共查询到20条相似文献,搜索用时 15 毫秒
1.
Enteric pathogens, such as Salmonella enterica and Escherichia coli O157:H7, have been shown to contaminate fresh produce. Under appropriate conditions, these bacteria will grow on and invade the plant tissue. We have developed Arabidopsis thaliana (thale cress) as a model system with the intention of studying plant responses to human pathogens. Under sterile conditions and at 100% humidity, S. enterica serovar Newport and E. coli O157:H7 grew to 10(9) CFU g(-1) on A. thaliana roots and to 2 x 10(7) CFU g(-1) on shoots. Furthermore, root inoculation led to contamination of the entire plant, indicating that the pathogens are capable of moving on or within the plant in the absence of competition. Inoculation with green fluorescent protein-labeled S. enterica and E. coli O157:H7 showed invasion of the roots at lateral root junctions. Movement was eliminated and invasion decreased when nonmotile mutants of S. enterica were used. Survival of S. enterica serovar Newport and E. coli O157:H7 on soil-grown plants declined as the plants matured, but both pathogens were detectable for at least 21 days. Survival of the pathogen was reduced in unautoclaved soil and amended soil, suggesting competition from indigenous epiphytes from the soil. Enterobacter asburiae was isolated from soil-grown A. thaliana and shown to be effective at suppressing epiphytic growth of both pathogens under gnotobiotic conditions. Seed and chaff harvested from contaminated plants were occasionally contaminated. The rate of recovery of S. enterica and E. coli O157:H7 from seed varied from undetectable to 19% of the seed pools tested, depending on the method of inoculation. Seed contamination by these pathogens was undetectable in the presence of the competitor, Enterobacter asburiae. Sampling of 74 pools of chaff indicated a strong correlation between contamination of the chaff and seed (P = 0.025). This suggested that contamination of the seed occurred directly from contaminated chaff or by invasion of the flower or silique. However, contaminated seeds were not sanitized by extensive washing and chlorine treatment, indicating that some of the bacteria reside in a protected niche on the seed surface or under the seed coat. 相似文献
2.
Yoshinori Itoh Yoshiko Sugita-Konishi Fumiko Kasuga Masaaki Iwaki Yukiko Hara-Kudo Noriko Saito Yoko Noguchi Hirotaka Konuma Susumu Kumagai 《Applied microbiology》1998,64(4):1532-1535
Using cultivation, immunofluorescence microscopy, and scanning electron microscopy, we demonstrated the presence of viable enterohemorrhagic Escherichia coli O157:H7 not only on the outer surfaces but also in the inner tissues and stomata of cotyledons of radish sprouts grown from seeds experimentally contaminated with the bacterium. HgCl2 treatment of the outer surface of the hypocotyl did not kill the contaminating bacteria, which emphasized the importance of either using seeds free from E. coli O157:H7 in the production of radish sprouts or heating the sprouts before they are eaten. 相似文献
3.
Charkowski AO Barak JD Sarreal CZ Mandrell RE 《Applied and environmental microbiology》2002,68(6):3114-3120
Sprout producers have recently been faced with several Salmonella enterica and Escherichia coli O157:H7 outbreaks. Many of the outbreaks have been traced to sprout seeds contaminated with low levels of human pathogens. Alfalfa seeds were inoculated with S. enterica and E. coli O157:H7 strains isolated from alfalfa seeds or other environmental sources and sprouted to examine growth of these human pathogens in association with sprouting seeds. S. enterica strains grew an average of 3.7 log(10) on sprouting seeds over 2 days, while E. coli O157:H7 strains grew significantly less, an average of 2.3 log(10). The initial S. enterica or E. coli O157:H7 inoculum dose and seed-sprouting temperature significantly affected the levels of both S. enterica and E. coli O157:H7 on the sprouts and in the irrigation water, while the frequency of irrigation water replacement affected only the levels of E. coli O157:H7. Colonization of sprouting alfalfa seeds by S. enterica serovar Newport and E. coli O157:H7 strains transformed with a plasmid encoding the green fluorescent protein was examined with fluorescence microscopy. Salmonella serovar Newport colonized both seed coats and sprout roots as aggregates, while E. coli O157:H7 colonized only sprout roots. 相似文献
4.
