首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The occurrence of human enteric viruses in surface water in the Tamagawa River, Japan, was surveyed for 1 year, from April 2003 to March 2004. Sixty-four samples were collected from six sites along the river, and 500 ml of the sample was concentrated using the cation-coated filter method, which was developed in our previous study. This method showed recovery yields of 56% +/- 32% (n = 37) for surface water samples inoculated with polioviruses. More than one kind of tested virus was detected in 43 (67%) of 64 samples by TaqMan PCR. Noroviruses and adenoviruses were detected in a high positive ratio; 34 (53%), 28 (44%), and 29 (45%) of 64 samples were positive for norovirus genotype 1 and genotype 2 and adenoviruses, respectively. The mean concentrations of norovirus genotype 1 or genotype 2 determined by real-time PCR were 0.087 and 0.61 genome/ml, respectively, showing much higher values in winter (0.21 genome/ml for genotype 1 and 2.3 genomes/ml for genotype 2). Enteroviruses were detected by both direct PCR (6 of 64 samples; 9%) and cell culture PCR (2 of 64 samples; 3%). Torque teno viruses, emerging hepatitis viruses, were also isolated in three samples (5%). The concentration of total coliforms and the presence of F-specific phages showed a high correlation with the presence of viruses, which suggested that the simultaneous use of total coliforms and F-specific phages as indicators of surface water may work to monitor viral contamination.  相似文献   

2.
3.
A nested-PCR method was used to detect the occurrence of human adenovirus in coastal waters of Southern California. Twenty- to forty-liter water samples were collected from 12 beach locations from Malibu to the border of Mexico between February and March 1999. All sampling sites were located at mouths of major rivers and creeks. Two ultrafiltration concentration methods, tangential flow filtration (TFF) and vortex flow filtration (VFF), were compared using six environmental samples. Human adenoviruses were detected in 4 of the 12 samples tested after nucleic acid extraction of VFF concentrates. The most probable number of adenoviral genomes ranged from 880 to 7,500 per liter of water. Coliphages were detected at all sites, with the concentration varying from 5.3 to 3332 PFU/liter of water. F-specific coliphages were found at 5 of the 12 sites, with the concentration ranging from 5.5 to 300 PFU/liter. The presence of human adenovirus was not significantly correlated with the concentration of coliphage (r = 0.32) but was significantly correlated (r = 0.99) with F-specific coliphage. The bacterial indicators (total coliforms, fecal coliforms, and enterococci) were found to exceed California recreational water quality daily limits at 5 of the 12 sites. However, this excess of bacterial indicators did not correlate with the presence of human adenoviruses in coastal waters. The results of this study call for both a reevaluation of our current recreational water quality standards to reflect the viral quality of recreational waters and monitoring of recreational waters for human viruses on a regular basis.  相似文献   

4.
5.
A nested-PCR method was used to detect the occurrence of human adenovirus in coastal waters of Southern California. Twenty- to forty-liter water samples were collected from 12 beach locations from Malibu to the border of Mexico between February and March 1999. All sampling sites were located at mouths of major rivers and creeks. Two ultrafiltration concentration methods, tangential flow filtration (TFF) and vortex flow filtration (VFF), were compared using six environmental samples. Human adenoviruses were detected in 4 of the 12 samples tested after nucleic acid extraction of VFF concentrates. The most probable number of adenoviral genomes ranged from 880 to 7,500 per liter of water. Coliphages were detected at all sites, with the concentration varying from 5.3 to 3332 PFU/liter of water. F-specific coliphages were found at 5 of the 12 sites, with the concentration ranging from 5.5 to 300 PFU/liter. The presence of human adenovirus was not significantly correlated with the concentration of coliphage (r = 0.32) but was significantly correlated (r = 0.99) with F-specific coliphage. The bacterial indicators (total coliforms, fecal coliforms, and enterococci) were found to exceed California recreational water quality daily limits at 5 of the 12 sites. However, this excess of bacterial indicators did not correlate with the presence of human adenoviruses in coastal waters. The results of this study call for both a reevaluation of our current recreational water quality standards to reflect the viral quality of recreational waters and monitoring of recreational waters for human viruses on a regular basis.  相似文献   

