首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Fatty liver is frequent in the apolipoprotein B (apoB)-defective genetic form of familial hypobetalipoproteinemia (FHBL), but interindividual variability in liver fat is large. To explain this, we assessed the roles of metabolic factors in 32 affected family members with apoB-defective FHBL and 33 related and unrelated normolipidemic controls matched for age, sex, and indices of adiposity. Two hour, 75 g oral glucose tests, with measurements of plasma glucose and insulin levels, body mass index, and waist-hip ratios were obtained. Abdominal subcutaneous, intraperitoneal (IPAT), and retroperitoneal adipose tissue masses were quantified by MR imaging, and hepatic fat was quantified by MR spectroscopy. Mean +/- SD liver fat percentage values of FHBL and controls were 14.8 +/- 12.0 and 5.2 +/- 5.9, respectively (P = 0.001). Means for these measures of obesity and insulin action were similar in the two groups. Important determinants of liver fat percentage were FHBL-affected status, IPAT, and area under the curve (AUC) insulin in both groups, but the strongest predictors were IPAT in FHBL (partial R(2) = 0.55, P < 0.0002) and AUC insulin in controls (partial R(2) = 0.59, P = 0.0001). Regression of liver fat percentage on IPAT fat was significantly greater for FHBL than for controls (P < 0.001). In summary, because apoB-defective FHBL imparts heightened susceptibility to liver triglyceride accumulation, increasing IPAT and insulin resistance exert greater liver fat-increasing effects in FHBL.  相似文献   

2.
Familial hypobetalipoproteinemia: a review   总被引:3,自引:0,他引:3  
We review the genetics and pathophysiology of familial hypobetalipoproteinemia (FHBL), a mildly symptomatic genetically heterogeneous autosomal trait. The minority of human FHBL is caused by truncation-specifying mutations of the APOB gene on chromosome 2. In seven families, linkage to chromosome 2 is absent, linkage is instead to chromosome 3 (3p21). In others, linkage is absent to both APOB and to 3p21. Apolipoprotein B-100 (apoB-100) levels are approximately 25% of normal, instead of the 50% expected based on the presence of one normal allele due to reduced rates of production. The presence of the truncating mutation seems to have a "dominant recessive" effect on apoB-100 secretion. Concentrations of apoB truncations in plasma differ by truncation but average at approximately 10% of normal levels. Lipoproteins bearing truncated forms of apoB are cleared more rapidly than apoB-100 particles. In contrast with apoB-100 particles cleared primarily in liver via the LDL receptor, most apoB truncation particles are cleared in renal proximal tubular cells via megalin. Since apoB defects cause a dysfunctional VLDL-triglyceride transport system, livers accumulate fat. Hepatic synthesis of fatty acids is reduced in compensation. Informational lacunae remain about genes affecting fat accumulation in liver, and the modulation of liver fat in the presence apoB truncation defects.  相似文献   

3.
We report the clinical phenotype in three kindreds with familial heterozygous hypobetalipoproteinemia (FHBL) carrying novel truncated apolipoprotein Bs (apoBs) of different sizes (apoB-8.15, apoB-33.4 and apoB-75.7). In D.A. kindred, we found three carriers of a C-deletion in exon 10 leading to the synthesis of apoB-8.15 not detectable in plasma. They showed steatorrhea and fatty liver. In N.L. kindred, the proband is heterozygous for a nonsense mutation in exon 26, leading to the formation of apoB-33.4. He had premature cerebrovascular disease and fatty liver; two apoB-33.4 carriers in this kindred showed only fatty liver. In B.E. kindred, the proband is heterozygous for a T-deletion in exon 26, which converts tyrosine at codon 3435 into a stop codon, resulting in apoB-75.7. The proband, a heavy alcohol drinker, had steatohepatitis, whereas his teetotaller daughter, an apoB-75.7 carrier, had no detectable fatty liver. This study suggests that: i) fatty liver invariably develops in FHBL carriers of short and medium-size truncated apoBs (< apoB-48), but its occurrence needs additional environmental factors in carriers of longer apoB forms; ii) intestinal lipid malabsorption develops only in carriers of short truncated apoBs, which are not secreted into the plasma; and iii) cerebrovascular disease due to premature atherosclerosis may occur even in FHBL subjects.  相似文献   

