首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
白鱀豚MHC基因类DQB1座位第二外元的序列变异分析   总被引:2,自引:0,他引:2  
测定了 4 5个克隆的白豚 (Lipotesvexillifer)MHCⅡ类基因DQB座位第二外元 172bp的核苷酸序列 ,共获得 15种序列 ,发现了 2 2个变异位点。核苷酸的非同义替换明显多于同义替换 ,并造成了 15个氨基酸的改变。氨基酸的替换趋于集中在假定的与抗原的选择性识别相关的位点附近。白豚DQB基因的核苷酸和氨基酸序列与文献报道的白鲸 (Delphinapterusleucas)和一角鲸 (Monodonmonoceros)DQB1序列具有较高的同源性。氨基酸序列不具备人及其它一些灵长类动物DQB2基因所共有的基序 (Motif) ,而与牛DQB1基因的基序相近 ,说明本研究得到的白豚MHC序列应属于类DQB1基因。同一个体出现了多种序列的情况 ,提示白豚的DQB基因可能存在着座位重复。白豚的类DQB1座位的序列中存在多种基序的不同组合 ,推测是由于基因转换造成的.  相似文献   

2.
利用一对兼并性引物扩增了乌龟MHCⅡ类分子B基因第二外显子的部分片段,并对PCR产物进行了克隆和测序,结果得到8种长度为166 bp的不同序列。经分析,序列中有84个变异位点,核苷酸的非同义替换(dN)多于同义替换(dS),造成39个位点氨基酸的改变。氨基酸的替换趋于集中在假定的抗原结合位点附近。利用MEGA、PAUP软件分别构建NJ树和MP树,两种树极为相似,均分为两支。同一个体中出现有多种序列,提示乌龟MHCⅡ类分子B基因可能存在着座位重复。研究表明:乌龟MHCⅡ类分子B基因第二外显子有较高的多态性,有利于乌龟野生种群的遗传保护。  相似文献   

3.
利用一对简并引物扩增了尼罗鳄MHCⅡ类分子B基因第二外元的部分片段,并对PCR产物进行了克隆和测序,结果得到8种不同的序列,序列长度为166 bp;经分析,序列中有56个变异位点,核苷酸的非同义替换多于同义替换,造成30个位点氨基酸的改变,氨基酸的替换趋于集中在假定的抗原结合位点附近.核苷酸和氨基酸序列与已报道的扬子鳄和密河鳄的MHCⅡ类B基因第二外元序列有较高的同源性,利用PAUP4.0软件构建的NJ树显示,鳄类的MHCⅡ类B基因存在跨种多态性现象.  相似文献   

4.
扬子鳄MHCⅡ类B基因第二外元的克隆及序列分析   总被引:4,自引:0,他引:4  
3头扬子鳄血样取自宣城安徽省扬子鳄繁殖研究中心。利用一对简并引物对MHCⅡ类B基因第二外元的部分片段进行扩增;通过克隆、单链构象多态性分析、测序,并将测得序列与下载的8个物种MHC序列比对,确定序列差异和变异位点;利用MEGA软件构建NJ树,PAUP4.0构建MP树。结果得到10种不同的序列,片段长166bp。核苷酸序列中有38个变异位点,氨基酸序列中有23个变异位点;推定的抗原结合位点非同义替换(dN)明显高于同义替换(dS)。10种序列的NJ树和MP树极为相似,均为A、B两个分支,两个分支明显的特异性位点核苷酸序列中有9个。氨基酸序列中有7个。表明扬子鳄MHCⅡ类B基因第二外元有较高的多态性,有利于扬子鳄饲养种群的遗传保护。  相似文献   

5.
张婷  祝茜 《兽类学报》2011,31(3):219-225
本文从25 份斑海豹样本中获得141 bp 片段,发现21 个变异位点,定义了12 个MHC-DQB 等位基因,氨基酸变异率为25.5% 。等位基因之间的遗传距离范围是0. 0071 ~ 0.1064,平均值为0.0577,不同等位基因之间的碱基差异是1 ~ 15 bp,平均差异数为8 bp。与其他鳍足类动物对比后发现,斑海豹MHC-DQB 表现出较丰富的多态性。非同义替换率明显高于同义替换率,由此造成的氨基酸替换集中在肽结合位点PBR 附近,表明DQB 基因受到强烈的平衡选择作用。11 个样本出现多于两条等位基因的情况,推测存在基因重复现象。  相似文献   

