共查询到20条相似文献,搜索用时 0 毫秒
1.
Veneta Georgieva-Hanson William J. Schook Saul Puszkin 《Journal of neurochemistry》1988,50(1):307-315
Abstract: Two basic polypeptides, bee venom melittin and poly-L-lysine, induced concentration-dependent destabilization of bovine brain coated vesicles. Ultrastructurally the changes observed were aggregation of clathrin coats and segregation of the vesicle membrane, concomitant with the appearance of elongated cisternae of various sizes. Changes in coated vesicle morphology induced by melittin and poly-L-lysine were concurrent with stimulation of phosphate incorporation in proteins of the coat lattice: M, 33,000 and 100,000. Melittin-stimulated phosphorylation was Ca2+ sensitive and inhibited by EGTA. The initiation of vesicle membrane segregation by melittin, followed by fusion and formation of elongated membrane cisternae, paralleled an increase of endogenous phospholipase A2 activity. The data suggest that a correlation exists between the state of assembly of the coat proteins on coated vesicles and protein phosphorylation. 相似文献
2.
Organization of Brain Synaptic Vesicle Proteins 总被引:1,自引:1,他引:1
Abstract: The topographical arrangement of proteins and glycoproteins of mouse brain synaptic vesicles was studied with trypsin and galactose oxidase, reagents known to be impermeable with respect to other membranes. Incubation of vesicles with trypsin at a concentration of 1 μg/ml extensively degraded seven polypeptides of molecular weights (M.W.) (×10-3) 125, 107, 95, 83, 70, 60, and 36; higher concentrations degraded two additional species of 75,000 and 46,000 M.W., while leaving unaffected polypeptides of M.W. 66,000, 55,000, 33,000, 26,000, 22,000, 19,000, and 16,000. All of the trypsin-sensitive species of greater than 70,000 M.W. stained positively with the periodic acid-Schiff reagent; several other glycoproteins, all of M.W. less than 70,000, were identified, and all of these were insensitive to trypsin. Galactose oxidase-NaB3H4 treatment of synaptic vesicles heavily and exclusively labeled material of greater than 70,000 M.W. All of the polypeptides studied were sensitive to each reagent when the synaptic vesicles were first treated with detergents. Extraction of vesicles with 0.05 M-NaOH partially or completely removed a wide variety of polypeptides, including most of those in the M.W. range 46,000–83,000; none of the glycoproteins was solubilized. Essentially the opposite results were obtained when the vesicles were extracted with 0.5% Triton X-100. Most of the vesicle's species were insensitive to several bisimidate cross-linking reagents. These results suggest that: (a) The polypeptides of M.W. 125K, 107K, 95K, 83K, 75K, 70K, 60K, 46K, and 36K are externally oriented in the vesicle, whereas those of 66K, 55K, 33K, 26K, 22K, 19K, and 16K are internally oriented; (b) the vesicles contain two classes of glycoproteins, one consisting of high-molecular-weight, externally oriented species that are rich in galactose, and the other consisting of low-molecular-weight, internally oriented species of relatively low galactose content; (c) the vesicles contain a large class of nonglycosylated species that are relatively loosely attached to the membrane; and (d) most of the vesicles' polypeptides are probably freely mobile in the membrane. The organization of synaptic vesicle proteins is compared with that of the proteins of synaptosomal plasma membrane, with which the vesicle is believed to fuse. 相似文献
3.
Walter I. Silva William Schook Thomas W. Mittag Saul Puszkin 《Journal of neurochemistry》1986,46(4):1263-1271
Cyclic AMP phosphodiesterase activity in bovine brain coated vesicles displayed a Km of approximately 22 microM for cyclic AMP, a Vmax of 3.2 nmol/min/mg protein, and a Hill coefficient of 1.5, suggesting positive cooperativity. The enzyme activity was stimulated by cyclic GMP with maximal indexes of stimulation ranging between 40 and 300%. Both basal and stimulated phosphodiesterase activities were immunotitrated with polyclonal antibodies against clathrin attached to heat-inactivated, formaldehyde-fixed Staphylococcus aureus cells. The main form of phosphodiesterase activity present in the immunoprecipitated brain coated vesicle preparation also is stimulated by cyclic GMP. The allosteric behavior was modulated by cyclic GMP. All of these properties are typical of type II or cyclic GMP-sensitive phosphodiesterases in addition to their calcium and calmodulin independence. Competition experiments with a series of phosphodiesterase inhibitors, papaverine, 1-methyl-3-isobutylxanthine, and theophylline, showed inhibition of cyclic AMP hydrolysis. Trifluoperazine was inactive at the highest concentration used, 100 microM. These compounds also inhibited the cyclic GMP-stimulated cyclic AMP hydrolysis with trifluoperazine practically inactive. At 5 microM cyclic AMP none of the inhibitors was seen to stimulate the cyclic AMP hydrolytic activity. The presence of an enzyme for the breakdown of cyclic nucleotides in brain coated vesicles may suggest a role for these second messengers in the in vivo functions of this organelle. 相似文献
4.