6.
7.
The validity of using indicator organisms (total and fecal coliforms, enterococci, Clostridium perfringens, and F-specific coliphages) to predict the presence or absence of pathogens (infectious enteric viruses, Cryptosporidium, and Giardia) was tested at six wastewater reclamation facilities. Multiple samplings conducted at each facility over a 1-year period. Larger sample volumes for indicators (0.2 to 0.4 liters) and pathogens (30 to 100 liters) resulted in more sensitive detection limits than are typical of routine monitoring. Microorganisms were detected in disinfected effluent samples at the following frequencies: total coliforms, 63%; fecal coliforms, 27%; enterococci, 27%; C. perfringens, 61%; F-specific coliphages, approximately 40%; and enteric viruses, 31%. Cryptosporidium oocysts and Giardia cysts were detected in 70% and 80%, respectively, of reclaimed water samples. Viable Cryptosporidium, based on cell culture infectivity assays, was detected in 20% of the reclaimed water samples. No strong correlation was found for any indicator-pathogen combination. When data for all indicators were tested using discriminant analysis, the presence/absence patterns for Giardia cysts, Cryptosporidium oocysts, infectious Cryptosporidium, and infectious enteric viruses were predicted for over 71% of disinfected effluents. The failure of measurements of single indicator organism to correlate with pathogens suggests that public health is not adequately protected by simple monitoring schemes based on detection of a single indicator, particularly at the detection limits routinely employed. Monitoring a suite of indicator organisms in reclaimed effluent is more likely to be predictive of the presence of certain pathogens, and a need for additional pathogen monitoring in reclaimed water in order to protect public health is suggested by this study.  相似文献   

8.
The presence of bacteriophages infecting enteric bacteria was tested in more than 1500 drinking water samples in Israel and Spain. Bacteriophages tested were somatic coliphages, F-specific bacteriophages and Bacteroides fragilis bacteriophages. The three groups of bacteriophage were isolated in 100 ml water samples by the presence/absence test with similar frequencies, which ranged from 4·4% for somatic coliphages to 6·1% for bacteriophages infecting Bact. fragilis. In contrast, the frequency of isolation of bacteriophages was significantly higher than the frequency of isolation of faecal coliforms, which averaged only 1·9%. No significant differences were observed between the frequencies of isolation between the samples tested in Spain and those tested in Israel. The percentage of groundwater samples containing faecal coliforms and somatic coliphages was reduced significantly by chlorination, despite known deficiencies. However, there was no effect on the occurrence of F-specific bacteriophages and Bact. fragilis bacteriophages.  相似文献   

9.
We performed RT-nested PCR to study the distribution of human enteric viruses in urban rivers in Korea. During 2002-2003, water samples were collected from four rivers in Gyeonggi Province, South Korea. Among 58 samples, 45 (77.6%), 32 (55.2%), 12 (20.7%), 2 (3.4%), 4 (6.9%), and 4 (6.9%) showed positive results with adenoviruses (AdVs), enteroviruses (EVs), reoviruses (ReVs), hepatitis A viruses (HAVs), rotaviruses (RoVs), and sapoviruses (SVs), respectively. According to the binary logistic regression model, the occurrence of each enteric virus, except ReVs and HAVs, was not statistically correlated with the water temperature and levels of fecal coliforms (P<0.05). AdVs were most often detected; only 4 samples (6.9%) were negative for AdVs while positive for other enteric viruses in the studied sites. Our results indicated that monitoring human enteric viruses is necessary to improve microbial quality, and that AdVs detection by PCR can be a useful index for the presence of other enteric viruses in aquatic environments.  相似文献   

10.
Enteric viruses are a major cause of diarrhea in children, especially those under five years old. Identifying the viral agents is critical to the development of effective preventive measures. This study aimed to determine the prevalence and genetic diversity of common enteric viruses in children under five years old in Burkina Faso. Stool samples from children with (n = 263) and without (n = 50) diarrhea disorders were collected in Ouagadougou, Burkina Faso from November 2011 to September 2012. Rotavirus, norovirus, sapovirus, astrovirus, adenovirus and Aichivirus A were detected using real-time or end-point (RT-)PCR. Rotavirus strains were G and P genotyped by multiplex RT-PCR and other viral strains were characterized by sequencing of viral subgenomic segements. At least one viral agent was detected in 85.6% and 72% of the symptomatic and asymptomatic patients, respectively. Rotavirus (63.5%), adenovirus (31.2%) and genogroup II norovirus (18.2%) were the most prevalent viruses in symptomatic patients, but only rotavirus and genogroup II norovirus were significantly associated with diarrhea (OR: 7.9, 95%CI: 3.7–17; OR: 3.5, 95%CI: 1–11.7, respectively). Sapovirus (10.3%), astrovirus (4.9%), genogroup I norovirus (2.7%) and Aichivirus A (0.8%) were less prevalent. The predominant genotype of rotavirus was G9P[8] (36.5%), and the predominant norovirus strain was GII.4 variant 2012 (71.4%). Among sapovirus, the genogroup II (87.5%) predominated. Astrovirus type 1 (41.7%) was the most frequent astrovirus identified. Aichivirus A belonged to the three genotypes (A, B and C). Enteric adenoviruses type 40 and 41 were identified in 10.2% and 5.1% respectively. Several cases of co-infections were detected. The results highlight the high prevalence and the high diversity of enteric viruses in Burkinabe children.  相似文献   

