首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In vivo DNA-protein interactions are usually studied at the molecular level using DNA-degrading agents of low molecular weight. In order to be useful, macromolecular probes of chromatin structure, such as enzymes must first cross the cell membrane. In this paper we describe the introduction and evaluation of macromolecules with enzymatic activity into yeast spheroplasts treated with the polyene antibiotic nystatin. We report the low resolution analysis of chromatin structure in the promoter region of the Saccharomyces cerevisiae gene encoding DNA topoisomerase I by this technique using micrococcal nuclease and restriction enzymes.  相似文献   

2.
Epigenetic regulation of chromatin structure is a fundamental process for eukaryotes. Regulators include DNA methylation, microRNAs and chromatin modifications. Within the chromatin modifiers, one class of enzymes that can functionally bind and modify chromatin, through the removal of methyl marks, is the histone lysine demethylases. Here, we summarize the current findings of the 13 known histone lysine demethylases in Drosophila melanogaster, and discuss the critical role of these histone-modifying enzymes in the maintenance of genomic functions. Additionally, as histone demethylase dysregulation has been identified in cancer, we discuss the advantages for using Drosophila as a model system to study tumorigenesis.  相似文献   

3.
4.
5.
Alteration of chromatin structure by chromatin modifying and remodelling activities is a key stage in the regulation of many nuclear processes. These activities are frequently interlinked, and many chromatin remodelling enzymes contain motifs that recognise modified histones. Here we adopt a peptide ligation strategy to generate specifically modified chromatin templates and used these to study the interaction of the Chd1, Isw2 and RSC remodelling complexes with differentially acetylated nucleosomes. Specific patterns of histone acetylation are found to alter the rate of chromatin remodelling in different ways. For example, histone H3 lysine 14 acetylation acts to increase recruitment of the RSC complex to nucleosomes. However, histone H4 tetra-acetylation alters the spectrum of remodelled products generated by increasing octamer transfer in trans. In contrast, histone H4 tetra-acetylation was also found to reduce the activity of the Chd1 and Isw2 remodelling enzymes by reducing catalytic turnover without affecting recruitment. These observations illustrate a range of different means by which modifications to histones can influence the action of remodelling enzymes.  相似文献   

6.
DNA methyltransferases might be used as powerful tools for studies in molecular and cell biology due to their ability to recognize and modify nitrogen bases in specific sequences of the genome. Methylation of the eukaryotic genome using exogenous DNA methyltransferases appears to be a promising approach for studies on chromatin structure. Currently, the development of new methods for targeted methylation of specific genetic loci using DNA methyltransferases fused with DNA-binding proteins is especially interesting. In the present review, expression of exogenous DNA methyltransferase for purposes of in vivo analysis of the functional chromatin structure along with investigation of the functional role of DNA methylation in cell processes are discussed, as well as future prospects for application of DNA methyltransferases in epigenetic therapy and in plant selection.  相似文献   

7.
8.
This work investigates the structure of native calf thymus chromatin as a function of fiber length and isolation procedures by using X-ray small angle scattering technique. Two methods of chromatin isolation have been compared in order to better understand the differences reported by various authors in terms of chromatin high order structure. In addition to these experimental results the effects of shearing have also been studied. In order to explain the differences among these chromatin preparations we built several models of chromatin fibers (represented as a chain of spherical subunits) assuming increasing level of condensation at increasing salt concentrations. For all these fiber models the corresponding theoretical X-ray scattering curves have been calculated and these results have been used to explain the influence of fiber length on the scattering profiles of chromatin. The comparison between experimental and theoretical curves confirms that the high molecular weight chromatin-DNA prepared by hypotonic swelling of nuclei (without enzymatic digestion) displays a partially folded structure even at low ionic strength, whereas the low molecular weight chromatin-DNA prepared by a brief nuclease digestion appears very weakly folded at the same ionic conditions.  相似文献   

