首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 7 毫秒
1.
Global dynamics of a ratio-dependent predator-prey system   总被引:12,自引:0,他引:12  
Recently, ratio-dependent predator-prey systems have been regarded by some researchers to be more appropriate for predator-prey interactions where predation involves serious searching processes. However, such models have set up a challenging issue regarding their dynamics near the origin since these models are not well-defined there. In this paper, the qualitative behavior of a class of ratio-dependent predator-prey system at the origin in the interior of the first quadrant is studied. It is shown that the origin is indeed a critical point of higher order. There can exist numerous kinds of topological structures in a neighborhood of the origin including the parabolic orbits, the elliptic orbits, the hyperbolic orbits, and any combination of them. These structures have important implications for the global behavior of the model. Global qualitative analysis of the model depending on all parameters is carried out, and conditions of existence and non-existence of limit cycles for the model are given. Computer simulations are presented to illustrate the conclusions.  相似文献   

2.
An idea used by Thieme (J. Math. Biol. 8, 173-187, 1979) is extended to show that a class of integro-difference models for a periodically varying habitat has a spreading speed and a formula for it, even when the recruitment function R(u, x) is not nondecreasing in u, so that overcompensation occurs. Numerical simulations illustrate the behavior of solutions of the recursion whose initial values vanish outside a bounded set.  相似文献   

3.
This paper investigates the dynamics of a competitive single-prey n-predators model of integrated pest management, which is subject to periodic and impulsive controls, from the viewpoint of finding sufficient conditions for the extinction of prey and for prey and predator permanence. The per capita death rates of prey due to predation are given in abstract, unspecified forms, which encompass large classes of death rates arising from usual predator functional responses, both prey-dependent and predator-dependent. The stability and permanence conditions are then expressed as balance conditions between the cumulative death rate of prey in a period, due to predation from all predator species and to the use of control, and to the cumulative birth rate of prey in the same amount of time. These results are then specialized for the case of prey-dependent functional responses, their biological significance being also discussed.  相似文献   

4.
Impulsive control strategies in biological control of pesticide   总被引:10,自引:0,他引:10  
By presenting and analyzing the pest-predator model under insecticides used impulsively, two impulsive strategies in biological control are put forward. The first strategy: the pulse period is fixed, but the proportional constant E(1) changes, which represents the fraction of pests killed by applying insecticide. For this scheme, two thresholds, E(1)(**) and E(1)(*) for E(1) are obtained. If E(1)>or=E(1)(*), both the pest and predator (natural enemies) populations go to extinction. If E(1)(**)相似文献   

5.
In this paper, we propose and analyze an epidemic problem which can be controlled by vaccination as well as treatment. In the first part of our analysis we study the dynamical behavior of the system with fixed control for both vaccination and treatment. Basic reproduction number is obtained in all possible cases and it is observed that the simultaneous use of vaccination and treatment control is the most favorable case to prevent the disease from being epidemic. In the second part, we take the controls as time dependent and obtain the optimal control strategy to minimize both the infected populations and the associated costs. All the analytical results are verified by simulation works. Some important conclusions are given at the end of the paper.  相似文献   

6.
In this article, we considered a model of HIV-1 infection with a protease inhibitor therapy and three delays. The frequency of the bifurcating periodic solution as well as the threshold value is approximated numerically using realistic parameter. The estimated threshold value is realistic and the frequency of the oscillations is consistent with that of the observed viral blips.  相似文献   

7.
Two optimization problems are considered: Harvesting from a structured population with maximal gain subject to the condition of non-extinction, and vaccinating a population with prescribed reduction of the reproduction number of the disease at minimal costs. It is shown that these problems have a similar structure and can be treated by the same mathematical approach. The optimal solutions have a 'two-window' structure: Optimal harvesting and vaccination strategies or policies are concentrated on one or two preferred age classes. The results are first shown for a linear age structure problem and for an epidemic situation at the uninfected state (minimize costs for a given reduction of the reproduction number) and then extended to populations structured by size, to harvesting at Gurtin-MacCamy equilibria and to vaccination at infected equilibria.  相似文献   

