共查询到20条相似文献,搜索用时 0 毫秒
1.
We previously isolated a nuclear 5.7 kb genomic fragment carrying the NAM7/UPF1 gene, which is able to suppress mitochondrial splicing deficiency when present in multiple copies. We show here that an immediately adjacent gene ISF1 (Increasing Suppression Factor) increases the efficiency of the NAM7/UPF1 suppressor activity. The ISF1 gene has been independently isolated as the MBR3 gene and comparison of the ISF1 predicted protein sequence with data libraries revealed a significant similarity with the MBRI yeast protein. The ISF1 and NAM7 genes are transcribed in the same direction, and RNase mapping allowed the precise location of their termini within the intergenic region to be determined. The ISF1 gene is not essential for cell viability or respiratory growth. However as for many mitochondrial genes, ISF1 expression is sensitive to fermentative repression; in contrast expression of the NAM7 gene is unaffected by glucose. We propose that ISF1 could influence the NAM7/UPF1 function, possibly at the level of mRNA turnover, thus modulating the expression of nuclear genes involved in mitochondrial biogenesis. 相似文献
2.
The plasmid pGT5 from the hyperthermophilic archaeon Pyrococcus abyssi replicates via the rolling circle mechanism. pGT5 encodes the replication initiator protein Rep75 that exhibits a nicking–closing (NC) activity in vitro on single-stranded oligonucleotides containing the pGT5 double-stranded origin (dso) sequence. Some mesophilic Rep proteins present site-specific DNA topoisomerase-like activity on a negatively supercoiled plasmid harbouring the dso. We report here that Rep75 also exhibits topoisomerase activity on a negatively supercoiled DNA substrate. This DNA topoisomerase-like activity is dependent on the amino acids involved in NC activity of Rep75. However, in contrast with mesophilic Rep proteins, Rep75 topoisomerase activity is not dso dependent. Moreover, although pGT5 is known to be relaxed in vivo, Rep75 was not able to act on a relaxed plasmid in vitro, whether or not it contained the dso. 相似文献
3.
4.
Murakami A Sugiura S Yamaguchi K 《The Journal of General and Applied Microbiology》1997,43(4):189-197
Purified Rep (or RepA) protein, a replication initiator of plasmid pSC101, is present almost solely in the dimer form, and its binding activity for the directly repeated sequences (iterons) in the replication origin (ori) is very low. When Rep protein was treated with guanidine hydrochloride followed by renaturation, it was shown to bind to the iterons with very high efficiency. A gel shift experiment suggested that guanidine-treated Rep bound to iterons as a monomer form. The Rep monomer bound noncooperatively to the three iterons and induced bending of the DNA helix axis in the same direction (about 100 degrees ). The configuration of the IHF box that is a binding site of another DNA bending protein IHF, the three iterons and an AT-rich region between these sequences was important for efficient bending of the ori region. Furthermore, a mutant Rep protein (Rep(IHF)) which can support the plasmid replication in IHF-deficient host cells was purified, and it was found that affinity of the Rep(IHF) monomer for iterons was similar to that of wild-type Rep and bent DNA only 14 degrees more strongly than did the wild-type Rep. Rep(IHF)-dependent plasmid replication, however, required both enhancer regions, par and IR-1, in addition to "core ori" as a minimal essential ori, whereas only one of these two enhancers was necessary for wild-type Rep-dependent replication. How Rep(IHF) can support plasmid replication in the absence of IHF is discussed. 相似文献
5.
6.
The plasmid ColE2-P9 (ColE2) origin (32bp) is specifically recognized by the plasmid-specified Rep protein that initiates DNA replication. The ColE2 origin is divided into at least three functional subregions (I, II, and III), and three sites (a, b, and c) found in subregions I and II play important roles in Rep protein binding. We performed SELEX experiments of plasmid ColE2 to determine the optimal sequences for specific binding of the Rep protein. From these experiments, we obtained a common 16-bp sequence (5'-TGAGACCANATAAGCC-3'), which corresponds to about one half of the minimal ColE2 origin and contains sites a and b. Gel mobility shift assays using single-point mutant origins and the Rep protein further indicated that high affinity sequence-specific recognition by the Rep protein requires sites a, b, and c, but that mutations in site c were less disruptive to this recognition than those in sites a and b. 相似文献
7.