9.
Eukaryotic genomes are packaged into highly condensed chromatin and this repressive chromatin barrier can be overcome by altering the chromatin structure via histone modification enzymes. Here, we report Wdr70 in Schizosaccharomyces pombe (spWdr70) plays important roles in multiple cellular processes including cell cycle progression, chromatin structure and DNA repair. Depletion of Wdr70 gene causes cell cycle delay, hypersensitivity to DNA damage reagents and quick phenotypic changes. Moreover, we observed strong genetic interaction between Wdr70 and genes regulating checkpoint and homologous recombination (HR), pinpointing the function of Wdr70 to DNA end resection. Finally, we show that the function of Wdr70 could be attributed to monoubiquitination of histone H2B (uH2B) in the vicinity of DNA double strand breaks (DSBs). Taken together, our data reveal that Wdr70 and H2B monoubiquitination-dependent chromatin modulation is required for chromatin homeostasis and genetic stability.  相似文献   

10.
Background Adipocyte differentiation is completed by changing gene expression. Chromatin is closely related to gene expression. Therefore, its structure might be changed for adipocyte differentiation. Mouse 3T3-L1 preadipocytes have been used as a cell model to study molecular mechanisms of adipogenesis. Objective To examine changes of chromatin modification and expression of histone modifying enzymes during adipocyte differentiation. Methods Microscopic analysis and Oil Red O staining were performed to determine distinct phenotype of adipocyte differentiation. RT-PCR and Western blot analysis were used to examine expression levels of histone modifying enzymes during adipocyte differentiation. Histone modifications were examined by immunostaining analysis. Results Expression levels of P300 and cbp were increased during adipocyte differentiation. However, acetylation of histones was not quantitatively changed postdifferentiation of 3T3-L1 cells compared to that at pre-differentiation. RT-PCR and Western blot analyses showed that expression levels of hdac2 and hdac3 were increased during adipocyte differentiation, suggesting histone acetylation at chromatin level was homeostatically controlled by increased expression of both HATs and HDACs. Tri-methylation level of H3K9 (H3K9me3), but not that of H3K27me3, was significantly decreased during adipocyte differentiation. Decreased expression of setdb1 was consistent with reduced pattern of H3K9me3. Knock-down of setdb1 induced adipocyte differentiation. This suggests that setdb1 is a key chromatin modifier that modulates repressive chromatin. Conclusion These results suggest that there exist extensive mechanisms of chromatin modifications for homeostatic balance of chromatin acetylation and deconstruction of repressive chromatin during adipocyte differentiation.  相似文献   

11.
12.
13.
14.
15.
Mutational analysis of the histone H3 N-terminal region has shown it to play an important role both in chromatin function in vivo and nucleosome dynamics in vitro. Here we use a library of mutations in the H3 N-terminal region to investigate the contribution of this region to the action of the ATP-dependent remodelling enzymes Chd1, RSC and SWI/SNF. All of the enzymes were affected differently by the mutations with Chd1 being affected the least and RSC being most sensitive. In addition to affecting the rate of remodelling by RSC, some mutations prevented RSC from moving nucleosomes to locations in which DNA was unravelled. These observations illustrate that the mechanisms by which different ATP-dependent remodelling enzymes act are sensitive to different features of nucleosome structure. They also show how alterations to histones can affect the products generated as a result of ATP-dependent remodelling reactions.  相似文献   

16.
Despite insights on the cellular level, the molecular details of chromatin reorganization in sperm development, which involves replacement of histone proteins by specialized factors to allow ultra most condensation of the genome, are not well understood. Protamines are dispensable for DNA condensation during Drosophila post-meiotic spermatogenesis. Therefore, we analyzed the interaction of Mst77F, another very basic testis-specific protein with chromatin and DNA as well as studied the molecular consequences of such binding. We show that Mst77F on its own causes severe chromatin and DNA aggregation. An intrinsically unstructured domain in the C-terminus of Mst77F binds DNA via electrostatic interaction. This binding results in structural reorganization of the domain, which induces interaction with an N-terminal region of the protein. Via putative cooperative effects Mst77F is induced to multimerize in this state causing DNA aggregation. In agreement, overexpression of Mst77F results in chromatin aggregation in fly sperm. Based on these findings we postulate that Mst77F is crucial for sperm development by giving rise to a unique condensed chromatin structure.  相似文献   

