,具有细胞色素氧化酶活性的线粒体存在所有神经元胞体及其树突和轴突内,也存在于神经胶质细胞胞体及其突起内.结论灵芝孢子和L-NNA均可提高大鼠脊髓半横断后受损伤的脊髓背核线粒体细胞色素氧化酶的活性,两者联合应用更能提高受损伤的背核线粒体细胞色素氧化酶的活性.  相似文献   

4.
研究了甘露醇和60BA处理对水稻服浮细胞再分化、过氧化物酶及IAA氧化酶的影响。结果表明,甘露醇处理能延迟水稻细胞衰老,提高细胞再分化能力,降低细胞过氧化物酶和IAA氧化酶活性,6-BA(2mg/L)虽然明显降低细胞过氧化物酶活性,但对IAA氧化酶及细胞衰老无明显影响,讨论了过氧化物酶及IAA氧化酶在水稻胚性细胞形成上的可能作用。  相似文献   

5.
结扎蒙古沙土鼠双侧颈总动脉制作急性脑缺血模型,观察了急性脑缺血和再灌流后钙调素依赖性蛋白激酶Ⅱ(CaM-PKⅡ)和蛋白磷酸酶(CaM-PrP)活性的变化以及脑电图(EEG)的表现。结果表明:(1)CaM-PKⅡ活性随缺血时间延长而逐渐降低,缺血10min酶活性即显著降低;(2)缺血10min再灌流,CaM~PKⅡ活性可部分恢复;(3)急性脑缺血时CaM-PrP活性无明显改变;(4)缺血10min再灌流,EEG在1h基本恢复正常,缺血20min再灌流,EEG在3h仍未恢复正常。上述结果提示:CaM-PKⅡ活性对缺血非常敏感,而CaM-PrP活性对缺血不敏感,脑缺血再灌流后EEG的表现与CaM-PKⅡ活性有一定的相关性。  相似文献   

6.
目的:研究人参二醇组皂甙(PDS)对大鼠脑缺血-再灌注海马超微结构、皮层和海马一氧化氮合酶(NOS)活性的影响。方法:双侧颈总动脉阻断和再灌注建立脑缺血-再灌流模型,电镜技术和NADPH-d组织化学技术。结果:电镜观察可见,缺血30min再灌注2h大鼠海马超微结构发生缺血性病理改变,PDS对缺血脑组织病理变化有显著保护作用。NADPH-d组织化学实验表明,脑缺血15min和再灌注24h后,皮层及海马NOS阳性细胞数目显著增多,PDS可显著抑制此增多。结论:PDS可通过降低脑内NOS的活性,减少脑缺血-再灌注过程中NO的产生,对缺血脑组织产生保护作用  相似文献   

7.
转BADH基因烟草的光系统Ⅱ和呼吸酶活性变化   总被引:3,自引:0,他引:3  
测定了导入甜菜碱醛脱氢酶(BADH) 基因烟草( Nicotianatabacum L.) 植株的叶绿素荧光诱导瞬变特性、呼吸酶和光呼吸酶的活性,并与亲本植株比较。结果表明,转基因植株的Fv/Fo 、Fv/Fm 和Fd/Fs 没有明显的变化;三羧酸循环中的苹果酸脱氢酶、异柠檬酸脱氢酶和琥珀酸脱氢酶活性略有增加;末端氧化的细胞色素氧化酶活性明显提高;光呼吸途径中的羟基丙酮酸还原酶、乙醇酸氧化酶和过氧化氢酶活性明显提高。对这些变化的可能意义进行了讨论。  相似文献   

8.
目的:研究人参二醇组皂甙(PDS)对大鼠脑缺血-再灌注海马超微结构、皮层和海马一氧化氮合酶(DNO)活性的影响。方法:双侧颈总动脉阻断和再灌注建立脑缺血-再灌流模型,电镜技术和NADPH-d组织化学技术。结果:电镜观察可见,缺血30min再灌注2h大鼠海马超微结构发生缺血性病理改变,PDS对缺血脑组织病变化有显著保护作用。NADPH-d组织化学实验表明,脑缺血15min和再灌注24h后,皮层海马N  相似文献   

