首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A gene (ORFB) from Streptomyces antibioticus (an oleandomycin producer) encoding a large, multifunctional polyketide synthase (PKS) was cloned and sequenced. Its product shows an internal duplication and a close similarity to the third subunit of the PKS involved in erythromycin biosynthesis by Saccharopolyspora erythraea, showing the equivalent nine active site domains in the same order along the polypeptide. An unusual feature of this ORF is the GC content of most of the sequence, which is surprisingly low, for a Streptomyces gene; the large number of codons with T in the third position is particularly striking. The last 800 by of the gene stand out as being normal in their GC content, this region corresponding almost exactly to the thioesterase domain of the gene and suggesting that this domain was a late addition to the PKS. Based on the high degree of similarity between the ORFB product and the third subunit of the erythromycin PKS and the occurrence nearby of a gene conferring oleandomycin resistance, it is possible that this gene might be involved in the biosynthesis of the oleandomycin lactone ring.  相似文献   

2.
We have analyzed an anthracycline biosynthesis gene cluster fromStreptomyces nogalater. Based on sequence analysis, a contiguous region of 11 kb is deduced to include genes for the early steps in anthracycline biosynthesis, a regulatory gene (snoA) promoting the expression of the biosynthetic genes, and at least one gene whose product might have a role in modification of the glycoside moiety. The three ORFs encoding a minimal polyketide synthase (PKS) are separated from the regulatory gene (snoA) by a comparatively AT-rich region (GC content 60%). Subfragments of the DNA region were transferred toStreptomyces galilaeus mutants blocked in aclacinomycin biosynthesis, and to a regulatory mutant ofS. nogalater. TheS. galilaeus mutants carrying theS. nogalater minimal PKS genes produced auramycinone glycosides, demonstrating replacement of the starter unit for polyketide biosynthesis. The product ofsnoA seems to be needed for expression of at least the genes for the minimal PKS.  相似文献   

3.
A 6-kb region from the chromosome of Streptomyces antibioticus, an oleandomycin producer, was cloned and sequenced. This region was located between the 3′ end of the gene encoding the third subunit of the oleandomycin type I polyketide synthase and the oleP and oleB genes, which encode a cytochrome P450 monooxygenase and an oleandomycin resistance gene, respectively. Analysis of the nucleotide sequence revealed the presence of five genes encoding a cytochrome P450-like protein (oleP1), two glycosyltransferases (oleG1 and oleG2) involved in the transfer of the two 6-deoxysugars (L-oleandrose and D-desosamine) to the oleandomycin macrolactone ring, a methyltransferase (oleM1), and a gene (oleY) of unknown function. Insertional inactivation of this region by gene disruption generated an oleandomycin non-producing mutant which accumulated a compound that, according to mass spectrometry analysis, could correspond to the oleandomycin macrolactone ring (oleandolide), suggesting that the mutation affects oleandrosyl glycosyltransferase.  相似文献   

4.
Galbonolide (GAL) A and B are antifungal macrolactone polyketides produced by Streptomyces galbus. During their polyketide chain assembly, GAL-A and -B incorporate methoxymalonate and methylmalonate, respectively, in the fourth chain extension step. The methoxymalonyl-acyl carrier protein biosynthesis locus (galG to K) is specifically involved in GAL-A biosynthesis, and this locus is neighbored by a gene cluster composed of galA-E. GalA-C constitute a single module, highly reducing type I polyketide synthase (PKS). GalD and GalE are cytochrome P450 and Rieske domain protein, respectively. Gene knock-out experiments verified that galB, -C, and -D are essential for GAL biosynthesis. A galD mutant accumulated a GAL-C that lacked two hydroxyl groups and a double bond when compared with GAL-B. A [U-13C]propionate feeding experiment indicated that no rare precursor other than methoxymalonate was incorporated during GAL biogenesis. A search of the S. galbus genome for a modular type I PKS system, the type that was expected to direct GAL biosynthesis, resulted in the identification of only one modular type I PKS gene cluster. Homology analysis indicated that this PKS gene cluster is the locus for vicenistatin biosynthesis. This cluster was previously reported in Streptomyces halstedii. A gene deletion of the vinP2 ortholog clearly demonstrated that this modular type I PKS system is not involved in GAL biosynthesis. Therefore, we propose that GalA-C direct macrolactone polyketide formation for GAL. Our studies provide a glimpse into a novel biochemical strategy used for polyketide synthesis; that is, the iterative assembly of propionates with highly programmed β-keto group modifications.  相似文献   

