首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lectins that agglutinate red blood cells (RBC) were demonstrated in Anopheles gambiae mosquito haemolymph and gut extracts. No apparent differences in haemagglutinin titres were detected between male and female mosquitoes and overall agglutinin levels were not increased following a bloodmeal. Titres were highest in the haemolymph and midgut extracts versus human AB, horse, chicken and goat RBCs and in hindgut against human AB, chicken and sheep; foregut extract gave relatively low titres. Adsorption of haemolymph and gut extracts with selected RBCs coupled with carbohydrate inhibition and the use of enzyme-treated RBCs revealed the presence of multiple (hetero-) agglutinins. An.gambiae lectins were specific for (1-1)-, (1-4)- or (1-6)-linked glucose based disaccharides, glucose and its (1-2) or (1-3) linkages with fructose and, to a lesser extent, aminated or N-acetylated glucose, or galactose and its deoxy derivatives. This study presents the first report of the occurrence of heterogenous anti-RBC agglutinins in haemolymph and gut extracts of the mosquito An.gambiae, together with the sugar-binding specificities of these lectins.  相似文献   

2.
Abstract. The human body louse, Pediculus humanus , showed eighteen midgut proteins ranging between 12 and 117 kDa, when analysed by SDS-PAGE electrophoresis. Seven of them (12 kDa, 17 kDa, 29 kDa, 35 kDa, 40 kDa, 55 kDa and 97 kDa) were major bands based on their intensity of staining. The immunization of rabbits with a midgut extract elicited the production of protective polyclonal antibodies. These antibodies reacted strongly with all major midgut proteins as well as with 63 kDa and 117 kDa proteins when tested by the Western blot technique. The analysis of the proteins revealed that the 12 kDa, 25 kDa, 29 kDa, 35 kDa, 45 kDa, 87 kDa and 97 kDa proteins are glycosylated and none of them contained a lipid moiety. By electroelution, the proteins of 35 kDa and 63 kDa were purified. On trypsinization, the proteins of 35 kDa and 63 kDa produced four major fragments (F, F2, F3, and F4) when resolved on a 18% SDS-PAGE. The Fj fragment of the 35 kDa protein reacted with me polyclonal antibodies by the immunoblot technique.  相似文献   

3.
Abstract: Highly purified casein kinase II (CK II) isozymes from bovine brain gray matter (BBGM) were obtained by means of a new purification procedure consisting of one phosphocellulose and three Mono-Q steps. The phosphocellulose eluate showed two BBGM-CK II activities. The first minor component (BBGM-CK IIa) was eluted with 0.9 M NaCl and the major component was eluted at 1.1 M NaCl (BBGM-CK IIb). The protein complexes responsible for these two activities were comprised of three subunits, i.e., α (40 kDa), α' (38 kDa), and β (28 kDa), with various subunit ratios. The two isozymes displayed the same behavior on Superose 12 fast protein liquid chromatographic gel filtration and sucrose density centrifugation. BBGM-CK IIa and b showed chromatographic and biochemical differences including differing K m for ATP and GTP and K i for heparin and 2,3-bisphosphoglycerate. The properties of the main peak (BBGM-CK IIb) were studied in detail. The stimulatory effect of Mg2+, Mn2+, and Co2+ was highly dependent both on the nature of the substrate and on ionic type and concentration. It is surprising that with phosvitin as substrate, BBGM-CK IIb was fully active even in the absence of Mg2+ and NaCl. The inhibitory effect of heparin and the stimulatory effects of NaCl, KCl, spermine, and polylysine were highly dependent on the ionic strength, buffer type, and substrate. BBGM-CK II isozymes phosphorylated stathmine in the presence of polylysine, but the requirement for polybasic compounds was not absolute, as is the case with calmodulin and clathrin β-light chain. The unusual chromatographic behavior and biochemical properties of these BBGM-CK II isozymes, compared with the classical CK II, could be explained at least in part by their subunit ratios.  相似文献   