The replication initiator protein (Rep) of plasmid ColE2-P9 (ColE2) is multifunctional. We are interested in how Rep binds to the origin (Ori) to perform various functions. We used the wild type and variants of Rep to study the Rep-Ori interaction by both in vitro and in vivo approaches, including biochemical analyses of protein-DNA interactions and an in vivo replication assay. We identified three regions (I, II, and III) of Rep, located in the C-terminal half, and three corresponding binding sites (I, II, and III) in Ori which are important for Rep-Ori interaction. We showed that region I, containing a putative helix-turn-helix motif, is necessary and sufficient for specific Ori recognition, interacting with site I of the origin DNA from the major groove. Region II interacts with site II of the origin DNA, from the adjacent minor groove in the left half of Ori, and region III interacts with site III, next to the template sequence for primer synthesis, which is one and one-half turn apart from site I on the opposite surface of the origin DNA. A putative linker region located between the two DNA binding domains (regions II and III) was identified, which might provide Rep an extended conformation suitable for binding to the two separate sites in Ori. Based on the results presented in this paper, we propose a model for Rep-Ori interaction in which Rep binds to Ori as a monomer. 相似文献
8.
9.
Abstract pT181 is a Staphylococcus aureus rolling circle replicating plasmid whose copy number is controlled by regulating the synthesis and activity of the initiator protein, RepC. The RepC dimer is modified during pT181 replication by the addition of an oligodeoxynucleotide, giving rise to a new form, RepC*. To purify RepC*, RepC was expressed in S. aureus as a fusion protein with a polyhistidine tail. The histidine-tagged RepC retains its initiation and topoisomerase activities in vitro. Histagged RepC/RepC and RepC/RepC* were purified in a two-step procedure. Peptide mapping, mass spectrometric analysis and protein sequencing of purified RepC and RepC* were carried out, and both proteins appeared identical, except that the peptide containing the RepC active site tyrosine used in nicking activity was absent when the purified RepC* sample was analyzed. The absence of the active site in RepC* suggests that this site was modified during replication. The results provide the first direct biochemical evidence that RepC* is a modified form of RepC, and support a model in which RepC replication of pT181 leaves RepC with an oligonucleotide blocking the active site of one of its subunits. 相似文献
10.
Open-complex formation by the host initiator, DnaA, at the origin of P1 plasmid replication. 总被引:11,自引:1,他引:11
下载免费PDF全文

Replication of P1 plasmid requires both the plasmid-specific initiator, RepA, and the host initiator, DnaA. Here we show that DnaA can make the P1 origin reactive to the single-strand specific reagents KMnO4 and mung bean nuclease. Addition of RepA further increased the KMnO4 reactivity of the origin, although RepA alone did not influence the reaction. The increased reactivity implies that the two initiators interact in some way to alter the origin conformation. The KMnO4 reactivity was restricted to one strand of the origin. We suggest that the roles of DnaA in P1 plasmid and bacterial replication are similar: origin opening and loading of the DnaB helicase. The strand-bias in chemical reactivity at the P1 origin most likely indicates that only one of the strands is used for the loading of DnaB, a scenario consistent with the unidirectional replication of the plasmid. 相似文献
11.
The demands for recombinant proteins, in addition to plasmid DNA, for therapeutic use are steadily increasing. Bacterial fermentation processes have long been and still are the major tool for production of these molecules. The key objective of process optimization is to attain a high yield of the required quality, which is determined, to a large extent, by plasmid replication rates, metabolic capacity and the properties of the specific gene construct. When high copy number plasmids are used, the metabolic capacity of the host cell is often overstrained and efficient protein production is impaired. The plasmid copy number is the key parameter in the exploitation of the host cell, and can be maximized by optimal control of the flux ratios between biosynthesis of host cell proteins and recombinant proteins. 相似文献
12.