8.
In epidemiological models of infectious diseases the basic reproduction number is used as a threshold parameter to determine the threshold between disease extinction and outbreak. A graph-theoretic form of Gaussian elimination using digraph reduction is derived and an algorithm given for calculating the basic reproduction number in continuous time epidemiological models. Examples illustrate how this method can be applied to compartmental models of infectious diseases modelled by a system of ordinary differential equations. We also show with these examples how lower bounds for can be obtained from the digraphs in the reduction process.  相似文献   

9.
In this paper, we study the existence of cycles in a predator-prey system in which the prey species is equipped with the group defense capability. Some geometric criteria are developed, relating the location of the two positive equilibria on the prey isocline and the non-existence of cycles. We show that under a general geometric condition, if both positive equilibria lie on a downslope or both lie on an upslope of the prey isocline, cycles do not exist.  相似文献   

10.
For a single patch SIRS model with a period of immunity of fixed length, recruitment-death demographics, disease related deaths and mass action incidence, the basic reproduction number R(0) is identified. It is shown that the disease-free equilibrium is globally asymptotically stable if R(0)<1. For R(0)>1, local stability of the endemic equilibrium and Hopf bifurcation analysis about this equilibrium are carried out. Moreover, a practical numerical approach to locate the bifurcation values for a characteristic equation with delay-dependent coefficients is provided. For a two patch SIRS model with travel, it is shown that there are several threshold quantities determining its dynamic behavior and that travel can reduce oscillations in both patches; travel may enhance oscillations in both patches; or travel can switch oscillations from one patch to another.  相似文献   

11.
Multiple limit cycles in the chemostat with variable yield   总被引:21,自引:0,他引:21  
The global asymptotic behavior of solutions of the variable yield model is determined. The model generalizes the classical Monod model and it assumes that the yield is an increasing function of the nutrient concentration. In contrast to the Monod model, it is demonstrated that the variable yield model exhibits sustained oscillations. Moreover, it is shown that the variable yield model may undergo a subcritical Hopf bifurcation and feature at least two distinct limit cycles. Implications for the coexistence of competing populations are discussed.  相似文献   

12.
The asymptotic behavior of solutions of a model for competition between plasmid-bearing and plasmid-free organisms in the chemostat with two distributed delays and an external inhibitor is considered. The model presents a refinement of the one considered by Lu and Hadeler [Z. Lu, K.P. Hadeler, Model of plasmid-bearing plasmid-free competition in the chemostat with nutrient recycling and an inhibitor, Math. Biosci. 167 (2000) p. 177]. The delays model the fact that the nutrient is partially recycled after the death of the biomass by bacterial decomposition. Furthermore, it is assumed that there is inter-specific competition between the plasmid-bearing and plasmid-free organisms as well as intra-specific competition within each population. Conditions for boundedness of solutions and existence of non-negative equilibrium are given. Analysis of the extinction of the organisms, including plasmid-bearing and plasmid-free organisms, and the uniform persistence of the system are also carried out. By constructing appropriate Liapunov-like functionals, some sufficient conditions of global attractivity to the extinction equilibria are obtained and the combined effects of the delays and the inhibitor are studied.  相似文献   

13.
Many infectious diseases exist in several pathogenic variants, or strains, which interact via cross-immunity. It is observed that strains tend to self-organise into groups, or clusters. The aim of this paper is to investigate cluster formation. Computations demonstrate that clustering is independent of the model used, and is an intrinsic feature of the strain system itself. We observe that an ordered strain system, if it is sufficiently complex, admits several cluster structures of different types. Appearance of a particular cluster structure depends on levels of cross-immunity and, in some cases, on initial conditions. Clusters, once formed, are stable, and behave remarkably regularly (in contrast to the generally chaotic behaviour of the strains themselves). In general, clustering is a type of self-organisation having many features in common with pattern formation.  相似文献   