4.
Five nontruncating missense APOB mutations, namely A31P, G275S, L324M, G912D, and G945S, were identified in heterozygous carriers of familial hypobetalipoproteinemia (FHBL) in the Italian population. To test that the FHBL phenotype was a result of impaired hepatic secretion of mutant apoB proteins, we performed transfection studies using McA-RH7777 cells stably expressing wild type or mutant forms of human apolipoprotein B-48 (apoB-48). All mutant proteins displayed varied impairment in secretion, with G912D the least affected and A31P barely secreted. Although some A31P was degraded by proteasomes, a significant proportion of it (although inappropriately glycosylated) escaped endoplasmic reticulum (ER) quality control and presented in the Golgi compartment. Degradation of the post-ER A31P was achieved by autophagy. Expression of A31P also decreased secretion of endogenous apoB and triglycerides, yet the impaired lipoprotein secretion did not lead to lipid accumulation in the cells or ER stress. Rather, expression of genes involved in lipogenesis was down-regulated, including liver X receptor α, sterol regulator element-binding protein 1c, fatty acid synthase, acetyl-CoA carboxylase 1, stearoyl-CoA desaturase 1, and lipin-1. These results suggest that feedback inhibition of hepatic lipogenesis in conjunction with post-ER degradation of misfolded apoB proteins can contribute to reduce fat accumulation in the FHBL liver.  相似文献   

5.
A fatty liver is associated with fasting hyperinsulinemia, which could reflect either impaired insulin clearance or hepatic insulin action. We determined the effect of liver fat on insulin clearance and hepatic insulin sensitivity in 80 nondiabetic subjects [age 43 +/- 1 yr, body mass index (BMI) 26.3 +/- 0.5 kg/m(2)]. Insulin clearance and hepatic insulin resistance were measured by the euglycemic hyperinsulinemic (insulin infusion rate 0.3 mU.kg(-1).min(-1) for 240 min) clamp technique combined with the infusion of [3-(3)H]glucose and liver fat by proton magnetic resonance spectroscopy. During hyperinsulinemia, both serum insulin concentrations and increments above basal remained approximately 40% higher (P < 0.0001) in the high (15.0 +/- 1.5%) compared with the low (1.8 +/- 0.2%) liver fat group, independent of age, sex, and BMI. Insulin clearance (ml.kg fat free mass(-1).min(-1)) was inversely related to liver fat content (r = -0.52, P < 0.0001), independent of age, sex, and BMI (r = -0.37, P = 0.001). The variation in insulin clearance due to that in liver fat (range 0-41%) explained on the average 27% of the variation in fasting serum (fS)-insulin concentrations. The contribution of impaired insulin clearance to fS-insulin concentrations increased as a function of liver fat. This implies that indirect indexes of insulin sensitivity, such as homeostatic model assessment, overestimate insulin resistance in subjects with high liver fat content. Liver fat content correlated significantly with fS-insulin concentrations adjusted for insulin clearance (r = 0.43, P < 0.0001) and with directly measured hepatic insulin sensitivity (r = -0.40, P = 0.0002). We conclude that increased liver fat is associated with both impaired insulin clearance and hepatic insulin resistance. Hepatic insulin sensitivity associates with liver fat content, independent of insulin clearance.  相似文献   

6.
Liver and skeletal muscle triglyceride stores are elevated in type 2 diabetes and correlate with insulin resistance. As postprandial handling of dietary fat may be a critical determinant of tissue triglyceride levels, we quantified postprandial fat storage in normal and type 2 diabetes subjects. Healthy volunteers (n = 8) and diet-controlled type 2 diabetes subjects (n = 12) were studied using a novel 13C magnetic resonance spectroscopy protocol to measure the postprandial increment in liver and skeletal muscle triglyceride following ingestion of 13C-labeled fatty acids given with a standard mixed meal. The postprandial increment in hepatic triglyceride was rapid in both groups (peak increment controls: +7.3 +/- 1.5 mmol/l at 6 h, P = 0.002; peak increment diabetics: +10.8 +/- 3.4 mmol/l at 4 h, P = 0.009). The mean postprandial incremental AUC of hepatic 13C enrichment between the first and second meals (0 and 4 h) was significantly higher in the diabetes group (6.1 +/- 1.4 vs. 1.7 +/- 0.6 mmol x l(-1) x h(-1), P = 0.019). Postprandial increment in skeletal muscle triglyceride in the control group was small compared with the diabetic group, the mean 24-h postprandial incremental AUC being 0.2 +/- 0.3 vs. 1.7 +/- 0.4 mmol x l(-1) x h(-1) (P = 0.009). We conclude that the postprandial uptake of fatty acids by liver and skeletal muscle is increased in type 2 diabetes and may underlie the elevated tissue triglyceride stores and consequent insulin resistance.  相似文献   