Cha KI Lim K Jang S Lim W Kim T Chang H 《Journal of microbiology and biotechnology》2007,17(11):1841-1847
We previously identified the origin of replication of p703/5, a small cryptic plasmid from the KBL703 strain of Enterococcus faecalis. The origin of replication contains putative regulatory cis-elements required for replication and a replication initiator (RepA) gene. The replicon of p703/5 is similar in its structural organization to theta-type plasmids, and RepA is homologous to a family of Rep proteins identified in several plasmids from Gram-positive bacteria. Here, we report molecular interactions between RepA and the replication origin of p703/5. DNase I footprinting using recombinant RepA together with electrophoretic mobility shift assays confirmed the binding of RepA to the replication origin of p703/5 via iterons and an inverted repeat. We also demonstrated the formation of RepA dimers and the different binding of RepA to the iteron and the inverted repeat using gel filtration chromatographic analysis, a chemical crosslinking assay, and electrophoretic mobility shift assays in the presence of guanidine hydrochloride. Our results suggest that RepA plays a regulatory role in the replication of the enterococcal plasmid p703/5 via mechanisms similar to those of typical iteron-carrying theta-type plasmids. 相似文献
13.
14.
15.
16.
Analysis of a recessive plasmid copy number mutant: evidence for negative control of Col E1 replication. 总被引:11,自引:0,他引:11
The Col E1-derivative copy number mutant plasmid pOP1Δ6 has been used to investigate the control of plasmid replication. pOP1Δ6 normally exists at about 200 copies per chromosome, while the wild-type plasmid from which it was derived (pBGP120) exists at about 15 copies per chromosome. We have observed that in E. coli containing both pOP1Δ6 and pBGP120, the copy number of pOP1Δ6 is lowered to 4–6 copies per chromosome. Thus the mutation in pOP1Δ6 is recessive. The association between the two plasmids is stable in E. coli, indicating that incompatibility properties as well as replication control characteristics have been altered in pOP1Δ6. Co-residence of the unrelated plasmid pSC101 with pOP1Δ6 has no detectable effect on pOP1Δ6 copy number. These results suggest that a plasmid-specific, diffusible repressor may act negatively to control plasmid copy number, and that pOP1Δ6 produces a defective repressor or is altered in repressor synthesis. We have constructed in vitro a plasmid which is identical in size to pQP1Δ6 but contains a replication origin region derived from pBGP120. Since this plasmid, pNOP1, exists stably (like pBGP120) at 10–15 copies per chromosome, the high copy number of pOP1Δ6 is not related to its reduced size relative to pBGP120. To localize the mutation in pOP1Δ6 responsible for DNA overproduction, we have cloned fragments of pBGP120 into pOP1Δ6 and selected for plasmids with wild-type copy number. We find that a 2.0 kb region of pBGP120 DNA surrounding the origin of plasmid DNA replication is capable of suppressing the DNA overproducer phenotype of pOP1Δ6. The 2.0 kb fragment is capable of independent self-replication or can integrate into pOP1Δ6 in vivo to form a composite plasmid with two origins of replication. The overproducer phenotype of pOP1Δ6 is suppressed in either configuration. 相似文献
17.
Interaction between RNA1 and the primer precursor in the regulation of Co1E1 replication 总被引:19,自引:0,他引:19
The analysis of a large number of independent mutants in the target of one of the inhibitors of pMB1 replication suggests that RNA1 regulates primer formation by base-pairing with the complementary sequence in the primer precursor. We conclude that the number of bases that are involved in the hydrogen bonding responsible for the specificity of the mechanism that controls plasmid replication and incompatibility properties is not much larger than seven. Five of these bases are located in the central loop and two in loop I of the RNA primer cloverleaf structure. Twenty-two single, double or triple mutants, with different nucleotide sequences in these seven bases, maintain an active mechanism of control, though with altered specificity. The efficiency of the inhibition mechanism correlates with the delta G value of the hydrogen bonds between the nucleotides of the two heptamers postulated to be involved in the interaction. The implications of these findings are discussed, and a molecular model of the interaction between RNA1 and the primer precursor is presented. 相似文献
18.