Differences in Growth of Salmonella enterica and Escherichia coli O157:H7 on Alfalfa Sprouts 下载免费PDF全文
A. O. Charkowski J. D. Barak C. Z. Sarreal R. E. Mandrell 《Applied microbiology》2002,68(6):3114-3120
Sprout producers have recently been faced with several Salmonella enterica and Escherichia coli O157:H7 outbreaks. Many of the outbreaks have been traced to sprout seeds contaminated with low levels of human pathogens. Alfalfa seeds were inoculated with S. enterica and E. coli O157:H7 strains isolated from alfalfa seeds or other environmental sources and sprouted to examine growth of these human pathogens in association with sprouting seeds. S. enterica strains grew an average of 3.7 log10 on sprouting seeds over 2 days, while E. coli O157:H7 strains grew significantly less, an average of 2.3 log10. The initial S. enterica or E. coli O157:H7 inoculum dose and seed-sprouting temperature significantly affected the levels of both S. enterica and E. coli O157:H7 on the sprouts and in the irrigation water, while the frequency of irrigation water replacement affected only the levels of E. coli O157:H7. Colonization of sprouting alfalfa seeds by S. enterica serovar Newport and E. coli O157:H7 strains transformed with a plasmid encoding the green fluorescent protein was examined with fluorescence microscopy. Salmonella serovar Newport colonized both seed coats and sprout roots as aggregates, while E. coli O157:H7 colonized only sprout roots. 相似文献
5.
He Y Guo D Yang J Tortorello ML Zhang W 《Applied and environmental microbiology》2011,77(23):8434-8438
Significant differences (P < 0.05) were found between the survival rates of Salmonella enterica and Escherichia coli O157:H7 in peanut butter with different formulations and water activity. High carbohydrate content in peanut butter and low incubation temperature resulted in higher levels of bacterial survival during storage but lower levels of bacterial resistance to heat treatment. 相似文献
6.
The present study demonstrates that catecholamine responsiveness in Yersinia enterocolitica, a bacterial pathogen whose infectious spectrum is principally limited to the gut, is limited to norepinephrine and dopamine, and not epinephrine; this behavior contrasts with observations for two pathogens with a wider extra-gastrointestinal spectrum, Escherichia coli O157:H7 and Salmonella enterica, which respond to all three catecholamines. Epinephrine showed lower potency than norepinephrine and dopamine in inducing growth of E. coli and S. enterica, and was a potent antagonist of norepinephrine and dopamine growth responsiveness in Y. enterocolitica. Given that only norepinephrine and dopamine and not epinephrine-containing neurons are found with the enteric nervous system, the results suggest that certain of the more exclusive enteric pathogens may have developed response systems preferentially for those neuroendocrine hormones that are produced by the enteric nervous system as host-derived signals by which to sense the environment and initiate pathogenic processes. 相似文献
7.
Differences in Attachment of Salmonella enterica Serovars and Escherichia coli O157:H7 to Alfalfa Sprouts 下载免费PDF全文
Numerous Salmonella enterica and Escherichia coli O157:H7 outbreaks have been associated with contaminated sprouts. We examined how S. enterica serovars, E. coli serotypes, and nonpathogenic bacteria isolated from alfalfa sprouts grow on and adhere to alfalfa sprouts. Growth on and adherence to sprouts were not significantly different among different serovars of S. enterica, but all S. enterica serovars grew on and adhered to alfalfa sprouts significantly better than E. coli O157:H7. E. coli O157:H7 was essentially rinsed from alfalfa sprouts with repeated washing steps, while 1 to 2 log CFU of S. enterica remained attached per sprout. S. enterica Newport adhered to 3-day-old sprouts as well as Pantoea agglomerans and 10-fold more than Pseudomonas putida and Rahnella aquatilis, whereas the growth rates of all four strains throughout seed sprouting were similar. S. enterica Newport and plant-associated bacteria adhered 10- to 1,000-fold more than E. coli O157:H7; however, three of four other E. coli serotypes, isolated from cabbage roots exposed to sewage water following a spill, adhered to sprouts better than E. coli O157:H7 and as well as the Pseudomonas and Rahnella strains. Therefore, attachment to alfalfa sprouts among E. coli serotypes is variable, and nonpathogenic strains of E. coli to be used as surrogates for the study of pathogenic E. coli may be difficult to identify and should be selected carefully, with knowledge of the biology being examined. 相似文献
8.