4.
Curvularia lunata var. aeria was grown on yeast extract, peptone and carboxymethylcellulose (YPC) medium for the production of extracellular rifamycin oxidase. The enzyme was partially purified through a Sephadex G-75 column. The half lives of rifamycin oxidase at 30° and 40°C were 9 d and 100 min, respectively. The activation and deactivation energies of the partially purified enzyme, calculated from Arrhenius plots, were 5.80 and 35.10 kcal mol-1 respectively. The enzyme exhibited a K m (rifamycin B) value of 0.67 mmol l-1 and a V max of 11 μmol h-1 ml. Three metal ions, Fe2+, Ag+ and Hg2+, inhibited the enzyme in the 10–20 mmol l-1 metal ion concentration range. Catalytic activity was not affected by the chelating agent, EDTA.  相似文献   

5.
Abstract— Recent reports have suggested that a major proportion of [3H]kainate binding in goldfish brain is to a novel form of G-protein-linked glutamate receptor. Here we confirm that guanine nucleotides decrease [3H]kainate binding in goldfish brain membranes, but that binding is also reduced to a similar extent under conditions where G-protein modulation should be minimised. Inclusion of GTPγS resulted in an approximately twofold decrease in the affinity of [3H]kainate binding and a 50% reduction in the apparent B max values in both Mg2+/Na+ and Mg2+/Na+-free buffer when assayed at 0°c. The pharmacology of [3H]kainate binding is similar to that of well-characterised ionotropic kainate receptors but unlike that of known me-tabotropic glutamate receptors, with neither 1 S ,3 R -amino-1,3-cyclopentanedicarboxylic acid (1 S ,3 R -ACPD) nor ibo-tenic acid being effective competitors. The molecular mass of the [3H]kainate binding protein, as determined by radiation inactivation, was 40 kDa, similar to the subunit sizes of other lower vertebrate kainate binding proteins that are believed to comprise ligand-gated ion channels. Furthermore, GTP-γS also inhibited the binding of the non-NMDA receptor-selective antagonist 6-[3H]cyano-7-ni-troquinoxaline-2,3-dione. These data strongly suggest that the regulatory interaction between guanine nucleotides and [3H]kainate and 6-[3H]cyano-7-nitroquinoxaline-2,3-dione binding is complex and involves competition at the agonist/antagonist binding site in addition to any G-protein-mediated modulation.  相似文献   

6.
Abstract. Nitellopsis cells grown in fresh water have a relatively low cytoplasmic Na+ (11 mol m−3) and high cytoplasmic K+ (90 mol m−3) content. A 30-min treatment with 100 mol m−3 external NaCl resulted in a high [Na+]c (90 mol m−3) and a low [K+]c (33 mol m−3), Subsequent addition of external Ca2+ (10 mol m−3) prevented Na+ influx and then [Na+]c decreased slowly. Changes in [K+]c were opposite to [Na+]c. During the recovery time vacuolar Na+ increased, while vacuolar K+ decreased. Since all these processes proceeded also under ice-cold conditions, the restoration of original cytoplasmic ion compositions is suggested to be a passive nature. The notion that the passive movement of ions across the tonoplast can act as an effective and economic mechanism of salt tolerance under transient or under mild salt stress conditions is discussed.  相似文献   