7.
Apolipoprotein B (apoB) truncation-specifying mutations cause familial hypobetalipoproteinemia (FHBL). Lipoprotein kinetics studies have shown that production rates of apoB-100 are reduced by 70-80% in heterozygous FHBL humans, instead of the expected 50%. To develop suitable mouse models to study the underlying mechanism, apoB-38.9-only (Apob(38.9/38.9)) mice were crossbred with Apobec-1 knockout (Apobec-1(-/-)) mice or apoB-100-only (Apob(100/100)) mice to produce two lines of apoB-38.9 heterozygous mice that produce only apoB-38.9 and apoB-100, namely Apobec-1(-/-)/Apob(38.9/+) and Apob(38.9/100) mice. In vivo rates of apoB-100 secretion were measured using [35S]Met/Cys to label proteins and Triton WR-1339 to block apoB-100 VLDL lipolysis/uptake. Rates of secretion were reduced by 80%, rather than the expected 50%, in both Apobec-1(-/-)/Apob(38.9/+) and Apob(38.9/100) mice compared with those of the respective Apobec-1(-/-)/Apob(+/+) and Apob(100/100) control mice. Continuous labeling and pulse-chase experiments in primary hepatocyte cultures revealed that rates of apoB-100 synthesis by Apobec-1(-/-)/Apob(38.9/+) and Apob(38.9/100) hepatocytes were reduced to the expected 50% of those of the respective controls, but the efficiency of secretion of apoB-100 was significantly lower in apoB-38.9 heterozygous hepatocytes. The greater-than-expected decreases in apoB-100 production rates of FHBL heterozygous humans appear to be attributable to a defect in secretion rather than in the synthesis of apoB-100 from the unaffected apoB allele.  相似文献   

8.
Postprandial lipemia after an oral fat challenge was studied in middle-aged men with visceral obesity. The two groups had similar plasma cholesterol levels, but obese subjects had higher levels of plasma triglyceride and reduced amounts of high-density cholesterol. Fasting plasma insulin was fourfold greater in obese subjects because of concomitant insulin resistance, with a calculated HOMA score of 3.1 +/- 0.6 vs. 0.8 +/- 0.2, respectively. Plasma apolipoprotein B(48) (apoB(48)) and retinyl palmitate (RP) after an oral fat challenge were used to monitor chylomicron metabolism. Compared with lean subjects, the fasting concentration of apoB(48) was more than twofold greater in obese individuals, suggestive of an accumulation of posthydrolyzed particles. After the oral lipid load, the incremental areas under the apoB(48) and RP curves (IAUC) were both significantly greater in obese subjects (apoB(48): 97 +/- 17 vs. 44 +/- 12 microg.ml(-1). h; RP: 3,120 +/- 511 vs. 1,308 +/- 177 U. ml(-1). h, respectively). A delay in the conversion of chylomicrons to remnants probably contributed to postprandial dyslipidemia in viscerally obese subjects. The triglyceride IAUC was 68% greater in obese subjects (4.7 +/- 0.6 vs. 2.8 +/- 0.8 mM. h, P < 0.06). Moreover, peak postprandial triglyceride was delayed by approximately 2 h in obese subjects. The reduction in triglyceride lipolysis in vivo did not appear to reflect changes in hydrolytic enzyme activities. Postheparin plasma lipase rates were found to be similar for lean and obese subjects. In this study, low-density lipoprotein (LDL) receptor expression on monunuclear cells was used as a surrogate marker of hepatic activity. We found that, in obese subjects, the binding of LDL was reduced by one-half compared with lean controls (70.9 +/- 15.07 vs. 38.9 +/- 4.6 ng LDL bound/microg cell protein, P = 0.02). Because the LDL receptor is involved in the removal of proatherogenic chylomicron remnants, we suggest that the hepatic clearance of these particles might be compromised in insulin-resistant obese subjects. Premature and accelerated atherogenesis in viscerally obese, insulin-resistant subjects may in part reflect delayed clearance of postprandial lipoprotein remnants.  相似文献   