14.
This paper contains the basic extensions of classical evolutionary games (multipopulation and density dependent models). It is shown that classical bimatrix approach is inconsistent with other approaches because it does not depend on proportion between populations. The main conclusion is that interspecific proportion parameter is important and must be considered in multipopulation models. The paper provides a synthesis of both extensions (a metasimplex concept) which solves the problem intrinsic in the bimatrix model. It allows us to model interactions among any number of subpopulations including density dependence effects. We prove that all modern approaches to evolutionary games are closely related. All evolutionary models (except classical bimatrix approaches) can be reduced to a single population general model by a simple change of variables. Differences between classic bimatrix evolutionary games and a new model which is dependent on interspecific proportion are shown by examples.  相似文献   

15.
In this paper, we consider permanence of Lotka-Volterra equations. We investigate the sign structure of the interaction matrix that guarantees the permanence of a Lotka-Volterra equation whenever it has a positive equilibrium point. An interaction matrix with this property is said to be qualitatively permanent. Our results provide both necessary and sufficient conditions for qualitative permanence.  相似文献   

16.
Mathematical analysis is carried out that completely determines the global dynamics of a mathematical model for the transmission of human T-cell lymphotropic virus I (HTLV-I) infection and the development of adult T-cell leukemia (ATL). HTLV-I infection of healthy CD4(+) T cells takes place through cell-to-cell contact with infected T cells. The infected T cells can remain latent and harbor virus for several years before virus production occurs. Actively infected T cells can infect other T cells and can convert to ATL cells, whose growth is assumed to follow a classical logistic growth function. Our analysis establishes that the global dynamics of T cells are completely determined by a basic reproduction number R(0). If R(0)< or =1, infected T cells always die out. If R(0)>1, HTLV-I infection becomes chronic, and a unique endemic equilibrium is globally stable in the interior of the feasible region. We also show that the equilibrium level of ATL-cell proliferation is higher when the HTLV-I infection of T cells is chronic than when it is acute.  相似文献   

17.
The paper analyzes optimal harvesting of age-structured populations described by the Lotka-McKendrik model. It is shown that the optimal time- and age-dependent harvesting control involves only one age at natural conditions. This result leads to a new optimization problem with the time-dependent harvesting age as an unknown control. The integral Lotka model is employed to explicitly describe the time-varying age of harvesting. It is proven that in the case of the exponential discounting and infinite horizon the optimal strategy is a stationary solution with a constant harvesting age. A numeric example on optimal forest management illustrates the theoretical findings. Discussion and interpretation of the results are provided.  相似文献   

18.
We propose a simple discrete-time host–parasitoid model to investigate the impact of external input of parasitoids upon the host–parasitoid interactions. It is proved that the input of the external parasitoids can eventually eliminate the host population if it is above a threshold and it also decreases the host population level in the unique interior equilibrium. It can simplify the host–parasitoid dynamics when the host population practices contest competition. We then consider a corresponding optimal control problem over a finite time period. We also derive an optimal control model using a chemical as a control for the hosts. Applying the forward–backward sweep method, we solve the optimal control problems numerically and compare the optimal host populations with the host populations when no control is applied. Our study concludes that applying a chemical to eliminate the hosts directly may be a more effective control strategy than using the parasitoids to indirectly suppress the hosts.  相似文献   

19.
Mathematical modeling and qualitative analysis of insulin therapies   总被引:1,自引:0,他引:1  
Several insulin therapies are widely in clinical use with the basic strategy that mimics insulin secretion in a normal glucose-insulin endocrine metabolic regulatory system. In this paper, we model the insulin therapies using a delay differential equation model. We study the dynamics of the model both qualitatively and quantitatively. The analytical results show the existence and uniqueness of a stable periodic solution that corresponds to ultradian insulin secretion oscillations. Numerically we simulate the insulin administration based on our model. The numerical simulation results are in agreement with findings of clinical studies.  相似文献   

20.
This work deals with a general class of two-time scales discrete nonlinear dynamical systems which are susceptible of being studied by means of a reduced system that is obtained using the so-called aggregation of variables method. This reduction process is applied to several models of population dynamics driven by demographic and migratory processes which take place at two different time scales: slow and fast. An analysis of these models exchanging the role of the slow and fast dynamics is provided: when a Leslie type demography is faster than migrations, a multi-attractor scenario appears for the reduced dynamics; on the other hand, when the migratory process is faster than demography, the reduction process gives rise to new interpretations of well known discrete models, including some Allee effect scenarios.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号