Mutation in the plasmid pUB110 Rep protein affects termination of rolling circle replication. 总被引:2,自引:0,他引:2
下载免费PDF全文

We isolated a mutant of plasmid pUB110 that has the following properties in Bacillus subtilis: (i) it is toxic for recA and add cells, particularly at elevated temperature; (ii) it has a copy number threefold higher than that of the parental plasmid, and the extra copies are present as multimers; and (iii) it can efficiently complement replication of a cmp- satellite plasmid, despite being cmp+. All these properties are due to a single change in the plasmid replication protein, i.e., Gly at position 148 to Glu. These properties of the mutant Rep protein reflect a diminished ability to terminate rolling circle replication. We propose that the Rep protein may have a diminished affinity for the plasmid origin; alternatively, it may be impaired for recognition of the plasmid conformations which distinguish initiation and termination. 相似文献
19.
Oke M Kerou M Liu H Peng X Garrett RA Prangishvili D Naismith JH White MF 《Journal of virology》2011,85(2):925-931
The Rudiviridae are a family of rod-shaped archaeal viruses with covalently closed, linear double-stranded DNA (dsDNA) genomes. Their replication mechanisms remain obscure, although parallels have been drawn to the Poxviridae and other large cytoplasmic eukaryotic viruses. Here we report that a protein encoded in the 34-kbp genome of the rudivirus SIRV1 is a member of the replication initiator (Rep) superfamily of proteins, which initiate rolling-circle replication (RCR) of diverse viruses and plasmids. We show that SIRV Rep nicks the viral hairpin terminus, forming a covalent adduct between an active-site tyrosine and the 5' end of the DNA, releasing a 3' DNA end as a primer for DNA synthesis. The enzyme can also catalyze the joining reaction that is necessary to reseal the DNA hairpin and terminate replication. The dimeric structure points to a simple mechanism through which two closely positioned active sites, each with a single tyrosine residue, work in tandem to catalyze DNA nicking and joining. We propose a novel mechanism for rudivirus DNA replication, incorporating the first known example of a Rep protein that is not linked to RCR. The implications for Rep protein function and viral replication are discussed. 相似文献
20.
Suppression of Co1E1 replication properties by the Inc P-1 plasmid RK2 in hybrid plasmids constructed in vitro. 总被引:18,自引:0,他引:18
Hybrid plasmids were constructed in vitro by linking the Inc P-1 broad host range plasmid RK2 to the colicinogenic plasmid ColE1 at their EcoRI endonuclease cleavage sites. These plasmids were found to be immune to colicin E1, non-colicin-producing, and to exhibit all the characteristics of RK2 including self-transmissibility. These joint replicons have a copy number of 5 to 7 per chromosome which is typical of RK2, but not ColE1. Unlike ColE1, the plasmids will not replicate in the presence of chloramphenicol and are maintained in DNA polymerase I mutants of Escherichia coli. In addition, only RK2 incompatibility is expressed, although functional ColE1 can be rescued from the hybrids by EcoRI cleavage. This suppression of ColE1 copy number and incompatibility was found to be a unique effect of plasmid size on ColE1 properties. However, the inhibition of ColE1 or ColE1-like plasmid replication in chloramphenicol-treated cells is a specific effect of RK2 or segments of RK2 (Cri+ phenotype). This phenomenon is not a function of plasmid size and requires covalent linkage of RK2 DNA to ColE1. A specific region of RK2 (50.4 to 56.4 × 103 base-pairs) cloned in the ColE1-like plasmid pBR313 was shown to carry the genetic determinant(s) for expression of the Cri+ phenotype. 相似文献