Numerous Salmonella enterica and Escherichia coli O157:H7 outbreaks have been associated with contaminated sprouts. We examined how S. enterica serovars, E. coli serotypes, and nonpathogenic bacteria isolated from alfalfa sprouts grow on and adhere to alfalfa sprouts. Growth on and adherence to sprouts were not significantly different among different serovars of S. enterica, but all S. enterica serovars grew on and adhered to alfalfa sprouts significantly better than E. coli O157:H7. E. coli O157:H7 was essentially rinsed from alfalfa sprouts with repeated washing steps, while 1 to 2 log CFU of S. enterica remained attached per sprout. S. enterica Newport adhered to 3-day-old sprouts as well as Pantoea agglomerans and 10-fold more than Pseudomonas putida and Rahnella aquatilis, whereas the growth rates of all four strains throughout seed sprouting were similar. S. enterica Newport and plant-associated bacteria adhered 10- to 1,000-fold more than E. coli O157:H7; however, three of four other E. coli serotypes, isolated from cabbage roots exposed to sewage water following a spill, adhered to sprouts better than E. coli O157:H7 and as well as the Pseudomonas and Rahnella strains. Therefore, attachment to alfalfa sprouts among E. coli serotypes is variable, and nonpathogenic strains of E. coli to be used as surrogates for the study of pathogenic E. coli may be difficult to identify and should be selected carefully, with knowledge of the biology being examined. 相似文献
9.
《Bioscience, biotechnology, and biochemistry》2013,77(11):2508-2511
Enterohemorrhagic Escherichia coli (EHEC) O157:H7 causes serious diarrhea and hemolytic uremic syndrome in humans. The expressions of EspD and intimin by O157:H7 have now been shown to be down-regulated by medium conditioned by O157:H7 grown at stationary phase. Preparation of conditioned medium showing the effect on the amount of EspD was not dependent on temperature or growth medium, but was dependent on growth phase. Inhibition of EspD and intimin expression was also induced by medium conditioned by E. coli K-12 strains and homoserine lactone, a signal molecule of the quorum-sensing system in Gram-negative bacteria. These results suggest the possibility that the quorum-sensing system mediated by self-produced extracellular factors plays an important role in control of colonization of EHEC O157:H7. 相似文献
10.
Persistent Colonization of Sheep by Escherichia coli O157:H7 and Other E. coli Pathotypes 总被引:1,自引:0,他引:1 下载免费PDF全文
Shiga toxin-producing Escherichia coli (STEC) is an important cause of food-borne illness in humans. Ruminants appear to be more frequently colonized by STEC than are other animals, but the reason(s) for this is unknown. We compared the frequency, magnitude, duration, and transmissibility of colonization of sheep by E. coli O157:H7 to that by other pathotypes of E. coli. Young adult sheep were simultaneously inoculated with a cocktail consisting of two strains of E. coli O157:H7, two strains of enterotoxigenic E. coli (ETEC), and one strain of enteropathogenic E. coli. Both STEC strains and ETEC 2041 were given at either 107 or 1010 CFU/strain/animal. The other strains were given only at 1010 CFU/strain. We found no consistent differences among pathotypes in the frequency, magnitude, and transmissibility of colonization. However, the STEC strains tended to persist to 2 weeks and 2 months postinoculation more frequently than did the other pathotypes. The tendency for persistence of the STEC strains was apparent following an inoculation dose of either 107 or 1010 CFU. One of the ETEC strains also persisted when inoculated at 1010 CFU. However, in contrast to the STEC strains, it did not persist when inoculated at 107 CFU. These results support the hypothesis that STEC is better adapted to persist in the alimentary tracts of sheep than are other pathotypes of E. coli. 相似文献
11.