9.
Twenty two subjects (9 males, 13 females) were fed a fat-rich meal (1 g of fat/kg body weight). Triglyceride-rich lipoproteins (TRL) were isolated by ultracentrifugation (d less than 1.006 g/ml) from blood drawn 0, 3, 6, 9, and 12 hr after the meal. Plasma triglyceride increased then decreased postprandially, while plasma apoA-I and apoB concentrations decreased. TRL triglyceride, TRL total protein, and TRL apoB concentrations all increased then decreased after the fat-rich meal. Postprandial rise in plasma triglyceride was significantly correlated with fasting plasma triglyceride levels (r = 0.66, P less than 0.001); postprandial rise in TRL triglyceride was significantly correlated with fasting TRL triglyceride levels (r = 0.58, P less than 0.01); postprandial rise in TRL apoB was not, however, significantly correlated with fasting TRL apoB levels (r = 0.37, N.S.). TRL apolipoproteins were separated by polyacrylamide gradient (4-22.5%) gel electrophoresis and protein bands were scanned in two dimensions with a laser densitometer. Relative postprandial changes in the concentration of the TRL apolipoproteins were determined. TRL apoB-100, apoB-48, apoE, and apoC increased then decreased postprandially. The increase in TRL apoB-100 after the fat-rich meal was confirmed in 8 subjects by direct measurement of apoB-100 with a monoclonal antibody ELISA assay. ApoA-I concentration in TRL was unchanged. Albumin in the TRL fraction was significantly increased 12 hr after the meal. Subjects with a greater magnitude of postprandial triglyceridemia had a greater increase in TRL triglyceride and TRL apoB, but their TRL apoB-100/apoB-48 ratios were not different from subjects with less pronounced triglyceridemia. Assuming that plasma TRL containing apoB-100 are predominantly derived from the liver, our data suggest that triglyceride-rich lipoproteins from both the liver and intestine make a significant contribution to postprandial triglyceridemia.  相似文献   

10.
Familial hypobetalipoproteinemia (FHBL) is associated with mutations in the APOB gene. We reported the first missense APOB mutation, R463W, in an FHBL kindred (Burnett, J. R., Shan, J., Miskie, B. A., Whitfield, A. J., Yuan, J., Tran, K., Mc-Knight, C. J., Hegele, R. A., and Yao, Z. (2003) J. Biol. Chem. 278, 13442-13452). Here we identified a second nonsynonymous APOB mutation, L343V, in another FHBL kindred. Heterozygotes for L343V (n = 10) had a mean plasma apoB at 0.31 g/liter as compared with 0.80 g/liter in unaffected family members (n = 22). The L343V mutation impaired secretion of apoB-100 and very low density lipoproteins. The secretion efficiency was 20% for B100wt and 10% for B100LV and B100RW. Decreased secretion of mutant apoB-100 was associated with increased endoplasmic reticulum retention and increased binding to microsomal triglyceride transfer protein and BiP. Reduced secretion efficiency was also observed with B48LV and B17LV. Biochemical and biophysical analyses of apoB domain constructs showed that L343V and R463W altered folding of the alpha-helical domain within the N terminus of apoB. Thus, proper folding of the alpha-helical domain of apoB-100 is essential for efficient secretion.  相似文献   