7.
Abstract: Retinoic acid-treated murine P19 embryonal carcinoma cells differentiate into cells with neuronal morphology that display typical neuronal markers. In this study, the presence of glutamate receptors linked to Ca2+-signaling mechanisms on these neurons was demonstrated by testing the effects of glutamate agonists and antagonists on the intracellular calcium ion concentration ([Ca2+]i). Glutamate (1 m M ) induced either sustained or transient increases in [Ca2+]i. The sustained glutamate-induced increase in [Ca2+]i was mimicked by NMDA (40 µ M ). The NMDA-triggered [Ca2+]i response was abolished by incubating the cells in Ca2+-free medium or by pretreating them with Mg2+ (2 m M ) or MK-801 (0.1 µ M ). These responses were unaffected by the non-NMDA antagonist CNQX (10 µ M ), but they required glycine (3–30 µ M ). Kainate (40 µ M ) and AMPA (40 µ M ) did not affect [Ca2+]i. Without external Ca2+, glutamate triggered transient, sometimes oscillating, increases in [Ca2+]i. These responses were mimicked by the metabotropic agonist trans -(1 S ,3 R )-1-amino-1,3-cyclopentanedicarboxylic acid (300 µ M ). These results suggest that neurons derived from P19 embryonal carcinoma cells have NMDA and metabotropic, but not AMPA/kainate receptors, which are linked to Ca2+-signaling mechanisms. These cells could provide a consistent and reproducible model with which to study neuronal differentiation, neurotoxicity, and glutamate receptor-signaling mechanisms.  相似文献   

8.
Abstract Inducible (1 R ,2 S )-1,2-dihydroxy-3,5-cyclohexadiene-l,4-dicarboxylate (diene-diol) dehydrogenase was found in extracts of Comamonas testosteroni T-2 grown in p -toluate-or terephthalate-salts medium and it was purified using anion exchange, hydrophobic interaction and gel filtration chromatography. The enzyme is a homodimer with subunit M r 39000. It had a specific activity of 500 mkat/kg of protein and was activated by the addition of Fe2+. The dehydrogenase converted 1 mol diene-diol and 1 mol NAD+ to 1 mol protocatechuic acid, 1 mol NADH and 1 mol CO2. Apparent K m-values of 43 μM (NAD+) and about 90 μM (diene-diol) were determined. The hydride ion was transferred to the si face of NAD+.  相似文献   

9.
Adenine phosphoribosyltransferase (APRT; EC 2. 4,2. 7) from Arabidopsis thaliana was purified approximately 3800-fold, to apparent homogeneity. The purification procedure involved subjecting a leaf extract to heat denaturation, (NH4)2SO4 precipitation, Sephadex G-25 salt separation, ultracentrifugation and liquid chromatography on Diethylaminoethyl Sephacel, Phenyl Sepharose CL-4B, Blue Sepharose CL-6B and adenosine 5'-monophosphate-Agarose. The purified APRT was a homodimer of approximately 54 kDa and it had a specific activity of approximately 300 μmol (mg total protein)-1 min-1. Under standard assay conditions, the temperature optimum for APRT activity was 65°C and the pH optimum was temperature dependent. High enzyme activity was dependent upon the presence of divalent cations (Mn2+ or Mg2+). In the presence of MnCl2+ other divalent cations (Mg2+, Ca2+, Ba2+, Hg2+ and Cd2+) inhibited the APRT reaction. Kinetic studies indicated that 5-phosphoribose-1-pyrophosphate (PRPP) caused substrate inhibition whereas adenine did not. The Km for adenine was 4.5±1.5 μ M , the Km for PRPP was 0.29±0.06 m M and the Ki for PRPP was 1.96±0.45 m M . Assays using radiolabelled cytokinins showed that purified APRT can also catalyze the phosphoribosylation of isopentenyladenine and benzyladenine. The Km for benzyladenine was approximately 0.73±0.06 m M  相似文献   

10.
1. Although there is some evidence that exposure to heavy metals can disrupt osmoregulation in crustaceans, most studies have been carried out on relatively pollution-tolerant, marine or estuarine species. Consequently the effects of water-borne zinc (Zn) on osmoregulation by the freshwater amphipod, Gammarus pulex (L.), from two populations that differ in their heavy metal sensitivity, have been compared.
2. 'Clean' site animals (Clowne, Derbyshire) exhibited a marked haemoconcentration (after 4 days at 37·0 μmol Zn l–1, 5 days at 18·2 μmol Zn l–1) shown by an increase in haemolymph osmotic pressure (OPh) and [Na+] and [K+]. However, after 5 days at 37·0 μmol Zn l–1, haemolymph of survivors exhibited an OPh significantly less than controls. 'Contaminated' site animals showed a reduction in OPh (but not ions) only after 5 days at 76·2 μmol Zn l–1.
3. There were differences in the threshold and nature of osmoregulatory response to Zn between animals from 'clean' and 'contaminated' sites, but only at concentrations in excess of those (a) known to affect growth and reproduction in 'clean' site animals and (b) occurring at the 'contaminated' site. Clearly population differences in physiological capacity and tolerance do exist but their ecological significance is unclear.  相似文献   