11.
The validity of using indicator organisms (total and fecal coliforms, enterococci, Clostridium perfringens, and F-specific coliphages) to predict the presence or absence of pathogens (infectious enteric viruses, Cryptosporidium, and Giardia) was tested at six wastewater reclamation facilities. Multiple samplings conducted at each facility over a 1-year period. Larger sample volumes for indicators (0.2 to 0.4 liters) and pathogens (30 to 100 liters) resulted in more sensitive detection limits than are typical of routine monitoring. Microorganisms were detected in disinfected effluent samples at the following frequencies: total coliforms, 63%; fecal coliforms, 27%; enterococci, 27%; C. perfringens, 61%; F-specific coliphages, ~40%; and enteric viruses, 31%. Cryptosporidium oocysts and Giardia cysts were detected in 70% and 80%, respectively, of reclaimed water samples. Viable Cryptosporidium, based on cell culture infectivity assays, was detected in 20% of the reclaimed water samples. No strong correlation was found for any indicator-pathogen combination. When data for all indicators were tested using discriminant analysis, the presence/absence patterns for Giardia cysts, Cryptosporidium oocysts, infectious Cryptosporidium, and infectious enteric viruses were predicted for over 71% of disinfected effluents. The failure of measurements of single indicator organism to correlate with pathogens suggests that public health is not adequately protected by simple monitoring schemes based on detection of a single indicator, particularly at the detection limits routinely employed. Monitoring a suite of indicator organisms in reclaimed effluent is more likely to be predictive of the presence of certain pathogens, and a need for additional pathogen monitoring in reclaimed water in order to protect public health is suggested by this study.  相似文献   

12.
Faeces of humans, pigs, cattle and chickens were investigated for the presence of somatic coliphages, F-specific bacteriophages and Escherichia coli strains sensitive to infection by F-specific phages. Attention was given to the possible effect of age and use of antibiotics on the prevalence of the FRNA phages and sensitive E . coli strains. Somatic coliphages were often detected in high numbers in all types of faeces. In contrast, FRNA phages were rarely detected in faeces from humans and cattle but more often in faeces from pigs and adult chickens. Samples from young chickens (with or without antibiotics) were consistently positive for FRNA phages (up to 3 × 106 pfu/g). F-specific RNA phages were found in substantial numbers (> 103 pfu/ml) in a variety of wastewaters: domestic, hospital, slaughterhouses and occasionally in 'grey water'. Their origin in wastewater was not clear. Strains from faeces usually belonged to serogroups I and IV. These types were also found in wastewater, as were group II and III strains. Serogroup II phages were abundant in wastewater of human origin but rare in faeces. Escherichia coli strains sensitive to infection by F-specific phages were common in faeces (overall 290/1081: 27%). No strains with fully derepressed F-pilus synthesis were detected among the sensitive strains. It is concluded that the occurrence of F-specific RNA bacteriophages in water points to sewage pollution rather than faecal pollution; the mechanism of replication of these organisms in wastewater is not understood.  相似文献   

13.
Faeces of humans, pigs, cattle and chickens were investigated for the presence of somatic coliphages, F-specific bacteriophages and Escherichia coli strains sensitive to infection by F-specific phages. Attention was given to the possible effect of age and use of antibiotics on the prevalence of the FRNA phages and sensitive E. coli strains. Somatic coliphages were often detected in high numbers in all types of faeces. In contrast, FRNA phages were rarely detected in faeces from humans and cattle but more often in faeces from pigs and adult chickens. Samples from young chickens (with or without antibiotics) were consistently positive for FRNA phages (up to 3 x 10(6) pfu/g). F-specific RNA phages were found in substantial numbers (greater than 10(3) pfu/ml) in a variety of wastewaters: domestic, hospital, slaughterhouses and occasionally in 'grey water'. Their origin in wastewater was not clear. Strains from faeces usually belonged to serogroups I and IV. These types were also found in wastewater, as were group II and III strains. Serogroup II phages were abundant in wastewater of human origin but rare in faeces. Escherichia coli strains sensitive to infection by F-specific phages were common in faeces (overall 290/1081: 27%). No strains with fully depressed F-pilus synthesis were detected among the sensitive strains. It is concluded that the occurrence of F-specific RNA bacteriophages in water points to sewage pollution rather than faecal pollution; the mechanism of replication of these organisms in wastewater is not understood.  相似文献   