11.
We examined the effect of genetic polymorphisms of proteins regulating intrahepatic processing of apolipoprotein B-100 (apoB) and the supply of neutral lipids to the liver on the hepatic secretion of very low density lipoprotein (VLDL) apoB in obesity. Hepatic secretion of very low density apolipoprotein B-100 (VLDL apoB) was measured using an infusion of [1-(13)C]leucine in 29 obese men. Isotopic enrichment and turnover of VLDL apoB was determined using gas chromatography-mass spectrometry and multi-compartmental modelling, respectively. Visceral fat was measured by magnetic resonance imaging. Genotypes for the apoB signal peptide (SP27/SP24 alleles), microsomal triglyceride transfer protein promoter (MTP, -493 G/T alleles), apoE (E2, E3, E4 alleles), hepatic lipase promoter (-514 C/T alleles), and cholesteryl ester transfer protein (CETP, Taq1B B1/B2 alleles) were determined using polymerase chain reaction. Statistically significant associations were found between hepatic secretion of apoB and allelic combinations of i) apoB SP with apoE (P = 0.02), hepatic lipase (P = 0.02), and CETP (P = 0. 006) genes, ii) MTP promoter with CETP genes (P = 0.03); the association with apoBSP/MTP promoter allelic combinations just failed to reach significance (P = 0.06), however. The CETP/apoBSP allelic combination was the most significant predictor of apoB secretion, and this was independent of visceral fat, plasma lathosterol and insulin levels, and dietary fat. SP24 carriers who were homozygous for CETP B1 had 60% lower apoB secretion than B2 heterozygotes who were non-carriers of SP24 (10.5 +/- 1.74 mg/kg fat free mass/day, n = 7 vs. 26.1 +/- 3.16, n = 22). The data suggest that variation in both the apoB and CETP genes may be a major genetic determinant of the hepatic secretion of apoB in men with visceral obesity.  相似文献   

12.
Fatty liver is prevalent in apolipoprotein B (apoB)-defective familial hypobetalipoproteinemia (FHBL). Similar to humans, mouse models of FHBL produced by gene targeting (apob(+/38.9)) manifest low plasma cholesterol and increased hepatic triglycerides (TG) even on a chow diet due to impaired hepatic VLDL-TG secretive capacity. Because apoB truncations shorter than apoB48 are expressed in the intestine, we examined whether FHBL mice may have limited capacity for intestinal dietary TG absorption. In addition, we investigated whether FHBL mice are more susceptible to diet-induced hepatic TG accumulation. Fat absorption capacity was impaired in apoB38.9 mice in a gene dose-dependent manner. Relative fractional fat absorption coefficients for apob(+/+), apob(+/38.9), and apob(38.9/38.9) were 1.00, 0.96, and 0.71, respectively. To raise hepatic TG, we fed high-fat (HF) and low-fat (LF) pellets. Hepatic TG level was observed in rank order: HF > LF > chow. On both LF and HF, liver TG level was higher in the apob(+/38.9) than in apob(+/+). Hepatic TG secretion remained impaired in the apob(+/38.9) on the HF diet. Thus the FHBL mice are more susceptible to diet-induced fatty liver despite relatively reduced intestinal TG absorption capacity on a HF diet.  相似文献   

13.
Low LDL cholesterol and apoB levels in plasma cosegregate with mutations of apoB in some kindreds with familial hypobetalipoproteinemia. Approximately 35 apoB mutations, many specifying apoB truncations, have been described. Based on the centile nomenclature where the full-length nature apoB consisting of 4536 amino acids is designated as apoB-100, only those truncations of apoB >25% of normal length are detectable in plasma. Previously, we reported on five unrelated kindreds with familial hypobetalipoproteinemia in whom although no apoB truncations were detectable in plasma, low apoB levels were nevertheless linked to the apoB gene. In one of those kindreds, we reported a donor splice site mutation in intron 5 (specifying apoB- 4). We now describe a nonsense mutation in exon 10 (apoB-9) in two of the other unrelated families. Both the apoB-4 and apoB-9 mutations have been reported by others in unrelated families. Recurrent mutations of apoB-40 and apoB-55 also have been reported, suggesting that recurrent mutations of apoB may account for an appreciable proportion of familial hypobetalipoproteinemia kindreds. To test this hypothesis, we searched for four apoB mutations whose products are not detected in plasma including the apoB-4, apoB-9, and two other previously reported mutations in exons 21 and 25. We studied three groups with plasma cholesterols <130 mg/dl in whom no apoB truncations were detected in plasma: a) 28 FHBL probands from St. Louis, b) 151 individual St. Louisians, and c) 28 individual Sicilians. One subject from the 28 kindreds and two subjects among 151 hypobeta individuals from St. Louis harbored the exon 10 mutation. None of the other mutations were detected. Thus, among hypobeta lipoproteinemic subjects without any detectable apoB truncations in plasma, <5% had an apoB truncation-producing mutation. As only about 0.5% of hypobeta lipoproteinemic subjects have plasma-detectable apoB truncations, our data suggest that the known apoB truncations account for only a small proportion of hypocholesterolemia.  相似文献   