William J. Schook Carlo Parker Walter I. Silva D. Stave Kohtz Saul Puszkin 《Journal of neurochemistry》1987,49(2):434-441
Clathrin-coated vesicles purified from bovine brain express protein kinase activity on two principal endogenous vesicle-associated substrates: a 50,000-Mr polypeptide (pp50) and clathrin-associated protein2 (CAP2; the faster-migrating clathrin light chain). Various exogenous substrates, e.g., casein, phosvitin, histone II, and histone III, also are phosphorylated. The pp50 protein kinase activity of clathrin-coated vesicles is not modulated by Ca2+, calmodulin, phosphatidylserine, or cyclic AMP. On the other hand, phosphorylation of the other endogenous substrates requires certain activators, including histone, polylysine, polyarginine, or polyethylenimine. Phosphate incorporation into pp50 was sensitive to divalent cations that inhibit sulfhydryl-dependent enzymes in the following order of potency: Zn2+ greater than Hg2+ greater than Cd2+, Cu2+, and Pb2+. Phosphate incorporation into CAP2 with polylysine present was insensitive to divalent cations. The alkylating agents dithiodinitrobenzene, phenacyl bromide, and N-ethylmaleimide inhibited phosphate incorporation into pp50 up to 90% without affecting incorporation into the other substrates. Vanadium pentoxide inhibited phosphorylation of CAP2 but had a minimal effect on pp50. CAP2 kinase activity was separated from the coated vesicle membrane and from dis-assembled clathrin triskelions, coeluting with the assembly polypeptide complex on a Sepharose 4B column. It retained phosphorylation properties similar to those of intact vesicles. These data imply that clathrin-coated vesicle kinases are elements of the coat proteins and may be involved in the assembly/disassembly of clathrin triskelions or interactions of coated vesicles with other cellular components. 相似文献
5.
Loes H. Schrama Pierre N. E. de Graan Henk Zwiers Willem Hendrik Gispen 《Journal of neurochemistry》1986,47(6):1843-1848
In the in vitro hippocampal slice preparation a short tetanus induces long-term potentiation (LTP) and an increase in the post hoc phosphorylation of a 52-kDa protein in synaptosomal plasma membranes (SPM) prepared from these slices. This 52-kDa SPM phosphoprotein closely resembles the predominant phosphoprotein in coated vesicles, pp50, with respect to the insensitivity of its phosphorylation to Ca2+/calmodulin and cyclic AMP. This resemblance prompted us to compare in rat brain the 52-kDa SPM protein with pp50 in isolated coated vesicles. Both proteins appear to be very similar on basis of the following criteria: relative molecular weight on sodium dodecyl sulfate-polyacrylamide gel electrophoresis, peptide mapping, phospho-amino acid content, and isoelectric point. Since coated vesicles are thought to be involved in receptor-mediated endocytosis and membrane recycling, our data suggest that LTP-correlated changes in 52-kDa phosphorylation may reflect increased coated vesicle activity. 相似文献
6.
Montserrat Vendrell Rosa Aligué Oriol Bachs Joan Serratosa 《Journal of neurochemistry》1991,57(2):622-628
The nuclear calmodulin levels have been measured in rat neurons and glial cells. The values are 1.0 and 1.1 γg/ mg of protein, respectively. These levels are about threefold higher than those in the nuclei of rat liver cells. We have also investigated the presence of several calmodulin-binding proteins in the nuclei of both brain cellular types. As similarly observed in the nuclei of liver cells, we detected the presence of a-spectrin and a 62-kDa calmodulin-binding protein (p62) in the nuclei of neurons and glial cells by irnmunoblotting and immunocytochemical methods. Both proteins are enriched in the purified nuclear matrix samples from both cellular types. In contrast to that occurring in rat hepatocytes, we have not been able to detect, by irnmunoblotting methods, caldesmon in the nuclear matrices of neurons and glial cells. The immunocytochemical studies suggest, however, that caldesmon can be present in the nuclei but in a fraction distinct from the nuclear matrices. 相似文献
7.