5.
We have analyzed an anthracycline biosynthesis gene cluster fromStreptomyces nogalater. Based on sequence analysis, a contiguous region of 11 kb is deduced to include genes for the early steps in anthracycline biosynthesis, a regulatory gene (snoA) promoting the expression of the biosynthetic genes, and at least one gene whose product might have a role in modification of the glycoside moiety. The three ORFs encoding a minimal polyketide synthase (PKS) are separated from the regulatory gene (snoA) by a comparatively AT-rich region (GC content 60%). Subfragments of the DNA region were transferred toStreptomyces galilaeus mutants blocked in aclacinomycin biosynthesis, and to a regulatory mutant ofS. nogalater. TheS. galilaeus mutants carrying theS. nogalater minimal PKS genes produced auramycinone glycosides, demonstrating replacement of the starter unit for polyketide biosynthesis. The product ofsnoA seems to be needed for expression of at least the genes for the minimal PKS.  相似文献   

6.
The phosphopantetheinyl transferases (PPTases) are responsible for the activation of the carrier protein domains of the polyketide synthases (PKS), non ribosomal peptide synthases (NRPS) and fatty acid synthases (FAS). The analysis of the Streptomyces ambofaciens ATCC23877 genome has revealed the presence of four putative PPTase encoding genes. One of these genes appears to be essential and is likely involved in fatty acid biosynthesis. Two other PPTase genes, samT0172 (alpN) and samL0372, are located within a type II PKS gene cluster responsible for the kinamycin production and an hybrid NRPS-PKS cluster involved in antimycin production, respectively, and their products were shown to be specifically involved in the biosynthesis of these secondary metabolites. Surprisingly, the fourth PPTase gene, which is not located within a secondary metabolite gene cluster, appears to play a pleiotropic role. Its product is likely involved in the activation of the acyl- and peptidyl-carrier protein domains within all the other PKS and NRPS complexes encoded by S. ambofaciens. Indeed, the deletion of this gene affects the production of the spiramycin and stambomycin macrolide antibiotics and of the grey spore pigment, all three being PKS-derived metabolites, as well as the production of the nonribosomally produced compounds, the hydroxamate siderophore coelichelin and the pyrrolamide antibiotic congocidine. In addition, this PPTase seems to act in concert with the product of samL0372 to activate the ACP and/or PCP domains of the antimycin biosynthesis cluster which is also responsible for the production of volatile lactones.  相似文献   

7.
Regions of extremely high sequence identity are recurrent in modular polyketide synthase (PKS) genes. Such sequences are potentially detrimental to the stability of PKS expression plasmids used in the combinatorial biosynthesis of polyketide metabolites. We present two different solutions for circumventing intra-plasmid recombination within the megalomicin PKS genes in Streptomyces coelicolor. In one example, a synthetic gene was used in which the codon usage was reengineered without affecting the primary amino acid sequence. The other approach utilized a heterologous subunit complementation strategy to replace one of the problematic regions. Both methods resulted in PKS complexes capable of 6-deoxyerythronolide B analogue biosynthesis in S. coelicolor CH999, permitting reproducible scale-up to at least 5-l stirred-tank fermentation and a comparison of diketide precursor incorporation efficiencies between the erythromycin and megalomicin PKSs. Electronic Publication  相似文献   

8.
Abstract A cosmid clone from an oleandomycin producer, Streptomyces antibioticus , contains a large open reading frame encoding a type I polyketide synthase subunit and an oleandomycin resistance gene ( oleB ). Sequencing of a 1.4-kb DNA fragment adjacent to oleB revealed the existence of an open reading frame ( oleP ) encoding a protein similar to several cytochrome P450 monooxygenases from different sources, including the products of the eryF and eryK genes from Saccharopolyspora erythraea that participate in erythromycin biosynthesis. The oleP gene was expressed in Escherichia coli as a fusion protein to a maltose-binding protein. Using polyclonal antibodies against this fusion protein it was observed that the synthesis of the cytochrome P450 was in parallel to that of oleandomycin. The cytochrome P450 encoded by the oleP gene could be responsible for the epoxidation of carbon 8 of the oleandomycin lactone ring.  相似文献   