11.
It has long been assumed that Al3+ is an important rhizotoxic ion in acid soils around the world, but the toxicity of Al3+ relative to mononuclear hydroxy-Al [AlOH2+ and Al(OH)+2] has been examined in detail only for an Al-sensitive wheat variety ( Triticum aestivum L. cv. Tyler). That plant appears to be sensitive to Al3+ but not to AlOH2+ and Al(OH)+2. New experiments, and reanalyses of previously published experiments, provide evidence that dicotyledonous species may be sensitive to mononuclear hydroxy-Al and that Al3+ may be nontoxic, or less toxic, to those plants. Despite these consistently measured differences between wheat and the dicotyledons, the determination of relative toxicities (Al3+ vs mononuclear hydroxy-Al) may be an intractable problem. Because of hydrolysis equilibria, (AlOH2+) and (Al(OH)+2) are equivalent to (Al3+)k1(H+)−1 and (l3+)k2(H+)−2, respectively, in which k1 and k2 are the first and second hydrolysis constants (braces denote activities). Thus, any expression of root elongation as a function of mononuclear hydroxy-Al can be alternatively expressed as a function of (Al3+) and (H+). Toxicity attributed to mononuclear hydroxy-Al may actually be Al3+ toxicity that increases as pH rises (i.e. Al3+ toxicity ameliorated by H+).  相似文献   

12.
Abstract Monoclonal antibodies (mAbs) have been produced by immunizing BALB/C mice with whole M+ bacteria in incomplete Freund adjuvant and the resulting mAbs for M3 protein have been selected by an indirect immuno-fluorescent technique using formaldehyde-fixed M+ and M bacteria. Four mAbs reacted with a 65 kDa protein in an extract obtained from the cell wall of M+ bacteria after treatment with N -acetyl muramidase and lysozyme. The purified 65 kDa protein neutralized the phagocytic activity of rabbit anti-M3 antibody. The N-terminal amino acid sequence of the 65 kDa protein was identical with that of protein generated by the M3 gene which has been previously cloned and sequenced. The evidence indicates that the 65 kDa protein is M3 protein. The M3 protein bound not only human fibrinogen but also human serum albumin (HSA). When the M3 protein was purified by gel-filtration and ion-exchange chromatography in the absence of phenylmethyl sulfonyl fluoride (PMSF), four fragments (35 kDa, 32 kDa, 30 kDa, and 25 kDa) in addition to the intact molecule appeared. N-terminal amino acid sequence analysis showed that 35 kDa and 25 kDa fragments were ANAAD and DARSV, respectively, being identical at positions 1–5 and 198–202 to the M3 gene derived protein. Therefore, the 35 kDa and 25 kDa fragments, which were presumed to be cleavage products, may be derived from the C-terminal part and N-terminal part of the intact molecule, respectively. When the effect of purified M3 protein in the bactericidal activity of normal human blood in the presence of M bacteria was investigated, the M3 protein was responsible for the organism's resistance to attack by phagocytic cells.  相似文献   