14.
The adipokine resistin has been implicated in obesity and insulin resistance. Liver cirrhosis is associated with decreased body fat mass and insulin resistance. We determined plasma resistin levels in 57 patients with cirrhosis, 13 after liver transplantation, and 30 controls and correlated these with hemodynamic as well as hepatic and systemic metabolic parameters. Patients with cirrhosis had, dependent on the clinical stage, an overall 86% increase in resistin levels (P < 0.001) with hepatic venous resistin being higher than arterial levels (P < 0.001). Circulating resistin was significantly correlated with plasma TNF-alpha levels (r = 0.62, P < 0.001). No correlation was observed between resistin and hepatic hemodynamics, body fat mass, systemic energy metabolism, and the degree of insulin resistance. However, plasma resistin in cirrhosis was negatively associated with hepatic glucose production (r = -0.47, P < 0.01) and positively with circulating free fatty acids (FFA; r = 0.40, P < 0.01) and ketone bodies (r = 0.48, P < 0.001) as well as hepatic ketone body production (r = 0.40, P < 0.01). After liver transplantation, plasma resistin levels remained unchanged, whereas insulin resistance was significantly improved (P < 0.01). These data provide novel insights into the role of resistin in the pathophysiological background of a catabolic disease in humans and also indicate that resistin inhibition may not represent a suitable therapeutic strategy for the treatment of insulin resistance and diabetes in patients with liver cirrhosis.  相似文献   

15.
16.
The human immunodeficiency virus (HIV)-lipodystrophy syndrome is associated with fat redistribution and metabolic abnormalities, including insulin resistance. Increased intramyocellular lipid (IMCL) concentrations are thought to contribute to insulin resistance, being linked to metabolic and body composition variables. We examined 46 women: HIV infected with fat redistribution (n = 25), and age- and body mass index-matched HIV-negative controls (n = 21). IMCL was measured by 1H-magnetic resonance spectroscopy, and body composition was assessed with computed tomography, dual-energy X-ray absorptiometry (DEXA), and magnetic resonance imaging. Plasma lipid profile and markers of glucose homeostasis were obtained. IMCL was significantly increased in tibialis anterior [135.0 +/- 11.5 vs. 85.1 +/- 13.2 institutional units (IU); P = 0.007] and soleus [643.7 +/- 61.0 vs. 443.6 +/- 47.2 IU, P = 0.017] of HIV-infected subjects compared with controls. Among HIV-infected subjects, calf subcutaneous fat area (17.8 +/- 2.3 vs. 35.0 +/- 2.5 cm2, P < 0.0001) and extremity fat by DEXA (11.8 +/- 1.1 vs. 15.6 +/- 1.2 kg, P = 0.024) were reduced, whereas visceral abdominal fat (125.2 +/- 11.3 vs. 74.4 +/- 12.3 cm2, P = 0.004), triglycerides (131.1 +/- 11.0 vs. 66.3 +/- 12.3 mg/dl, P = 0.0003), and fasting insulin (10.8 +/- 0.9 vs. 7.0 +/- 0.9 microIU/ml, P = 0.004) were increased compared with control subjects. Triglycerides (r = 0.39, P = 0.05) and extremity fat as percentage of whole body fat by DEXA (r = -0.51, P = 0.01) correlated significantly with IMCL in the HIV but not the control group. Extremity fat (beta = -633.53, P = 0.03) remained significantly associated with IMCL among HIV-infected patients, controlling for visceral abdominal fat, abdominal subcutaneous fat, and antiretroviral medications in a regression model. These data demonstrate increased IMCL in HIV-infected women with a mixed lipodystrophy pattern, being most significantly associated with reduced extremity fat. Further studies are necessary to determine the relationship between extremity fat loss and increased IMCL in HIV-infected women.  相似文献   