9.
A 5.2 kb region from the oleandomycin gene cluster in Streptomyces antibioticus located between the oleandomycin polyketide synthase gene and sugar biosynthetic genes was cloned. Sequence analysis revealed the presence of three open reading frames (designated oleI , oleN2 and oleR ). The oleI gene product resembled glycosyltransferases involved in macrolide inactivation including the oleD product, a previously described glycosyltransferase from S. antibioticus . The oleN2 gene product showed similarities with different aminotransferases involved in the biosynthesis of 6-deoxyhexoses. The oleR gene product was similar to several glucosidases from different origins. The oleI , oleR and oleD genes were expressed in Streptomyces lividans . OleI and OleD intracellular proteins were partially purified by affinity chromatography in an UDP-glucuronic acid agarose column and OleR was detected as a major band from the culture supernatant. OleI and OleD showed oleandomycin glycosylating activity but they differ in the pattern of substrate specificity: OleI being much more specific for oleandomycin. OleR showed glycosidase activity converting glycosylated oleandomycin into active oleandomycin. A model is proposed integrating these and previously reported results for intracellular inactivation, secretion and extracellular reactivation of oleandomycin.  相似文献   

10.
A 7.3 kbp DNA fragment, encompassing the erythromycin (Em) resistance gene (ermE) and a portion of the gene cluster encoding the biosynthetic genes for erythromycin biosynthesis in Saccharopolyspora erythraea (formerly Streptomyces erythraeus) has been cloned in Streptomyces lividans using the plasmid vector pIJ702, and its nucleotide sequence has been determined using a modified dideoxy chain-termination procedure. In particular, we have examined the region immediately 5′ of the resistance determinant, where the tandem promoters for ermE overlap the promoters for a divergently transcribed coding sequence (ORF). Disruption of this ORF using an integrational pIJ702-based plasmid vector gave mutants which were specifically blocked in erythromycin biosynthesis, and which accumulated 3-O-α-L-mycarosylerythronolide B: this behaviour is identical to that of previously described eryC1 mutants. The eryC1-gene product, a protein of subunit Mr 39200, is therefore involved either as a structural or as a regulatory gene in the formation of the deoxyamino-sugar desosamine or in its attachment to the macro-lide ring.  相似文献   

11.
Xue Y  Wilson D  Sherman DH 《Gene》2000,245(1):203-211
The methymycin and pikromycin series of antibiotics are structurally related macrolides produced by several Streptomyces species, including Streptomyces venezuelae ATCC 15439, which produces both 12-membered ring macrolides methymycin, neomethymycin, and 14-membered ring macrolides pikromycin and narbomycin. Cloning and sequencing of the biosynthetic gene clusters for these macrolides from three selected Streptomyces strains revealed a common genetic architecture of their polyketide synthases (PKSs). Unlike PKS clusters of other 14-membered ring macrolides such as erythromycin and oleandomycin, each of the pikromycin series producers harbors a six module PKS cluster, in which modules 5 and 6 are encoded on two separate proteins instead of one bimodular protein, as well as a thioesterase II gene immediately downstream of the main PKS gene. The results shed new light on the evolution of modular PKSs and provide further evidence on the regulation of methymycin and pikromycin production in S. venezuelae ATCC 15439.  相似文献   