B. Hoskins C. K. Burton D. D. Liu A. B. Porter I. K. Ho 《Journal of neurochemistry》1986,46(1):303-304
Calmodulin contents of cortex, cerebellum, striatum, diencephalon, and medulla + pons and of subcellular fractions of each region were determined by radioimmunoassay. The diencephalon had the highest level of calmodulin (48.87 +/- 4.56 micrograms/mg protein), whereas medulla + pons had the lowest level (8.01 +/- 0.84 micrograms/mg protein). In all brain regions, the mitochondrial fraction was richest in calmodulin (from 71 to 227 micrograms/mg protein) whereas other areas contained from 6 to 66 micrograms/mg protein. 相似文献
8.
Calmodulin Inhibition of Brain Membrane Phosphorylation 总被引:1,自引:3,他引:1
Abstract: Calmodulin has been found to inhibit the phosphorylation of rat brain membrane proteins of molecular weight 14,900–18,900 in a dose-dependent manner. This phenomenon was seen under conditions in which calmodulin simultaneously produced a stimulatory effect on the phosphorylation of proteins of molecular weight 51,000 and above. This inhibition required calcium, but was not sensitive to cyclic AMP or increasing ATP concentration and was not due to activation of a phosphatase. These results suggest either that calmodulin induces its inhibitory effects on phosphorylation by an indirect mechanism via a presently unknown pathway, or that in addition to the kinase stimulated by calmodulin, there exists another distinct kinase which is inhibited by calmodulin. 相似文献
9.
Costas C. Loullis Lida Antonian Charles E. Rauh Karsten Fliegner Joseph Coupet Arnold S. Lippa 《Journal of neurochemistry》1985,44(4):1111-1115
A simple, sensitive, and efficient HPLC method for the determination of calmodulin levels in brain tissue extracts is described. The assay is linear with respect to both calmodulin and protein concentrations. The specificity and validity of this assay for calmodulin is demonstrated by parallel radioimmunoassay determinations which give equivalent results. Determination of calmodulin levels in various brain regions revealed a high concentration of this protein in the hypothalamus, by comparison to other areas examined. 相似文献
10.
Regional Distribution of Calmodulin Activity in Rat Brain 总被引:1,自引:1,他引:1
L-W. Zhou J. A. Moyer† E. A. Muth† B. Clark† M. Palkovits B. Weiss 《Journal of neurochemistry》1985,44(5):1657-1662
Calmodulin activity in 68 discrete areas of rat brain, obtained by micropunch technique, was assessed by its capacity to activate a calmodulin-sensitive form of phosphodiesterase. In general, the activity of calmodulin was higher in the telencephalon, limbic system, and hypothalamus than in the mesencephalon, pons, cerebellum, and medulla. However, there were substantial differences in calmodulin activity in discrete nuclei of each region. The regional distribution of calmodulin activity in rat brain does not appear to correlate with that of any of the known putative neurotransmitters or peptides. 相似文献
11.
Gloria Gonzalez-Calero Mairena Martin Ana Cubero Antonio Andrés 《Journal of neurochemistry》1990,55(1):106-113
Clathrin-coated vesicles purified from bovine brain express adenosine A1 receptor binding activity. N6-Cyclohexyl[3H]adenosine [( 3H]CHA), an agonist for the A1 receptor, binds specifically to coated vesicles. High and low agonist affinity states of the receptor for the radioligand [3H]CHA with KD values of 0.18 and 4.4 nM, respectively, were detected. The high purity of coated vesicles was established by assays for biochemical markers and by electron microscopy. Binding competition experiments using agonists (N6CHA, N-cyclopentyladenosine, 5'-(N-ethylcarboxamido)adenosine, and N6-[(R)- and N6-[(S)-phenylisopropyl]adenosine) and antagonists (theophylline, 3-isobutyl-1-methylxanthine, and caffeine) confirmed the typical adenosine A1 nature of the binding site. This binding site presents stereospecificity for N6-phenylisopropyladenosine, showing 33 times more affinity for N6-[(R)- than for N6-[(S)-phenylisopropyl]adenosine. The specific binding of [3H]CHA in coated vesicles is regulated by guanine nucleotides. [3H]CHA specific binding was decreased by 70% in the presence of the hydrolysis-resistant GTP analogue guanyl-5-yl-imidodiphosphate. Bovine brain coated vesicles present adenylate cyclase activity. This activity was modulated by forskolin and CHA. The results of this study support the evidence that adenosine A1 receptors present in coated vesicles are coupled to adenylate cyclase activity through a Gi protein. 相似文献
12.