17.
Factors influencing sex-hormone binding globulin (SHBG) concentrations in obesity are poorly understood. Preliminary observations suggest that dietary lipids may be involved and there are data confirming a direct inhibiting effect of insulin. Since only some obese subjects show lowered SHBG levels, we performed this study with the aim of defining obese women with low SHBG (LSO) (2 SD above normal values) in comparison with those presenting normal globulin concentrations (NSO). These groups were selected from a larger group of obese women with a history of normal menses and aged less than 40 years. An age-matched group of normal weight healthy women served as controls. Both LSO and NSO had similar body mass index and percentage body fat, but the waist to hip girth ratio (WHR), an index of body fat distribution, was significantly higher in LSO (0.88 +/- 0.04) than in NSO (0.81 +/- 0.09; P less than 0.05). Gonadotropin and androgen concentrations were similar in both groups, whereas estrone (E1) levels were higher in LSO (32.8 +/- 15.8 pg/ml) than in NSO (19.4 +/- 6.2 pg/ml; P less than 0.05; controls: 23.5 +/- 7.8 pg/ml; P less than 0.05). Moreover, compared to NSO, LSO women had significantly higher glucose-stimulated insulin and C-peptide levels. Partial regression analysis revealed significant correlation coefficients between SHBG, stimulated insulin values (r = -0.38; P less than 0.05) and WHR (r = 0.40; P less than 0.005). Therefore, compared to NSO, LSO women have distinctive clinical and endocrine characteristics, namely more pronounced hyperinsulinemia, higher E1 concentrations and a central type body fat distribution.  相似文献   

18.
We have identified a mutation of apolipoprotein B (apoB) in a kindred with hypobetalipoproteinemia. Four affected members had plasma concentrations of total cholesterol of 115 +/- 14, low density lipoprotein (LDL)-C of 48 +/- 11, and apoB of 28 +/- 9 (mg/dl mean +/- SD). The values correspond to approximately 30% the values for unaffected relatives. Triglyceride and high density lipoprotein (HDL)-C concentrations were 92 +/- 50 and 49 +/- 4, respectively, neither significantly different from unaffected relatives. Western blots of plasma apoB of affected subjects showed two major bands: apoB-100 and an apoB-75 (mol wt of approximately 418,000). DNA sequencing of the appropriate polymerase chain reaction (PCR)-amplified genomic DNA segment revealed a deletion of the cytidine at nucleotide position 10366, resulting in a premature stop codon at amino acid residue 3387. In apoB-75/apoB-100 heterozygotes, two LDL populations containing either apoB-75 or apoB-100 could be distinguished from each other by gel permeation chromatography and by immunoblotting of nondenaturing gels using monoclonal antibodies B1B3 (epitope between apoB amino acid residues 3506-3635) and C1.4 (epitope between residues 97-526). ApoB-75 LDL were smaller and more dense than apoB-100 LDL. To determine whether the low concentration of apoB-75 was due to its enhanced LDL-receptor-mediated removal, apoB-75 LDL were isolated from the proband's d 1.063-1.090 g/ml fraction (which contained most of the apoB-75 in his plasma) by chromatography on anti-apoB and anti-apoA-I immunoaffinity columns. The resulting pure apoB-75 LDL fraction interacted with the cells 1.5-fold more effectively than apoB-100 LDL (d 1.019-1.063 g/ml). To determine the physiologic mechanism responsible for the hypobetalipoproteinemia, in vivo kinetic studies were performed in two affected subjects, using endogenous labeling of apoB-75 and apoB-100 with [13C]leucine followed by multicompartmental kinetic analyses. Fractional catabolic rates of apoB-75 VLDL and LDL were 2- and 1.3-fold those of apoB-100 very low density lipoprotein (VLDL) and LDL, respectively. Production rates of apoB-75 were approximately 30% of those for apoB-100. This differs from the behavior of apoB-89, a previously described variant, whose FCRs were also increased approximately 1.5-fold relative to apoB-100, but whose production rates were nearly identical to those of apoB-100. Thus, in contrast to the apoB-89 mutation, the apoB-75 mutation imparts two physiologic defects to apoB-75 lipoproteins that account for the hypobetalipoproteinemia, diminished production and increased catabolism.  相似文献   