13.
Abstract. Rates of proton extrusion and potassium (86Rb) influx by intact roots of barley ( Hordeum vulgare cvs . Fergus, Conquest and Betzes) plants were simultaneously measured in short-term (15min) experiments. The nature and extent of apparent coupling between these ion fluxes was explored by manipulating conditions of temperature, pH and cation composition and concentration during flux determinations. In addition, the influence of salt status upon these fluxes was examined. At low K+ concentrations (0.01 to 1 mol m−3), H+ efflux and K+ influx were strongly correlated in both low- and high-K+ roots, although K+: H+ exchange stoichiometries were almost consistently greater than 2:1. At higher concentrations (1 to 5 mol m−3), H+ efflux was either reduced or remained unchanged while K+ influxes increased. In the presence of Na2SO4, rates of H+ extrusion demonstrated similar cation dependence, although below 10 mol m−3 Na2SO4, H+ fluxes were generally 50% lower than in equivalent concentrations of K2SO4. These observations are considered in the context of current hypotheses regarding the mechanisms of k+/H+ exchange.  相似文献   

14.
Rainbow trout body mucus dialysed with acidified distilled water at pH 7,5 and 3 experienced ion depletion which was greatest at pH 3 and minimal between pH 7 and 5. Mucus Na+ loss is exacerbated in the presence of 1 mg I−1 aluminium as A12(SO4), at pH 5 and 7. Al2(SO4), causes greater depletion of Na+ from mucus than A1C13. A lethal level of zinc (2 mg 1−1) does not deplete mucus Na or K+, unlike a lethal level of aluminium (1 mg 1−1) at pH 7. The results are discussed in terms of the ionoregulatory role of mucus in heavy metal and acid toxicity.  相似文献   

15.
Increases in cytosolic free Ca2+ ([Ca2+]cyt) are common to many stress-activated signalling pathways, including the response to saline environments. We have investigated the nature of NaCl-induced [Ca2+]cyt signals in whole Arabidopsis thaliana seedlings using aequorin. We found that NaCl-induced increases in [Ca2+]cyt are heterogeneous and mainly restricted to the root. Both the concentration of NaCl and the composition of the solution bathing the root have profound effects on the magnitude and dynamics of NaCl-induced increases in [Ca2+]cyt. Alteration of external K+ concentration caused changes in the temporal and spatial pattern of [Ca2+]cyt increase, providing evidence for Na+-induced Ca2+ influx across the plasma membrane. The effects of various pharmacological agents on NaCl-induced increases in [Ca2+]cyt indicate that NaCl may induce influx of Ca2+ through both plasma membrane and intracellular Ca2+-permeable channels. Analysis of spatiotemporal [Ca2+]cyt dynamics using photon-counting imaging revealed additional levels of complexity in the [Ca2+]cyt signal that may reflect the oscillatory nature of NaCl-induced changes in single cells.  相似文献   

16.
Abstract: Prior treatment of NG108-15 cells with phosphatase inhibitors including okadaic acid and calyculin A inhibited the elevation of cytosolic Ca2+ concentration ([Ca2+]i) induced by bradykinin by ∼63%. This inhibition was dependent on the concentration of okadaic acid with an IC50 of 0.15 n M . Okadaic acid treatment only lowered the maximal response of [Ca2+]i increase and had no effect on the EC50 value for bradykinin regardless of the presence of extracellular Ca2+. Neither the capacity of 45Ca2+ accumulation within intracellular nonmitochondrial Ca2+ stores nor the magnitude of [Ca2+]i increase induced by thapsigargin was reduced by the treatment of okadaic acid. In contrast, the same phosphatase inhibitor treatment inhibited the bradykinin-evoked inositol 1,4,5-trisphosphate (IP3) generation, the Mn2+ influx, and the capacity of mitochondrial Ca2+ accumulation. Furthermore, the sensitivity of IP3 in the Ca2+ release was suppressed by okadaic acid pretreatment. Our results suggest that the reduction of bradykinin-induced [Ca2+]i rise by the promotion of protein phosphorylation was attributed to the reduced activity of phospholipase C, the decreased sensitivity to IP3, and the slowed rate of Ca2+ influx. Thus, phosphorylation plays a role in bradykinin-sensitive Ca2+ signaling cascade in NG108-15 cells.  相似文献   