17.
18.
The allosteric l-lactate dehydrogenase from Lactobacillus casei has been crystallized in its complex with the activators fructose-1,6-diphosphate and Co2+. The enzyme crystallizes in space group C2 with six tetramers in the unit cell. At very low resolution, 00l reflexions are absent for l ≠ 3n. The orientation of the molecular axes has been determined using the rotation function. All tetramers in the unit cell exhibit excellent 222 symmetry, and the overall arrangement resembles the packing that would be expected in the higher symmetry space group P3121. Comparison with the apo-enzyme structure of M4-lactate dehydrogenase from dogfish indicates high structural similarity between these enzymes and allowed us to identify the molecular axes of L. caseil-lactate dehydrogenase in terms of the “standard” molecular co-ordinate system P, Q, R. The similarity of both enzymes is good enough to allow the structure determination of L. caseil-lactate dehydrogenase by molecular replacement using the dogfish enzyme as a model.Sequencing results show that L. caseil-lactate dehydrogenase is lacking the N-terminal arm of vertebrate lactate dehydrogenases and electron density maps at 5 Å resolution indicate that ligands might possibly bind in the region of the missing arm. The active site loop is involved in intermolecular contacts and its structure might be different from both, apo- and ternary dogfish l-lactate dehydrogenase.  相似文献   

19.
The effect of binding a high mobility group protein (HMG 17) on the stability and conformation of acetylated and control HeLa high molecular weight core chromatin (stripped of H1 and non-histone chromosomal proteins) was studied by circular dichroism and thermal-denaturation measurements. Previously it had been shown that conformational differences exist between native whole chromatin derived from butyrate-treated (acetylated) and control HeLa cells and that these conformational differences disappear by removing H1 and non-histone chromosomal proteins (Reczek, P.R., Weissman, D., Huvos, P.E. and Fasman, G.D. (1982) Biochemistry 21, 993–1002). The circular dichroism spectra and the thermal denaturation profiles of control and acetylated core chromatin were found to be similar. The circular dichroism properties of HMG 17 reconstituted highly acetylated and control core chromatin indicated the same alteration of chromatin structure at low ionic strength (1 mM sodium phosphate/0.25 mM EDTA, pH 7.0). The magnitudes of the decrease in ellipticity were proportional to the amount of HMG 17 bound and were found to be the same for both the acetylated and control core chromatin. Thermal denaturation profiles confirmed this change in structure induced by HMG 17 on control and highly acetylated core chromatin. The thermal denaturation profiles, which were resolved into three component transitions, exhibited a shifting of hyperchromicity from the lower melting transitions to the higher melting transitions, with a concomitant rise in Tm, on HMG 17 binding to both control and acetylated chromatin. The natures of the interactions of HMG 17 at higher ionic strength (50 mM NaCl/0.25 mM EDTA/1 mM sodium phosphate, pH 7.0) with acetylated and control core chromatin were slightly different, as measured by circular dichroism; however, a decrease in ellipticity was observed for both samples upon binding of HMG 17. These observations suggest that acetylation coupled with HMG 17 binding to core chromatin does not loosen chromatin structure. HMG 17 binding to control and acetylated core chromatin produces an overall stabilization and compaction of chromatin structure.  相似文献   

20.
Epigenetic inheritance is a key element in the adaptation of organisms to a rapidly changing environment without stably changing their DNA sequence. The necessary changes in its gene expression profiles are frequently associated with variations in chromatin structure. The conformation of chromatin is profoundly influenced by the post-translational modification of the histone proteins, the incorporation of histone variants, the activity of nucleosome remodelling factors and the association of non-histone chromatin proteins. Although the hierarchy of these factors is still not fully understood, genetic experiments suggest that histone-modifying enzymes play a major causal role in setting up a particular chromatin structure. In this article, the recent progress that was made to understand the molecular mechanisms of the targeting and regulation of histone modifiers and its implication for epigenetic inheritance are reviewed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号