6.
主要组织相容性复合体(Major histocompatibility complex,MHC) 基因是由一组紧密连锁的基因组成,是哺乳动物免疫系统中最重要的组成部分。本文选择3 个MHC 基因座位的第二外元,即:MHC-I 类基因和II 类基因的DRA 和DQB 座位,初步调查濒危物种中华白海豚的遗传变异。共鉴定了2 个DRA、2 个DQB 和7 MHC-I等位基因。DRA 座位遗传变异非常低,而DQB 和MHC-I 座位具有相对较高水平的遗传变异。并且,在DQB 和MHC-I 基因座位的假定的抗原结合位点(Antigen binding sites,ABS),非同义替代明显大于同义替代,提示平衡选择(Balancing selection)维持这两个座位的多态性,而在DRA 座位上,并没有检测到平衡选择。系统发生分析表明中华白海豚的MHC 等位基因没有聚在一起,而是和其他的物种聚在一起,符合MHC 跨种进化(Transspecies evolution)的模式。  相似文献   

7.
主要组织相容性复合体(Major histocompatibility complex,MHC)在脊椎动物的免疫系统中起着重要的作用,常作为适应性遗传标记应用于保护遗传学研究.长江江豚(Neophocaena phocaenoides asiaeorientalis)是惟一生活于淡水环境中的江豚种群,且已处于濒危状况.为了开发适用于长江江豚保护遗传学研究的MHC遗传标记,首次采用北象海豹(Mirounga angustirostris)的一对DRB基因引物对长江江豚的基因组进行扩增,从5个个体中成功扩增并测序得到5条MHC DRB基因第二外显子188 bp的核苷酸序列.BLAST结果表明这5条DRB特异序列与Gen-Bank中白鲸(Delphinapterus leucas)的DRB2序列具有较高的同源性,从而证实得到了预期扩增位点.进一步分析发现:这5条序列在4个核苷酸位点上产生替代,翻译后氨基酸序列在3个位点上发生替代;均具有完整的开放阅读框;且核苷酸的非同义替代率远远高于同义替代率;此外,从同一个体分离到两种以上不同DRB核苷酸序列,暗示着长江江豚在DRB座位上可能存在基因重复现象.初步分析结果表明长江江豚的DRB基因具有核苷酸多态性和氨基酸多态性及潜在功能性,并经受着强烈的自然选择.因此,该DRB座位可以作为适应性遗传标记进一步用于长江江豚遗传多样性以及种群适应能力评估等保护遗传学研究.  相似文献   

8.
三种猫科动物MHC Class Ⅱ DRB等位基因序列变异性分析   总被引:2,自引:0,他引:2  
王倩  吴孝兵  晏鹏 《动物学研究》2006,27(2):181-188
分析了云豹(Neofelisnebulosa)、豹(Pantherapardus)和东北虎(Pantheratigrisaltaica)等3种猫科动物的主要组织相容性复合物ClassⅡDRB座位的等位基因序列变异性。使用一对简并性引物扩增了DRB座位第二外元目标片段。用单链构像多态性分析方法确定不同的单倍型。每个个体挑出15个单克隆用来分离、纯化和测序。实验中从4个个体中获得了8种不同序列。237bp核苷酸序列中发现有59个变异位点。根据人类的抗原肽结合区推测79个氨基酸位点中存在21个假定的抗原肽结合位点,而且非同义替换率明显高于同义替换率,这可能说明了第二外元的较高变异性是由平衡选择作用来维持的。重建的NJ树和MP树显示豹和东北虎的亲缘关系较近,而两者与云豹的亲缘关系较远。  相似文献   

9.
对Genbank中猪的白细胞抗原(SLA)Ⅱ类抗原基因DQB及DRB序列进行了SNP及氨基酸序列多态性分析,并对SLA—DQB及DRB分子进行了蛋白质序列模式分析(Prostie motif search)。结果表明:β1功能区存在较大的变异,特别是位于抗原肽结合槽的氨基酸位点中,其变异程度更大。SLA—DQB及DRB蛋白质序列中,主要存在8种类型的蛋白质序列模式位点,其中3种类型的磷酸化位点存在蛋白模序的改变,都位于β1功能区(前94个氨基酸),且多数位点突变频率较高。  相似文献   