19.
Glucocorticoids hypersensitivity may be involved in the development of abdominal obesity and insulin resistance. Eight normal weight and eight obese women received on two occasions a 3-h intravenous infusion of saline or hydrocortisone (HC) (1.5 microg x kg(-1) x min(-1)). Plasma cortisol, insulin, and glucose levels were measured every 30 min from time(-30) (min) (time(-30)) to time(240). Free fatty acids, adiponectin, and plasminogen activator inhibitor-1 (PAI-1) levels were measured at time(-30), time(180), and time(240). At time(240), subjects underwent an insulin tolerance test to obtain an index of insulin sensitivity (K(ITT)). Mean(30-240) cortisol level was similar in control and obese women after saline (74 +/- 16 vs. 75 +/- 20 microg/l) and HC (235 +/- 17 vs. 245 +/- 47 microg/l). The effect of HC on mean(180-240) insulin, mean(180-240) insulin resistance obtained by homeostasis model assessment (HOMA-IR), and K(ITT) was significant in obese (11.4 +/- 2.0 vs. 8.2 +/- 1.3 mU/l, P < 0.05; 2.37 +/- 0.5 vs. 1.64 +/- 0.3, P < 0.05; 2.81 +/- 0.9 vs. 3.32 +/- 1.02%/min, P < 0.05) but not in control women (3.9 +/- 0.6 vs. 2.8 +/- 0.5 mU/l; 0.78 +/- 0.1 vs. 0.49 +/- 0.1; 4.36 +/- 1.1 vs. 4.37 +/- 1.2%/min). In the whole population, the quantity of visceral fat, estimated by computerized tomography scan, was correlated with the increment of plasma insulin and HOMA-IR during HC infusion [Delta mean(30-240) insulin (r = 0.61, P < 0.05), Delta mean(30-240) HOMA-IR (r = 0.66, P < 0.01)]. The increase of PAI-1 between time(180) and time(240) after HC was higher in obese women (+25%) than in controls (+12%) (P < 0.05), whereas no differential effect between groups was observed for free fatty acids or adiponectin. A moderate hypercortisolism, equivalent to that induced by a mild stress, has more pronounced consequences on insulin sensitivity in abdominally obese women than in controls. These deleterious effects are correlated with the amount of visceral fat.  相似文献   

20.
Nonalcoholic fatty liver (NAFL) is a common comorbidity in patients with type 2 diabetes and links to the risk of coronary syndromes. The aim was to determine the manifestations of metabolic syndrome in different organs in patients with liver steatosis. We studied 55 type 2 diabetic patients with coronary artery disease using positron emission tomography. Myocardial perfusion was measured with [15O]H2O and myocardial and skeletal muscle glucose uptake with 2-deoxy-2-[18F]fluoro-D-glucose during hyperinsulinemic euglycemia. Liver fat content was determined by magnetic resonance proton spectroscopy. Patients were divided on the basis of their median (8%) into two groups with low (4.6 +/- 2.0%) and high (17.4 +/- 8.0%) liver fat content. The groups were well matched for age, BMI, and fasting plasma glucose. In addition to insulin resistance at the whole body level (P = 0.012) and muscle (P = 0.002), the high liver fat group had lower insulin-stimulated myocardial glucose uptake (P = 0.040) and glucose extraction rate (P = 0.0006) compared with the low liver fat group. In multiple regression analysis, liver fat content was the most significant explanatory variable for myocardial insulin resistance. In addition, the high liver fat group had increased concentrations of high sensitivity C-reactive protein, soluble forms of E-selectin, vascular adhesion protein-1, and intercellular adhesion molecule-1 (P < 0.05) and lower coronary flow reserve (P = 0.02) compared with the low liver fat group. In conclusion, in patients with type 2 diabetes and coronary artery disease, liver fat content is a novel independent indicator of myocardial insulin resistance and reduced coronary functional capacity. Further studies will reveal the effect of hepatic fat reduction on myocardial metabolism and coronary function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号