12.
Outbreaks of Escherichia coli O157:H7 infections have been linked increasingly to leafy greens, particularly to lettuce. We present here the first evidence that this enteric pathogen can multiply on the leaves of romaine lettuce plants. The increases in population size of E. coli O157:H7 in the phyllosphere of young lettuce plants ranged from 16- to 100-fold under conditions of warm temperature and the presence of free water on the leaves and varied significantly with leaf age. The population size was consistently ca. 10-fold higher on the young (inner) leaves than on the middle leaves. The growth rates of Salmonella enterica and of the natural bacterial microflora were similarly leaf age dependent. Both enteric pathogens also achieved higher population sizes on young leaves than on middle leaves harvested from mature lettuce heads, suggesting that leaf age affects preharvest as well as postharvest colonization. Elemental analysis of the exudates collected from the surfaces of leaves of different ages revealed that young-leaf exudates were 2.9 and 1.5 times richer in total nitrogen and carbon, respectively, than middle-leaf exudates. This trend mirrored the nitrogen and carbon content of the leaf tissue. Application of ammonium nitrate, but not glucose, to middle leaves enhanced the growth of E. coli O157:H7 significantly, suggesting that low nitrogen limits its growth on these leaves. Our results indicate that leaf age and nitrogen content contribute to shaping the bacterial communities of preharvest and postharvest lettuce and that young lettuce leaves may be associated with a greater risk of contamination with E. coli O157:H7. 相似文献
13.
14.
Influence of temperature fluctuations on Escherichia coli O157:H7 and Salmonella enterica serovar Typhimurium in cow manure 总被引:1,自引:0,他引:1
Semenov AV van Bruggen AH van Overbeek L Termorshuizen AJ Semenov AM 《FEMS microbiology ecology》2007,60(3):419-428
The effects of four average temperatures (7, 16, 23 and 33 degrees C) and daily oscillations with three amplitudes (0, +/-4, +/-7 degrees C) on the survival of the enteropathogens Escherichia coli O157:H7 and Salmonella serovar Typhimurium were investigated in small microcosms. Manure was inoculated with a green fluorescent protein transformed strain of either pathogen at 10(7) cells g(-1) dry weight. Samples were collected immediately after inoculation, and 1 and 2 weeks after inoculation for E. coli O157:H7, and immediately and after 2 and 3 weeks for Salmonella serovar Typhimurium. Population densities were determined by dilution plating and direct counting. In addition, total bacterial CFUs were determined. Growth and survival data were fitted to a modified logistic model. Analysis of the estimated parameter values showed that E. coli O157:H7 survived for shorter periods of time and was more sensitive to competition by the native microbial community than Salmonella serovar Typhimurium. Survival of both pathogens significantly declined with increasing mean temperatures and with increasing amplitude in daily temperature oscillations. The results indicated that responses of enteropathogens to fluctuating temperatures cannot be deduced from temperature relationships determined under constant temperatures. 相似文献
15.
Enhancement of Shiga Toxin Production in Enterohemorrhagic Escherichia coli Serotype O157:H7 by DNase Colicins 总被引:1,自引:0,他引:1 下载免费PDF全文
Hirono Toshima Ayana Yoshimura Kentaro Arikawa Ayumi Hidaka Jun Ogasawara Atsushi Hase Haruhiko Masaki Yoshikazu Nishikawa 《Applied microbiology》2007,73(23):7582-7588
16.