12.
The chromosome of Streptomyces coelicolor A3(2), a model organism for the genus Streptomyces, contains a cryptic type I polyketide synthase (PKS) gene cluster which was revealed when the genome was sequenced. The ca. 54-kb cluster contains three large genes, cpkA, cpkB and cpkC, encoding the PKS subunits. In silico analysis showed that the synthase consists of a loading module, five extension modules and a unique reductase as a terminal domain instead of a typical thioesterase. All acyltransferase domains are specific for a malonyl extender, and have a B-type ketoreductase. Tailoring and regulatory genes were also identified within the gene cluster. Surprisingly, some genes show high similarity to primary metabolite genes not commonly identified in any antibiotic biosynthesis cluster. Using western blot analysis with a PKS subunit (CpkC) antibody, CpkC was shown to be expressed in S. coelicolor at transition phase. Disruption of cpkC gave no obvious phenotype.  相似文献   

13.
Three different DNA fragments of an oleandomycin producer, Streptomyces antibioticus, conferring oleandomycin resistance were cloned in plasmid pIJ702 and expressed in Streptomyces lividans and in Streptomyces albus. These oleandomycin resistance determinants were designated as oleA (pOR400), oleB (pOR501) and oleC (pOR800). oleA and oleC are closely linked in the chromosome as they were both obtained together in two cosmid clones that were isolated from a genomic library. Sequencing of the oleC resistance determinant revealed four complete open reading frames (ORFs) and the C-terminal end of a fifth. The functions of orf1 and orf2 are unknown since they did not show significant similarity with other sequences in the data bases. The orf3 gene product has similarity with some proteins involved in iron and vitamin B12 uptake in bacteria. The orf4 gene product had a hydrophilic profile and showed important similarity with proteins containing typical ATP-binding domains characteristic of the ABC-transporter superfamily and involved in membrane transport and, particularly, with several genes conferring resistance to various macrolide antibiotics and anticancer drugs. The last gene, orf5, is translationally coupled to orf4 and codes for a hydrophobic polypeptide containing several trans-membrane domains characteristic of integral membrane proteins. Subcloning and deletion experiments limited the resistance determinant to a 0.9kb Pst1-Sph1 fragment and only orf4 is included in this fragment. These results suggest that resistance to oleandomycin conferred by oleC (orf4) is probably due to an efflux transport system of the ABC-transporter superfamily.  相似文献   

14.
α-Cyclopiazonic acid (CPA) is an indole tetramic acid mycotoxin. Based on our identification of the polyketide synthase–nonribosomal peptide synthase (PKS–NRPS) hybrid gene cpaA involved in cyclopiazonic acid biosynthesis in Aspergillus fungi, we carried out heterologous expression of Aspergillus flavus cpaA under α-amylase promoter in Aspergillus oryzae and identified its sole product to be the CPA biosynthetic intermediate cyclo-acetoacetyl-l-tryptophan (cAATrp). This result rationalized that the PKS–NRPS hybrid enzyme CpaA catalyzes condensation of the diketide acetoacetyl-ACP formed by the PKS module and l-Trp activated by the NRPS module. This CpaA expression system provides us an ideal platform for PKS–NRPS functional analysis, such as adenylation domain selectivity and product releasing mechanism.  相似文献   

15.
Search of the protein database with the aflatoxin pathway polyketide synthase (PKS) revealed putative PKSs in the pathogenic fungi Coccidioides immitis and Coccidioides posadasii that could require partnerships with a pair of fatty acid synthase (FAS) subunits for the biosynthesis of fatty acid-polyketide hybrid metabolites. A starter unit:acyl-carrier protein transacylase (SAT) domain was discovered in the nonreducing PKS. This domain is thought to accept the fatty acid product from the FAS to initiate polyketide synthesis. We expressed the C. immitis SAT domain in Escherichia coli and showed that this domain, unlike that from the aflatoxin pathway PKS, transferred octanoyl-CoA four times faster than hexanoyl-CoA. The SAT domain also formed a covalent octanoyl intermediate and transferred this group to a free-standing ACP domain. Our results suggest that C. immitis/posadasii, both human fungal pathogens, contain a FAS/PKS cluster with functional similarity to the aflatoxin cluster found in Aspergillus species. Dissection of the PKS and determination of in vitro SAT domain specificity provides a tool to uncover the growing number of similar sequenced pathways in fungi, and to guide elucidation of the fatty acid-polyketide hybrid metabolites that they produce.  相似文献   