10.
为研究鸡MHC B-LBⅡ基因的遗传多态性,首先在8个中国地方鸡种(藏鸡、仙居鸡、北京油鸡、固始鸡、斗鸡、丝羽乌骨鸡、白耳鸡和狼山鸡)B-LBⅡ基因第二外显子扩增了一长度为 175 bp 的 DNA 片段并进行 SSCP 基因型分析;在8 个地方鸡种共 467 个个体中检测到 37 个 PCR-SSCP 基因型;从被检样品中筛选出不同基因型的个体,并在其 B-LBⅡ基因组中扩增了一个包括其第二外显子和第二内含子在内长度为374 bp的片段,通过克隆和测序获得了该片段的核苷酸序列。经序列分析,在前述地方鸡种被筛选出的 30 个无血缘关系的个体中发现了 31 个 B-LBⅡ新等位基因,并参照哺乳动物 MHC II 类 B 等位基因命名规则进行了命名。对这 31 个 B-LBⅡ新等位基因长度为 374 bp 的 DNA 片段进行比对表明,在其第二外显子序列上共有 68 个多态性变异位点,其中简约性信息位点 51 个,单变异位点 17 个,具有丰富的遗传多态性。在这些多态性变异位点中,出现在遗传密码子第一和第二位上的碱基替换率分别为 36.76% 和 35.29%。等位基因序列间的相似性估测为 90.6%-99.5%;B-LBⅡ基因第二外显子的错义替换率和同义替换率分别为 14.64±2.67%和 2.92±0.94%。结果表明,B-LBⅡ基因的丰富遗传多态性主要是由基因重组和平衡选择效应所引起的。对 B-LBⅡ等位基因第二外显子所编码的 B-LBⅡ分子β1 结构域氨基酸序列比对发现,31 个 B-LBⅡ新等位基因属于 26 个等位基因主型;在β1结构域氨基酸序列的 33个变异位点上,存在 6 个同义替换和 27 个错义替换。分析认为,那些发生在多肽结合位点上的氨基酸错义替换与鸡 MHC B-LBⅡ分子的免疫特异性有关。该结果可为鸡的抗病育种研究提供分子生物学依据。  相似文献   

11.
12.
13.
On the origin of the Hirudinea and the demise of the Oligochaeta   总被引:10,自引:0,他引:10  
The phylogenetic relationships of the Clitellata were investigated with a data set of published and new complete 18S rRNA gene sequences of 51 species representing 41 families. Sequences were aligned on the basis of a secondary structure model and analysed with maximum parsimony and maximum likelihood. In contrast to the latter method, parsimony did not recover the monophyly of Clitellata. However, a close scrutiny of the data suggested a spurious attraction between some polychaetes and clitellates. As a rule, molecular trees are closely aligned with morphology-based phylogenies. Acanthobdellida and Euhirudinea were reconciled in their traditional Hirudinea clade and were included in the Oligochaeta with the Branchiobdellida via the Lumbriculidae as a possible link between the two assemblages. While the 18S gene yielded a meaningful historical signal for determining relationships within clitellates, the exact position of Hirudinea and Branchiobdellida within oligochaetes remained unresolved. The lack of phylogenetic signal is interpreted as evidence for a rapid radiation of these taxa. The placement of Clitellata within the Polychaeta remained unresolved. The biological reality of polytomies within annelids is suggested and supports the hypothesis of an extremely ancient radiation of polychaetes and emergence of clitellates.  相似文献   