Contamination of foods with pathogens such as Escherichia coli O157:H7 and Salmonella is a major concern worldwide and rapid, sensitive, and reliable methods are needed for detection of these organisms. Since
these pathogens can contaminate similar foods and other types of samples, a multiplex polymerase chain reduction (PCR) was
designed to allow simultaneous detection of both E. coli O157:H7 and Salmonella spp directly from enrichment cultures. Samples of apple cider, beef carcass wash water, ground beef, and bovine feces were
inoculated with both E. coli O157:H7 and S. typhimurium at various bacterial levels. Following enrichment culturing for 20–24 h at 37°C in modified EC broth or buffered peptone
water both containing novobiocin, the samples were subjected to a DNA extraction technique or to immunomagnetic separation
then tested by the multiplex PCR assay. Four pairs of primers were employed in the PCR: primers for amplification of E. coli O157:H7 eaeA, stx
1/2 and plasmid sequences and for amplification of a portion of the Salmonella invA gene. Four fragments of the expected sizes were amplified in a single reaction and visualized following agarose gel electrophoresis
in all the samples inoculated with ≤ 1 CFU g−1 or ml−1. Results can be obtained in approximately 30 h. The multiplex PCR is a potentially powerful technique for rapid and sensitive
co-detection of both pathogens in foods and other types of samples.
Received 28 December 1997/ Accepted in revised form 19 March 1998 相似文献
17.
18.
AIM: To determine the mechanisms by which a stabilized oxychloro (SOC)-based sanitizer, applied to decontaminate seeds destined for sprout production, inactivates Escherichia coli O157:H7 ph1 and Salmonella serotype Meleagridis. MATERIALS AND RESULTS: The action of SOC on the metabolism, membrane and DNA integrity of Salmonella and E. coli O157:H7 was studied. In both pathogens, there was an oxidative burst and depletion of intracellular glutathione (GSH) upon initial exposure to 200 ppm SOC. Metabolic activity, measured via bioluminescence, decreased over a 4-h period in E. coli O157:H7 ph1 cells exposed to SOC. Membrane integrity, assessed through viability staining, decreased progressively over 23 h when exposed to SOC. The appearance of auxotrophic mutants suggested that DNA damage had also occurred. Enzymes rich in disulfide bonds (alkaline phosphatase and protease) were sensitive to the chlorite-based sanitizer. Through challenging other microbial types, it was found that Gram positive had higher tolerance to SOC than Gram negatives with the exception of Salmonella. MS2 bacteriophage was highly sensitive; however, Bacillus endospores were not inactivated by SOC. CONCLUSIONS: SOC inactivates E. coli O157:H7 and Salmonella through GSH oxidation and disruption of disulfide bonds. Ultimately, membrane damage resulting from prolonged exposure to SOC leads to the loss of cell viability. SIGNIFICANCE AND IMPACT OF THE STUDY: The results provide a basis for understanding why extended treatment times are required to inactivate bacteria using SOC. 相似文献
19.
Escherichia coli O157:H7 Colonization at the Rectoanal Junction of Long-Duration Culture-Positive Cattle 下载免费PDF全文
Ji Youn Lim Jie Li Haiqing Sheng Thomas E. Besser Kathleen Potter Carolyn J. Hovde 《Applied microbiology》2007,73(4):1380-1382
Long-duration consistently Escherichia coli O157:H7 culture-positive cattle were euthanized and necropsied. Tissue and digesta from along the gastrointestinal tract (GIT) were cultured for the bacteria and examined histologically for lymphoid character. E. coli O157:H7 was detected only at the rectoanal junction mucosa and not at any other GIT location. 相似文献
20.