16.
A 6-kb region from the chromosome of Streptomyces antibioticus, an oleandomycin producer, was cloned and sequenced. This region was located between the 3′ end of the gene encoding the third subunit of the oleandomycin type I polyketide synthase and the oleP and oleB genes, which encode a cytochrome P450 monooxygenase and an oleandomycin resistance gene, respectively. Analysis of the nucleotide sequence revealed the presence of five genes encoding a cytochrome P450-like protein (oleP1), two glycosyltransferases (oleG1 and oleG2) involved in the transfer of the two 6-deoxysugars (L-oleandrose and D-desosamine) to the oleandomycin macrolactone ring, a methyltransferase (oleM1), and a gene (oleY) of unknown function. Insertional inactivation of this region by gene disruption generated an oleandomycin non-producing mutant which accumulated a compound that, according to mass spectrometry analysis, could correspond to the oleandomycin macrolactone ring (oleandolide), suggesting that the mutation affects oleandrosyl glycosyltransferase. Received: 3 December 1997 / Accepted: 12 May 1998  相似文献   

17.
由吸水链霉菌Streptomyces hygroscopicus 17997产生的格尔德霉素geldanamycin(GA)属安莎类抗生素,具有良好的抗肿瘤和抗病毒活性。本文应用链霉菌温和噬菌体ΦC31衍生的KC515载体,在吸水链霉菌S.hygroscopicus 17997中建立并优化了S.hygroscopicus 17997的基因转染体系。利用所建立的基因转染体系,以基因阻断技术从S.hygroscopicus 17997基因文库含有多组PKS基因柯斯质粒中,鉴定了与GA PKS生物合成相关基因的柯斯质粒,该工作为GA生物合成基因簇的克隆奠定了基础。  相似文献   

18.
Tetracyclines are aromatic polyketides biosynthesized by bacterial type II polyketide synthases (PKSs). Understanding the biochemistry of tetracycline PKSs is an important step toward the rational and combinatorial manipulation of tetracycline biosynthesis. To this end, we have sequenced the gene cluster of oxytetracycline (oxy and otc genes) PKS genes from Streptomyces rimosus. Sequence analysis revealed a total of 21 genes between the otrA and otrB resistance genes. We hypothesized that an amidotransferase, OxyD, synthesizes the malonamate starter unit that is a universal building block for tetracycline compounds. In vivo reconstitution using strain CH999 revealed that the minimal PKS and OxyD are necessary and sufficient for the biosynthesis of amidated polyketides. A novel alkaloid (WJ35, or compound 2) was synthesized as the major product when the oxy-encoded minimal PKS, the C-9 ketoreductase (OxyJ), and OxyD were coexpressed in CH999. WJ35 is an isoquinolone compound derived from an amidated decaketide backbone and cyclized with novel regioselectivity. The expression of OxyD with a heterologous minimal PKS did not afford similarly amidated polyketides, suggesting that the oxy-encoded minimal PKS possesses novel starter unit specificity.  相似文献   

19.
A 40-kb region of DNA from Sorangium cellulosum So ce26, which contains polyketide synthase (PKS) genes for synthesis of the antifungal macrolide antibiotic soraphen A, was cloned. These genes were detected by homology to Streptomyces violaceoruber genes encoding components of granaticin PKS, thus extending this powerful technique for the identification of bacterial PKS genes, which has so far been applied only to actinomycetes, to the gram-negative myxobacteria. Functional analysis by gene disruption has indicated that about 32 kb of contiguous DNA of the cloned region contains genes involved in soraphen A biosynthesis. The nucleotide sequence of a 6.4-kb DNA fragment, derived from the region with homology to granaticin PKS genes, was determined. Analysis of this sequence has revealed the presence of a single large open reading frame beginning and ending outside the 6.4-kb fragment. The deduced amino acid sequence indicates the presence of a domain with a high level of similarity to beta-ketoacyl synthases that are involved in polyketide synthesis. Other domains with high levels of similarity to regions of known polyketide biosynthetic functions were identified, including those for acyl transferase, acyl carrier protein, ketoreductase, and dehydratase. We present data which indicate that soraphen A biosynthesis is catalyzed by large, multifunctional enzymes analogous to other bacterial PKSs of type I.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号