9.
高氧预适应对大鼠心肌缺血损伤时抗氧化酶的影响   总被引:1,自引:0,他引:1  
抗氧化酶具有减轻心肌缺血再灌注损伤的作用,在抗氧化酶中,比较重要的是超氧化物歧化酶(SOD),谷胱甘肽过氧化物酶(GlutathionePeroxidase,GSHpx)和过氧化氢酶(CAT)。为了解高氧预适应(HyperoxicPreconditioning,HOP)对大鼠心肌缺血损伤时抗氧化酶的影响,本实验将实验组大鼠放入高压氧舱内,每日吸80-85%氧气(1atm,15-20%为氮气)6h,连续7d。利用Langendorf装置做成心肌缺血再灌注模型。实验动物随机分为二个部分。第一部分可逆性心肌缺血(HOPA组与对照A组):缺血10min,再灌注60min。观察冠脉回流液中SOD活力,检测心肌内抗氧化酶活力(SOD,GSHpx,CAT)。第二部分不可逆性心肌缺血(HOPB组与对照B组):缺血60min,再灌注60min。测定冠脉回流液中肌酸磷酸激酶(CPK)含量,SOD及心肌内抗氧化酶活力。结果表明:对于可逆性心肌缺血:SOD,GSHpx活力升高;对于不可逆性心肌缺血损伤:HOP能减少CPK释放,SOD活力升高。  相似文献   

10.
目的探讨Aβ诱导模拟人类Alzheimer's病(AD)大鼠模型中海马CA1区细胞色素氧化酶的表达和神经元线粒体超微结构的变化及其与老年性记忆力减退的关系,揭示Aβ对神经元的毒性机制.方法通过将Aβ25-35注射入海马建立阿尔茨海默病动物模型,使用Y形迷宫试验检测大鼠的学习记忆能力,运用酶组织化学方法测定大鼠海马CA1区细胞色素氧化酶活性,应用电镜观察大鼠海马CA1区神经细胞线粒体超微结构的变化.结果与对照组比较,接受Aβ注射的大鼠学习记忆能力降低(P<0.05),线粒体数量及形态发生了明显的变化,海马CA1区脑组织细胞的细胞色素氧化酶活性相对于对照组也有显著的下降(P<0.05).结论 Aβ在神经退行性变中的作用可能与细胞色素氧化酶表达下降及神经元线粒体超微结构的改变导致的细胞能量代谢障碍有关.  相似文献   

11.
NADPH oxidase plays a central role in mediating oxidative stress during heart, liver, and lung ischemia/reperfusion injury, but limited information is available about NADPH oxidase in renal ischemia/reperfusion injury. Our aim was to investigate the activation of NADPH oxidase in a swine model of renal ischemia/reperfusion damage. We induced renal ischemia/reperfusion in 10 pigs, treating 5 of them with human recombinant C1 inhibitor, and we collected kidney biopsies before ischemia and 15, 30, and 60 min after reperfusion. Ischemia/reperfusion induced a significant increase in NADPH oxidase 4 (NOX-4) expression at the tubular level, an upregulation of NOX-2 expression in infiltrating monocytes and myeloid dendritic cells, and 8-oxo-7,8-dihydro-2′-deoxyguanosine synthesis along with a marked upregulation of NADPH-dependent superoxide generation. This burden of oxidative stress was associated with an increase in tubular and interstitial expression of the myofibroblast marker α-smooth muscle actin (α-SMA). Interestingly, NOX-4 and NOX-2 expression and the overall NADPH oxidase activity as well as α-SMA expression and 8-oxo-7,8-dihydro-2′-deoxyguanosine synthesis were strongly reduced in C1-inhibitor-treated animals. In vitro, when we incubated tubular cells with the anaphylotoxin C3a, we observed an enhanced NADPH oxidase activity and α-SMA protein expression, which were both abolished by NOX-4 silencing. In conclusion, our findings suggest that NADPH oxidase is activated during ischemia/reperfusion in a complement-dependent manner and may play a potential role in the pathogenesis of progressive renal damage in this setting.  相似文献   