Lisa Jacobsen Lisa Durso Tyrell Conway Kenneth W. Nickerson 《Applied and environmental microbiology》2009,75(13):4633-4635
Escherichia coli isolates (72 commensal and 10 O157:H7 isolates) were compared with regard to physiological and growth parameters related to their ability to survive and persist in the gastrointestinal tract and found to be similar. We propose that nonhuman hosts in E. coli O157:H7 strains function similarly to other E. coli strains in regard to attributes relevant to gastrointestinal colonization.Escherichia coli is well known for its ecological versatility (15). A life cycle which includes both gastrointestinal and environmental stages has been stressed by both Savageau (15) and Adamowicz et al. (1). The gastrointestinal stage would be subjected to acid and detergent stress. The environmental stage is implicit in E. coli having transport systems for fungal siderophores (4) as well as pyrroloquinoline quinone-dependent periplasmic glucose utilization (1) because their presence indicates evolution in a location containing fungal siderophores and pyrroloquinoline quinone (1).Since its recognition as a food-borne pathogen, there have been numerous outbreaks of food-borne infection due to E. coli O157:H7, in both ground beef and vegetable crops (6, 13). Cattle are widely considered to be the primary reservoir of E. coli O157:H7 (14), but E. coli O157:H7 does not appear to cause disease in cattle. To what extent is E. coli O157:H7 physiologically unique compared to the other naturally occurring E. coli strains? We feel that the uniqueness of E. coli O157:H7 should be evaluated against a backdrop of other wild-type E. coli strains, and in this regard, we chose the 72-strain ECOR reference collection originally described by Ochman and Selander (10). These strains were chosen from a collection of 2,600 E. coli isolates to provide diversity with regard to host species, geographical distribution, and electromorph profiles at 11 enzyme loci (10).In our study we compared the 72 strains of the ECOR collection against 10 strains of E. coli O157:H7 and six strains of E. coli which had been in laboratory use for many years (Table (Table1).1). The in vitro comparisons were made with regard to factors potentially relevant to the bacteria''s ability to colonize animal guts, i.e., acid tolerance, detergent tolerance, and the presence of the Entner-Doudoroff (ED) pathway (Table (Table2).2). Our longstanding interest in the ED pathway (11) derives in part from work by Paul Cohen''s group (16, 17) showing that the ED pathway is important for E. coli colonization of the mouse large intestine. Growth was assessed by replica plating 88 strains of E. coli under 40 conditions (Table (Table2).2). These included two LB controls (aerobic and anaerobic), 14 for detergent stress (sodium dodecyl sulfate [SDS], hexadecyltrimethylammonium bromide [CTAB], and benzalkonium chloride, both aerobic and anaerobic), 16 for acid stress (pH 6.5, 6.0, 5.0, 4.6, 4.3, 4.2, 4.1, and 4.0), four for the ability to grow in a defined minimal medium (M63 glucose salts with and without thiamine), and four for the presence or absence of a functional ED pathway (M63 with gluconate or glucuronate). All tests were done with duplicate plates in two or three separate trials. The data are available in Tables S1 to S14 in the supplemental material, and they are summarized in Table Table22.
Open in a separate window
Open in a separate windowaEight LB controls were run, two for each set of LB experiments: SDS, CTAB, benzalkonium chloride (BAC), and pH stress.bGrowth was measured as either +++, +, or 0 (good, poor, and none, respectively), with +++ being the growth achieved on the LB control plates. “Variable” means that two or three replicates did not agree. All experiments were done at 37°C.c“Anaerobic” refers to use of an Oxoid anaerobic chamber. Aerobic and anaerobic growth data are presented together when the results were identical and separately when the results were not the same or the anaerobic set had not been done. LB plates were measured after 1 (aerobic) or 2 (anaerobic) days, and the M63 plates were measured after 2 or 3 days.dCTAB used at 0.05, 0.2%, and 0.4%.eM63 defined medium (3) was supplemented with glucose, gluconate, or glucuronate, all at 0.2%.fIdentical results were obtained with and without 0.0001% thiamine.gND, not determined. 相似文献
TABLE 1.
E. coli strains used in this studyE. coli strain (n) | Source |
---|---|
ECOR strains (72) | Thomas Whittman |
Laboratory adapted (6) | |
K-12 Davis | Paul Blum |
CG5C 4401 | Paul Blum |
K-12 Stanford | Paul Blum |
W3110 | Paul Blum |
B | Tyler Kokjohn |
AB 1157 | Tyler Kokjohn |
O157:H7 (10) | |
FRIK 528 | Andrew Benson |
ATCC 43895 | Andrew Benson |
MC 1061 | Andrew Benson |
C536 | Tim Cebula |
C503 | Tim Cebula |
C535 | Tim Cebula |
ATCC 43889 | William Cray, Jr. |
ATCC 43890 | William Cray, Jr. |
ATCC 43888 | Willaim Cray, Jr. |
ATCC 43894 | William Cray, Jr. |
TABLE 2.