Adrenal Chromaffin Cell Calmodulin: Its Subcellular Distribution and Binding to Chromaffin Granule Membrane Proteins 总被引:1,自引:2,他引:1
Bovine adrenal medullae were homogenized in the presence or in the absence of EGTA and different subcellular fractions were prepared by differential and density gradient centrifugations. In the presence of the chelating agent, 69% of the total calmodulin, measured by radioimmunoassay, was present in the cytosol; the rest was bound to different membrane-containing fractions (nuclei, microsomal, and crude granule fraction). When the chelating agent was omitted, 43% of the calmodulin was present in the cytosol, the remaining calmodulin being membrane-bound. Further resolution of the crude granule fraction by sucrose density centrifugation demonstrated that the distribution of calmodulin in the density gradient was similar to the distribution of chromaffin granules rather than to that of mitochondria, Golgi elements, and lysosomes. In this case, there was also more calmodulin bound to chromaffin granules when EGTA was omitted from the density gradient. Experiments with 125I-calmodulin indicated the presence of high-affinity binding sites (KD = 1.3 X 10(-8) M; Bmax = 30 pmol/mg protein) for calmodulin in chromaffin granule membranes. Further, photoaffinity crosslinking experiments with 125I-calmodulin followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography indicated the presence of three calmodulin-binding polypeptide complexes (84,000; 41,000; and 38,000 daltons) in chromaffin granule membranes. These polypeptides were not labelled when either Ca2+ was omitted or an excess of nonradioactive calmodulin was present in the photolysis buffer, indicating the Ca2+ dependency and the specificity of the interaction. On the basis of the results described, it is suggested that the cellular levels of Ca2+ control the cellular distribution of calmodulin and its binding to specific chromaffin granule membrane proteins. Further, it is also suggested that the interactions between calmodulin and granule proteins might play a role in stimulus-secretion coupling. 相似文献
13.
Ping-Yue Pan Julia Marrs Timothy A. Ryan 《The Journal of biological chemistry》2015,290(37):22593-22601
A long standing question in synaptic physiology is how neurotransmitter-filled vesicles are rebuilt after exocytosis. Among the first steps in this process is the endocytic retrieval of the transmembrane proteins that are enriched in synaptic vesicles (SVs). At least six types of transmembrane proteins must be recovered, but the rules for how this multiple cargo selection is accomplished are poorly understood. Among these SV cargos is the vesicular glutamate transporter (vGlut). We show here that vGlut1 has a strong influence on the kinetics of retrieval of half of the known SV cargos and that specifically impairing the endocytosis of vGlut1 in turn slows down other SV cargos, demonstrating that cargo retrieval is a collective cargo-driven process. Finally, we demonstrate that different cargos can be retrieved in the same synapse with different kinetics, suggesting that additional post-endocytic sorting steps likely occur in the nerve terminal. 相似文献
14.
The inhibitory effect of calmodulin on the assembly of mature and immature rat brain microtubules was compared with that of the two major structural domains of this protein, the COOH-terminal fragment (amino acids 78-148) and the NH2-terminal fragment (amino acids 1-77), to determine the calmodulin structural domain responsible for the inhibitory effect on microtubule assembly. Microtubules prepared during the early stages of brain development, i.e., during intensive neurite outgrowth, are more sensitive to inhibition by the Ca2(+)-calmodulin complex than those obtained from adult brain. Significant inhibition of immature microtubule assembly was observed with both fragments in the absence of Ca2+, but the effects were more important when Ca2+ was present. With adult brain microtubules, the two fragments remained without effect on assembly in the absence of Ca2+, whereas some inhibition was seen in its presence but only with the COOH-terminal polypeptide. Under all these conditions, the COOH-terminal fragment was always more active than the NH2-terminal fragment on microtubule polymerization, albeit to a lesser extent than native calmodulin. 相似文献
15.