12.
Ischemia-reperfusion injury to cardiac myocytes involves membrane damage mediated by oxygen free radicals. Lipid peroxidation is considered a major mechanism of oxygen free radical toxicity in reperfused heart. Mitochondrial respiration is an important source of these reactive oxygen species and hence a potential contributor to reperfusion injury. We have examined the effects of ischemia (30 min) and ischemia followed by reperfusion (15 min) of rat hearts, on the kinetic parameters of cytochrome c oxidase, on the respiratory activities and on the phospholipid composition in isolated mitochondria. Mitochondrial content of malonyldialdheyde (MDA), an index of lipid peroxidation, was also measured. Reperfusion was accompanied by a significant increase in MDA production. Mitochondrial preparations from control, ischemic and reperfused rat heart had equivalent Km values for cytochrome c, although the maximal activity of the oxidase was 25 and 51% less in ischemic and reperfused mitochondria than that of controls. These changes in the cytochrome c oxidase activity were associated to parallel changes in state 3 mitochondrial respiration. The cytochrome aa3 content was practically the same in these three types of mitochondria. Alterations were found in the mitochondrial content of the major phospholipid classes, the most pronounced change occurring in the cardiolipin, the level that decreased by 28 and by 50% as function of ischemia and reperfusion, respectively. The lower cytochrome c oxidase activity in mitochondria from reperfused rat hearts could be almost completely restored to the level of control hearts by exogenously added cardiolipin, but not by other phospholipids nor by peroxidized cardiolipin. It is proposed that the reperfusion-induced decline in the mitochondrial cytochrome c oxidase activity can be ascribed, at least in part, to a loss of cardiolipin content, due to peroxidative attack of its unsaturated fatty acids by oxygen free radicals. These findings may provide an explanation for some of the factors that lead to myocardial reperfusion injury.  相似文献   

13.
The involvement of lipid peroxidation in renal ischemia/reperfusion was explored by measuring changes in the cortical content of specific primary lipid hydroperoxides (using chemluminescent detection with HPLC) following ischemia and reperfusion and by correlating the changes in hydroperoxide content with measurements of renal blood flow. Phosphatidylcholine and phosphatidylethanolamine hydroperoxide concentrations were significantly lowered during 30 or 60 min of ischemia (to levels less than 50% of control at 60 min). Following 30 min of renal ischemia, reperfusion resulted in a rebound of phospholipid hydroperoxide tissue content to levels higher than controls. Increased phospholipid hydroperoxide formation was not, however, observed in response to reperfusion following long-term (60 min) ischemia. In separate animals it was demonstrated that following 30 min ischemia and reperfusion, renal blood flow recovers to about 65% of control in 1 h. In contrast, following 60 min ischemia and reperfusion, the renal blood flow remains more highly impaired (less than 25% recovery for periods up to 24 h). These results imply that phospholipid hydroperoxides are produced and accumulate in the kidneys under normal aerobic conditions and that lipid peroxidative activity increases during renal ischemia/reperfusion to an extent dependent on the degree of local blood perfusion.  相似文献   

14.
Cytochrome oxidase activity from the retina can be enhanced or depressed by free radical-mediated reactions both in positive and negative aspect. The greatest effect was exerted by ischemia/reperfusion, which significantly increased the fluorescent products of lipid peroxidation (358 %, P < 0.01) and inhibited the enzyme activity (14%, P < 0.001). After hyperoxia the fluorescent products slightly increased (192%, P < 0.05) as well as the enzyme activity (133 %, P < 0.05). Hypoxia had no effect on any of these parameters. Specific changes in the composition of fluorophores after ischemia/reperfusion were revealed in the fluorescence spectra. The fact that increased lipid peroxidation after hyperoxia and after ischemia/reperfusion does not produce the same effect upon cytochrome oxidase activity might be explained by changes in the kinetic behavior of cytochrome oxidase. In the control enzyme preparation, two binding sites for cytochrome c were observed. One was of the low-affinity (Km = 60 microM) and the other of the high-affinity (Km = 1.12 microM). After in vitro-initiated lipid peroxidation, the low-affinity binding site was lost and the activity measured under "optimum" conditions at a single cytochrome concentration was higher than in the controls. This implies that oxidative damage to cytochrome oxidase in vivo can be site-specific and its extent should be estimated by performing detailed kinetic analysis as otherwise the results might be misleading.  相似文献   