Physiological comparison of 88 strains of Escherichia coliGrowth medium or condition | Oxygenc | No. of strains with type of growthb
| |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ECOR strains (n = 72)
| Laboratory strains (n = 6)
| O157:H7 strains (n = 10)
| |||||||||||
Good | Poor | None | Variable | Good | Poor | None | Variable | Good | Poor | None | Variable | ||
LB controla | Both | 72 | 0 | 0 | 0 | 6 | 0 | 0 | 0 | 10 | 0 | 0 | 0 |
1% SDS | Aerobic | 69 | 3 | 0 | 0 | 6 | 0 | 0 | 0 | 8 | 0 | 0 | 2 |
5% SDS | Aerobic | 68 | 4 | 0 | 0 | 6 | 0 | 0 | 0 | 8 | 2 | 0 | 0 |
1% SDS | Anaerobic | 53 | 15 | 4 | 0 | 2 | 3 | 1 | 0 | 1 | 7 | 0 | 2 |
5% SDS | Anaerobic | 0 | 68 | 4 | 0 | 0 | 4 | 2 | 0 | 0 | 7 | 0 | 4 |
CTABd (all) | Both | 0 | 0 | 72 | 0 | 0 | 0 | 6 | 0 | 0 | 0 | 10 | 0 |
0.05% BAC | Aerobic | 3 | 11 | 58 | 2 | 0 | 2 | 2 | 2 | 0 | 0 | 9 | 1 |
0.2% BAC | Aerobic | 0 | 1 | 71 | 0 | 1 | 0 | 5 | 0 | 0 | 0 | 10 | 0 |
0.05% BAC | Anaerobic | 2 | 3 | 67 | 0 | 0 | 1 | 5 | 0 | 0 | 0 | 9 | 1 |
0.2% BAC | Anaerobic | 0 | 0 | 72 | 0 | 0 | 0 | 6 | 0 | 0 | 0 | 10 | 0 |
pH 6.5 | Both | 72 | 0 | 0 | 0 | 6 | 0 | 0 | 0 | 10 | 0 | 0 | 0 |
pH 6 | Both | 72 | 0 | 0 | 0 | 6 | 0 | 0 | 0 | 10 | 0 | 0 | 0 |
pH 5 | Both | 70 | 2 | 0 | 0 | 6 | 0 | 0 | 0 | 9 | 0 | 0 | 1 |
pH 4.6 | Both | 70 | 2 | 0 | 0 | 6 | 0 | 0 | 0 | 10 | 0 | 0 | 0 |
pH 4.3 | Aerobic | 14 | 0 | 1 | 57 | 3 | 1 | 2 | 0 | 3 | 2 | 0 | 5 |
pH 4.3 | Anaerobic | 69 | 3 | 0 | 0 | 3 | 1 | 2 | 0 | 1 | 1 | 0 | 0 |
pH 4.1 or 4.2 | Aerobic | 0 | 0 | 72 | 0 | NDg | ND | ||||||
pH 4.0 | Both | 0 | 0 | 72 | 0 | 0 | 0 | 6 | 0 | 0 | 0 | 9 | 1 |
M63 with supplemente | |||||||||||||
Glucose | Aerobicf | 69 | 1 | 2 | 0 | 5 | 0 | 1 | 0 | 9 | 0 | 1 | 0 |
Glucose | Anaerobicf | 70 | 0 | 2 | 0 | 5 | 0 | 1 | 0 | 9 | 0 | 1 | 0 |
Gluconate | Both | 69 | 1 | 2 | 0 | 5 | 0 | 1 | 0 | 9 | 0 | 1 | 0 |
Glucuronate | Aerobic | 68 | 2 | 2 | 0 | 5 | 0 | 1 | 0 | 9 | 0 | 1 | 0 |
Glucuronate | Anaerobic | 69 | 1 | 2 | 0 | 5 | 0 | 1 | 0 | 9 | 0 | 1 | 0 |