17.
Processing tomato ( Lycopersicon esculentum Mill. cv. UC82B) plants were subjected to moderate levels of water deficit and salinity (Na2SO4/CaCl2) in sand culture. Fruit water content and the relative contributions of organic and inorganic constituents to fruit solute potential (Ψ) and soluble solids content were determined throughout development. Fruit Ψ averaged –0.63, –0.86 and –0.77 MPa in the control, salinity and water deficit plants, respectively. Reduced net water import and maintenance of solute accumulation, irrespective of water import, accounted for the reductions in Ψ of stressed fruits. Mineral ions (Na+, K+, Ca2+, Mg2+, Cl and SO2-4) contributed –0.31 MPa to Ψ in salinized fruit, compared with –0.19 MPa in control and water deficit treatments. Changes in net carbon accumulation were not observed among treatments, despite considerable differences in fruit K+ status. Starch accumulation in immature fruit was increased and hexose accumulation was decreased by both salinity and water deficit. Maximum starch levels were negatively correlated with total fruit Ψ, but were independent of fruit K+. Organic acid levels were generally higher throughout development in salinized plants, relative to control plants, and correlated with increased inorganic cation rather than anion accumulation in these fruits.  相似文献   

18.
An acid phosphatase (EC 3.1.3.2.) from the embryonic axes of chickpea seeds ( Cicer arietinum L. cv. Castellana) was purified by ammonium sulphate precipitation, chromatography on Sephacryl S-200 and polyacrylamide gel electrophoresis. The preparation has an apparent molecular weight of 39 kDa, pH optimum for p -nitrophenylphosphate hydrolysis of 5.25, and K m of 0.57 m M . The enzyme hydrolyzed all the mono- and di-phosphorylated sugars tested, but had no effect on ATP, ADP, AMP and phosphoenolpyruvate. Phosphate was a competitive inhibitor. Mg2+. Ca2+, Hg2+, Fe3+, arsenate, K+ and Zn2+ were inhibitory. Mn2+, dithiothreitol and EDTA had no effect, and polyamines were activators.  相似文献   

19.
Abstract 5-Aminolevulinic acid dehydratase from the archaebacterium Methanosarcina barken resembles the mammalian and yeast enzymes in its activation by Zn2+, whereas its activation by K+ resembles the characteristic of bacterial enzymes. This enzyme is activated with Ni2+ which is a component of F430, a cofactor present mainly in methanogens. The M r of 280000 for the native enzyme and 30 000 ± 2000 for the individual subunit suggest that the enzyme is composed of eight apparently indentical subunits similar to mammalian and yeast enzymes. The enzyme has two pH optima, at 8.5 and 9.4. Higher levels of 5-aminolevulinic acid dehydratase in acetate-grown cells suggest the possibility that regulation and control of this enzyme could be different on various growth substrates.  相似文献   

20.
Abstract: Human NT2-N neurons express Ca2+-permeable α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid glutamate receptors (AMPA-GluRs) and become vulnerable to excitotoxicity when AMPA-GluR desensitization is blocked with cyclothiazide. Although the initial increase in intracellular Ca2+ levels ([Ca2+]i) was 1.9-fold greater in the presence than in the absence of cyclothiazide, Ca2+ entry via AMPA-GluRs in an early phase of the exposure was not necessary to elicit excitotoxicity in these neurons. Rather, subsequent necrosis was caused by a >40-fold rise in [Na+]i, which induced a delayed [Ca2+]i rise. Transfer of the neurons to a 5 m M Na+ medium after AMPA-GluR activation accelerated the delayed [Ca2+]i rise and intensified excitotoxicity. Low-Na+ medium-enhanced excitotoxicity was partially blocked by amiloride or dizocilpine (MK-801), and completely blocked by removal of extracellular Ca2+, suggesting that Ca2+ entry by reverse operation of Na+/Ca2+ exchangers and via NMDA glutamate receptors was responsible for the neuronal death after excessive Na+ loading. Our results serve to emphasize the central role of neuronal Na+ loading in AMPA-GluR-mediated excitotoxicity in human neurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号