15.
The activities of rat hepatic subcellular antioxidant enzymes were studied during hepatic ischemia/reperfusion. Ischemia was induced for 30 min (reversible ischemia) or 60 min (irreversible ischemia). Ischemia was followed by 2 or 24 h of reperfusion. Hepatocyte peroxisomal catalase enzyme activity decreased during 60 min of ischemia and declined further during reperfusion. Peroxisomes of normal density (d = 1.225 gram/ml) were observed in control tissues. However, 60 min of ischemia also produced a second peak of catalase specific activity in subcellular fractions corresponding to newly formed low density immature peroxisomes (d = 1.12 gram/ml). The second peak was also detectable after 30 min of ischemia followed by reperfusion for 2 or 24 h. Mitochondrial and microsomal fractions responded differently. MnSOD activity in mitochondria and microsomal fractions increased significantly (p < 0.05) after 30 min of ischemia, but decreased below control values following 60 min of ischemia and remained lower during reperfusion at 2 and 24 h in both organelle fractions. Conversely, mitochondrial and microsomal glutathione peroxidase (GPx) activity increased significantly (p < 0.001) after 60 min of ischemia and was sustained during 24 h of reperfusion. In the cytosolic fraction, a significant increase in CuZnSOD activity was noted following reperfusion in animals subjected to 30 min of ischemia, but 60 min of ischemia and 24 h of reperfusion resulted in decreased CuZnSOD activity. These studies suggest that the antioxidant enzymes of various subcellular compartments respond to ischemia/reperfusion in an organelle or compartment specific manner and that the regulation of antioxidant enzyme activity in peroxisomes may differ from that in mitochondria and microsomes. The compartmentalized changes in hepatic antioxidant enzyme activity may be crucial determinant of cell survival and function during ischemia/reperfusion. Finally, a progressive decline in the level of hepatic reduced glutathione (GSH) and concomitant increase in serum glutamate pyruvate transaminase (SGPT) activity also suggest that greater tissue damage and impairment of intracellular antioxidant activity occur with longer ischemia periods, and during reperfusion.  相似文献   

16.
The molecular consequences of acute myocardial ischemia induced in rabbit hearts by ligation of the left circumflex branch of the coronary artery were assessed in terms of the biochemical properties of subcellular organelles. Mitochondrial alteration, as reflected in progressive decrease in the activity of azide-sensitive ATPase, was apparent as early as 5 min postligation, but the activity of another mitochondrial enzyme, cytochrome c oxidase, was unchanged, even following 60 min of coronary ligation. Sarcolemmal Na+K+-ATPase exhibited a time course of inactivation similar to that of the mitochondrial ATPase, but differed from the latter in that the impairment was not reversed on reperfusion. Cellular levels of ATP, which decreased in parallel with the loss of ATPase activities, also remained depressed following reperfusion. Decreases in lysosomal enzyme latency were noted, but these occurred somewhat later than the sarcolemmal and mitochondrial alterations. Attempts to demonstrate the production of a population of labile lysosomal structures during ischemia were unsuccessful. Similarly, no alterations in the gel electrophoretic profiles of proteins or in the P phosphatidylcholine/P phosphatidylethanolamine ratio of isolated mitochondrial or sarcolemmal membranes from hearts subjected to ischemia and (or) subsequent reperfusion could be found. It is suggested that sarcolemmal Na+,K+-ATPase may serve as a sensitive and readily quantifiable index of irreversible cellular necrosis and, therefore, be of value in assessing the possible beneficial effects of pharmacological interventions.  相似文献   