Calmodulin Involvement in Stress- and Corticosterone-Induced Down-Regulation of Cyclic AMP-Generating Systems in Brain 总被引:1,自引:2,他引:1
Manipulation of the hypothalamic-pituitary-adrenal axis selectively alters alpha-adrenergic potentiation of the cyclic AMP response to beta-adrenergic receptor stimulation in rat cerebral cortex. Calcium has been implicated in this alpha-receptor-mediated response, which may involve activation of phospholipases A2 and C and/or calmodulin-dependent adenylate cyclase. We therefore investigated the effects of stress and corticosterone (CORT) on membrane calmodulin-dependent adenylate cyclase and noradrenaline-stimulated cyclic AMP accumulation in brain slices. Repeated stress for 21 days selectively attenuated the adenylate cyclase response to calcium/calmodulin in cerebral cortex membranes, without affecting basal or forskolin-stimulated enzyme activity. There was no such effect in hippocampal membranes. The same pattern of response was elicited by daily CORT injection (50 mg/kg s.c.) for 21 days, while vehicle injection had no effect. CORT in the drinking water (400 micrograms/ml) elicited the same reduction of body weight as CORT injections, but had no effect on calmodulin adenylate cyclase. In parallel with calmodulin adenylate cyclase, cyclic AMP accumulation elicited by noradrenaline in slices of cerebral cortex was suppressed by both stress and daily CORT injections, with smaller effects observed with CORT in the drinking water. Unlike calmodulin adenylate cyclase, noradrenaline-stimulated cyclic AMP accumulation in hippocampus showed the same suppression as that in cerebral cortex. These results are discussed in relation to the differential mode of coupling of alpha-adrenergic receptors to cyclic AMP-generating systems between brain regions.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
16.
Jacques J. H. Hens A. Beate Oestreicher Marina De Wit Arnoud Marquart Willem-Hendrik Gispen Pierre N. E. De Graan 《Journal of neurochemistry》1996,66(5):1933-1942
Abstract: The nervous tissue-specific protein B-50 (GAP-43), which has been implicated in the regulation of neurotransmitter release, is a member of a family of atypical calmodulin-binding proteins. To investigate to what extent calmodulin and the interaction between B-50 and calmodulin are involved in the mechanism of Ca2+ -induced noradrenaline release, we introduced polyclonal anti-calmodulin antibodies, calmodulin, and the calmodulin antagonists trifluoperazine, W-7, calmidazolium, and polymyxin B into streptolysin-O-permeated synaptosomes prepared from rat cerebral cortex. Anti-calmodulin antibodies, which inhibited Ca2+ /calmodulin-dependent protein kinase II autophosphorylation and calcineurin phosphatase activity, decreased Ca2+ -induced noradrenaline release from permeated synaptosomes. Exogenous calmodulin failed to modulate release, indicating that if calmodulin is required for vesicle fusion it is still present in sufficient amounts in permeated synaptosomes. Although trifluoperazine, W-7, and calmidazolium inhibited Ca2+ -induced release, they also strongly increased basal release. Polymyxin B potently inhibited Ca2+ -induced noradrenaline release without affecting basal release. It is interesting that polymyxin B was also the only antagonist affecting the interaction between B-50 and calmodulin, thus lending further support to the hypothesis that B-50 serves as a local Ca2+ -sensitive calmodulin store underneath the plasma membrane in the mechanism of neurotransmitter release. We conclude that calmodulin plays an important role in vesicular noradrenaline release, probably by activating Ca2+ /calmodulin-dependent enzymes involved in the regulation of one or more steps in the release mechanism. 相似文献
17.
Phosphorylation Modulates Calpain-Mediated Proteolysis and Calmodulin Binding of the 200-kDa and 160-kDa Neurofilament Proteins 总被引:4,自引:0,他引:4
Jeffrey A. Greenwood Juan C. Troncoso † Anthony C. Costello Gail V. W. Johnson 《Journal of neurochemistry》1993,61(1):191-199
Abstract: The effects of enzymatic dephosphorylation on neurofilament interaction with two calcium-binding proteins, calpain and calmodulin, were examined. Dephosphorylation increased the rate and extent of 200-kDa neurofilament protein proteolysis by calpain. In contrast, dephosphorylation of the 160-kDa neurofilament protein did not alter the rate or extent of calpain proteolysis. However, the calpain-induced breakdown products of native and dephosphorylated 160-kDa neurofilament protein were different. Dephosphorylation did not change the proteolytic rate, extent, or breakdown products of the 68-kDa neurofilament protein. Calmodulin binding to the purified individual 160- and 200-kDa neurofilament proteins was increased following dephosphorylation. These results suggest that phosphorylation may regulate the metabolism and function of neurofilaments by modulating interactions with the calcium-activated proteins calpain and calmodulin. 相似文献
18.