14.
15.
16.
17.
18.
Data on the ontogeny of the posterior haptor of monogeneans were obtained from more than 150 publications and summarised. These data were plotted into diagrams showing evolutionary capacity levels based on the theory of a progressive evolution of marginal hooks, anchors and other attachment components of the posterior haptor in the Monogenea (Malmberg, 1986). 5 + 5 unhinged marginal hooks are assumed to be the most primitive monogenean haptoral condition. Thus the diagrams were founded on a 5 + 5 unhinged marginal hook evolutionary capacity level, and the evolutionary capacity levels of anchors and other haptoral attachement components were arranged according to haptoral ontogenetical sequences. In the final plotting diagram data on hosts, type of spermatozoa, oncomiracidial ciliation, sensilla pattern and protonephridial systems were also included. In this way a number of correlations were revealed. Thus, for example, the number of 5 + 5 marginal hooks correlates with the most primitive monogenean type of spermatozoon and with few sensillae, many ciliated cells and a simple protonephridial system in the oncomiracidium. On the basis of the reviewed data it is concluded that the ancient monogeneans with 5 + 5 unhinged marginal hooks were divided into two main lines, one retaining unhinged marginal hooks and the other evolving hinged marginal hooks. Both main lines have recent representatives at different marginal hook evolutionary capacity levels, i.e. monogeneans retaining a haptor with only marginal hooks. For the main line with hinged marginal hooks the name Articulon-choinea n. subclass is proposed. Members with 8 + 8 hinged marginal hooks only are here called Proanchorea n. superord. Monogeneans with unhinged marginal hooks only are here called Ananchorea n. superord. and three new families are erected for its recent members: Anonchohapteridae n. fam., Acolpentronidae n. fam. and Anacanthoridae n. fam. (with 7 + 7, 8 + 8 and 9 + 9 unhinged marginal hooks, respectively). Except for the families of Articulonchoinea (e.g. Acanthocotylidae, Gyrodactylidae, Tetraonchoididae) Bychowsky's (1957) division of the Monogenea into the Oligonchoinea and Polyonchoinea fits the proposed scheme, i.e. monogeneans with unhinged marginal hooks form one old group, the Oligonchoinea, which have 5 + 5 unhinged marginal hooks, and the other group form the Polyonchoinea, which (with the exception of the Hexabothriidae) has a greater number (7 + 7, 8 + 8 or 9 + 9) of unhinged marginal hooks. It is proposed that both these names, Oligonchoinea (sensu mihi) and Polyonchoinea (sensu mihi), will be retained on one side and Articulonchoinea placed on the other side, which reflects the early monogenean evolution. Except for the members of Ananchorea [Polyonchoinea], all members of the Oligonchoinea and Polyonchoinea have anchors, which imply that they are further evolved, i.e. have passed the 5 + 5 marginal hook evolutionary capacity level (Malmberg, 1986). There are two main types of anchors in the Monogenea: haptoral anchors, with anlages appearing in the haptor, and peduncular anchors, with anlages in the peduncle. There are two types of haptoral anchors: peripheral haptoral anchors, ontogenetically the oldest, and central haptoral anchors. Peduncular anchors, in turn, are ontogenetically younger than peripheral haptoral anchors. There may be two pairs of peduncular anchors: medial peduncular anchors, ontogentically the oldest, and lateral peduncular anchors. Only peduncular (not haptoral) anchors have anchor bars. Monogeneans with haptoral anchors are here called Mediohaptanchorea n. superord. and Laterohaptanchorea n. superord. or haptanchoreans. All oligonchoineans and the oldest polyonchoineans are haptanchoreans. Certain members of Calceostomatidae [Polyonchoinea] are the only monogeneans with both (peripheral) haptoral and peduncular anchors (one pair). These monogeneans are here called Mixanchorea n. superord. Polyonchoineans with peduncular anchors and unhinged marginal hooks are here called the Pedunculanchorea n. superord. The most primitive pedunculanchoreans have only one pair of peduncular anchors with an anchor bar, while the most advanced have both medial and lateral peduncular anchors; each pair having an anchor bar. Certain families of the Articulonchoinea, the Anchorea n. superord., also have peduncular anchors (parallel evolution): only one family, the Sundanonchidae n. fam., has both medial and lateral peduncular anchors, each anchor pair with an anchor bar. Evolutionary lines from different monogenean evolutionary capacity levels are discussed and a new system of classification for the Monogenea is proposed.In agreeing to publish this article, I recognise that its contents are controversial and contrary to generally accepted views on monogenean systematics and evolution. I have anticipated a reaction to the article by inviting senior workers in the field to comment upon it: their views will be reported in a future issue of this journal. EditorIn agreeing to publish this article, I recognise that its contents are controversial and contrary to generally accepted views on monogenean systematics and evolution. I have anticipated a reaction to the article by inviting senior workers in the field to comment upon it: their views will be reported in a future issue of this journal. Editor  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号