17.
18.
Subsarcolemmal mitochondria sustain progressive damage during myocardial ischemia. Ischemia decreases the content of the mitochondrial phospholipid cardiolipin accompanied by a decrease in cytochrome c content and a diminished rate of oxidation through cytochrome oxidase. We propose that during ischemia mitochondria produce reactive oxygen species at sites in the electron transport chain proximal to cytochrome oxidase that contribute to the ischemic damage. Isolated, perfused rabbit hearts were treated with rotenone, an irreversible inhibitor of complex I in the proximal electron transport chain, immediately before ischemia. Rotenone pretreatment preserved the contents of cardiolipin and cytochrome c measured after 45 min of ischemia. The rate of oxidation through cytochrome oxidase also was improved in rotenone-treated hearts. Inhibition of the electron transport chain during ischemia lessens damage to mitochondria. Rotenone treatment of isolated subsarcolemmal mitochondria decreased the production of reactive oxygen species during the oxidation of complex I substrates. Thus, the limitation of electron flow during ischemia preserves cardiolipin content, cytochrome c content, and the rate of oxidation through cytochrome oxidase. The mitochondrial electron transport chain contributes to ischemic mitochondrial damage that in turn augments myocyte injury during subsequent reperfusion.  相似文献   

19.
Ischemia damages the mitochondrial electron transport chain (ETC), mediated in part by damage generated by the mitochondria themselves. Mitochondrial damage resulting from ischemia, in turn, leads to cardiac injury during reperfusion. The goal of the present study was to localize the segment of the ETC that produces the ischemic mitochondrial damage. We tested if blockade of the proximal ETC at complex I differed from blockade distal in the chain at cytochrome oxidase. Isolated rabbit hearts were perfused for 15 min followed by 30 min stop-flow ischemia at 37 °C. Amobarbital (2.5 mM) or azide (5 mM) was used to block proximal (complex I) or distal (cytochrome oxidase) sites in the ETC. Time control hearts were buffer-perfused for 45 min. Subsarcolemmal mitochondria (SSM) and interfibrillar mitochondria (IFM) were isolated. Ischemia decreased cytochrome c content in SSM but not in IFM compared to time control. Blockade of electron transport at complex I preserved the cytochrome c content in SSM. In contrast, blockade of electron transport at cytochrome oxidase with azide did not retain cytochrome c in SSM during ischemia. Since blockade of electron transport at complex III also prevented cytochrome c loss during ischemia, the specific site that elicits mitochondrial damage during ischemia is likely located in the segment between complex III and cytochrome oxidase.  相似文献   

20.
Wang Y  Ji HX  Xing SH  Pei DS  Guan QH 《Life sciences》2007,80(22):2067-2075
Accumulating evidence suggests that c-Jun N-terminal kinase (JNK) signaling pathway plays a critical role in renal ischemia/reperfusion injury. However, the downstream mechanism that accounts for the proapoptotic actions of JNK during renal ischemia/reperfusion has not been elucidated. We report that SP600125, a potent, cell-permeable, selective, and reversible inhibitor of c-Jun N-terminal kinase (JNK), potently decreased renal epithelial tubular cell apoptosis induced by renal ischemia/reperfusion via suppression of the extrinsic pathway. This corresponds to the decrease in JNK phosphorylation at 20 min and c-Jun phosphorylation (Ser63/73) at 3 h after renal ischemia. Additionally, SP600125 attenuated the increased expression of FasL induced by ischemia/reperfusion at 3 h. The administration of SP600125 prior to ischemia was also protective. Thus, our findings imply that SP600125 can inhibit the activation of the JNK-c-Jun-FasL pathway and protect renal tubular epithelial cells against ischemia/reperfusion-induced apoptosis. Taken together, these results indicate that targeting the JNK pathway provides a promising therapeutic approach for renal ischemia/reperfusion injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号