Calmodulin binding proteins (CBPs) have been identified using a gel overlay technique for fractions isolated from Torpedo electromotor nerve endings. Different fractions possessed characteristic patterns of CBPs. Synaptosomes showed five major CBPs--Mr 220,000, 160,000, 125,000, 55,000, and 51,000. Polypeptides of Mr 55,000 and 51,000 were found in the cytoplasm and the others are membrane-associated. The Triton X-100-insoluble cytoskeleton of synaptosomes was isolated in the presence or absence of calcium. The major CBPs had Mr of 19,000, 18,000, and 16,000. In the presence of calcium, no other CBPs were seen. In the absence of calcium, an Mr 160,000 polypeptide was present in the Triton cytoskeleton. Synaptic vesicles showed CBPs of Mr 160,000, 25,000, and 20,000. Membrane fragments enriched in acetylcholine receptors contained two major CBPs, Mr 160,000 and 125,000, together with a less prominent protein at Mr 26,000. A protein of Mr similar to that of fodrin was present in synaptosomes and acetylcholine receptor membrane fragments, but only in small amounts relative to the other polypeptides observed. The heavy and light chains of clathrin-coated vesicles from pig brain did not bind calmodulin, although strong labelling of an Mr 47,000 polypeptide was found. Results showed that calelectrin does not bind calmodulin. The possible identity of the calmodulin binding proteins is discussed. 相似文献
19.
Saul Puszkin Jhumku D. Kohtz William J. Schook D. Stave Kohtz 《Journal of neurochemistry》1989,53(1):51-63
A panel of monoclonal antibodies (mAbs) was developed to identify polypeptides sorted in subtypes of brain coated vesicles (CVs) and to separate these by immunoprecipitation. The corresponding antigen of some of the mAbs elicited by CV components was present also in synaptosomal plasma membrane, synaptic vesicles, or microsomes. On immunoblots the mAbs reacted with constitutive brain CV proteins, with cargo molecules, and with a novel CV component that interacts with the actin cytoskeleton. Analysis of radioiodinated brain CVs immunoprecipitated with a tubulin antibody revealed that all brain CVs contained tubulin. The mAb A-7C11 recognized a 40-kilodalton (kDa) polypeptide on the clathrin coat and immunoprecipitated one-quarter of the total brain CVs. The mAb S-11D9 reacted with a 44-kDa antigen and immunoprecipitated 25% of the CVs. This antigen (44 kDa) was present in synaptic vesicles and synaptosomal membrane as well. Moreover, this mAb (S-11D9) reacted with a polypeptide of 56 kDa detected only in synaptosomal membrane. A mAb (C-10B2) that reacted with one of the clathrin light chains (LCb) immunoprecipitated 90% of the brain CVs. One of the mAbs immunoprecipitated a CV subtype that displayed a reversed ratio of the clathrin LCs (LCa greater than LCb). Each of the mAbs yielded different immunofluorescent staining patterns of vesicles in culture cell types that included nerve growth factor-differentiated PC12 cells, neuroblastoma cells, and Madin Darby bovine kidney cells. The data suggest that in brain tissue there is a heterogeneous population of CVs with different polypeptide compositions and subcellular distributions and that each of these subtypes performs a different role in nerve cells. 相似文献
20.
Calmodulin signaling via the IQ motif 总被引:21,自引:0,他引:21
The IQ motif is widely distributed in both myosins and non-myosins and is quite common in the database that includes more than 900 Pfam entries. An examination of IQ motif-containing proteins that are known to bind calmodulin (CaM) indicates a wide diversity of biological functions that parallel the Ca2+-dependent targets. These proteins include a variety of neuronal growth proteins, myosins, voltage-operated channels, phosphatases, Ras exchange proteins, sperm surface proteins, a Ras Gap-like protein, spindle-associated proteins and several proteins in plants. The IQ motif occurs in some proteins with Ca2+-dependent CaM interaction where it may promote Ca2+-independent retention of CaM. The action of the IQ motif may result in complex signaling as observed for myosins and the L-type Ca2+ channels and is highly localized as required for sites of neuronal polarized growth and plasticity, fertilization, mitosis and cytoskeletal organization. The IQ motif associated with the unconventional myosins also promotes Ca2+ regulation of the vectorial movement of cellular constituents to these sites. Additional regulatory roles for this versatile motif seem likely. 相似文献