14.
15.
16.
Nationwide groundwater surveillance of noroviruses in South Korea, 2008   总被引:1,自引:0,他引:1  
To inspect the norovirus contamination of groundwater in South Korea, a nationwide study was performed in the summer (June to August) and winter (October to December) of 2008. Three-hundred sites designated by the government ministry were inspected. Water samples were collected for analysis of water quality, microorganism content, and viral content. Water quality was assessed by temperature, pH, turbidity, residual chlorine, and nitrite nitrogen content. Microorganism contents were analyzed bacteria, total coliforms, Escherichia coli, and bacteriophage. Virus analyses included panenterovirus and norovirus. Two primer sets were used for the detection of norovirus genotypes GI and GII, respectively. Of 300 samples, 65 (21.7%) were norovirus positive in the summer and in 52 (17.3%) were norovirus positive in the winter. The genogroup GI noroviruses that were identified were GI-1, GI-2, GI-3, GI-4, GI-5, GI-6, and GI-8 genotypes; those in the GII genogroup were GII-4 and GII-Yuri genotypes. The analytic data showed correlative relationships between the norovirus detection rate and the following parameters: water temperature and turbidity in physical-chemical parameters and somatic phage in microbial parameters. It is necessary to periodically monitor waterborne viruses that frequently cause epidemic food poisoning in South Korea for better public health and sanitary conditions.  相似文献   

17.
Aims: To study the virological quality of surface water from highly urbanized tropical water catchment areas and to determine predominant enteric viral genotypes in surface water. Methods and Results: A wide range of human pathogenic viruses in urban surface waters was screened by nested PCR assays after concentration by ultrafiltration. Among the 84 water samples collected, at least one virus was detected in 70 (83·3%) of these samples. Noroviruses were determined to be the most prevalent enteric viruses detected in urban surface water samples, followed by astroviruses, enteroviruses, adenoviruses and hepatitis A viruses. The molecular characterization of environmental viral isolates suggested co‐circulation of multiple genotypes of both noroviruses GI and GII, astroviruses and enteroviruses in urban surface waters. Conclusions: Human enteric viruses with great genetic diversity were detected in surface waters, indicating the presence of human origin of faecal contamination in highly urbanized water catchment areas. Significance and Impact of the Study: The present study identifies and characterizes potential viral hazards of source waters for drinking water supply and recreational activities. This will enable scientific decisions to be made regarding the selection and prioritization of human pathogenic viruses to be included in the future risk assessment and treatment evaluation for water and wastewater.  相似文献   

18.

Aims

To assess human adenoviruses (HAdVs) removal in an advanced wastewater treatment facility and compare two parallel tertiary treatment methods for the removal of HAdVs.

Methods and Results

Tangential flow ultrafiltration was used to concentrate the water samples, and HAdVs were precipitated by polyethylene glycol. HAdVs were detected only by TaqMan real‐time PCR, and HAdV genotype was determined by DNA sequence. HAdVs were detected in 100% of primary clarification influent, secondary clarification effluent and granular media (GM) filtration effluent samples but only in 31·2% of membrane filtration (MF) effluent and 41·7% of final effluent (FE) samples, respectively. The average HAdVs loads were significantly reduced along the treatments but HAdVs were still present in FE. Comparison of two parallel treatments (GM vs MF) showed that MF was technically superior to GM for the removal of HAdVs.

Conclusions

These findings indicate that adenoviruses are not completely removed by treatment processes. MF is a better treatment for removal of adenoviruses than GM filtration. Because only qPCR was used, the results only indicate the removal of adenovirus DNA and not the infectivity of viruses.

Significance and Impact of the Study

Presence of HAdVs in FE by qPCR suggests a potential public health risk from exposure to the treated wastewater and using the FE for recreational or water reuse purposes should be cautious.  相似文献   

19.
Aims:  Waterborne outbreaks of hepatitis A and Norovirus disease have been reported and associated with contaminated water supply in various countries. However, in Mexico, there are no studies that report HAV and NV presence in water. This study reports the application of ultrafiltration and RT-nested PCR methods to concentrate and identify these viruses.
Methods and Results:  Forty estuarine water samples were collected from the Huizache Caimanero Lagunary Complex. Samples were concentrated by ultrafiltration system (UFS) and RT-nested PCR was performed for HAV and NV identification. These viruses were found in 80% and 70% of the samples collected respectively and both were present in 57·5%. The DNA sequences analysis showed that 21 estuarine water samples were associated with HAV and 13 with NV. Faecal coliforms were isolated in 48·57% of the samples, while Escherichia coli were found in 34·28%.
Conclusions:  DNA sequencing showed that the genotype IB for HAV and GII for NV were predominant in México. No significant relationships were detected between indicators and viruses ( P  < 0·05).
Significance and Impact of the Study:  This study shows that the UFS is adequate for viral concentration. This is the first study analysing the genetic sequence of HAV and NV isolated from Mexican estuarine water.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号