首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two loci FRI (FRIGIDA) and KRY (KRYOPHILA) have previously been identified as having major influences on the flowering time of the late-flowering, vernalization-responsive Arabidopsis ecotype, Stockholm. We report here on the mapping and subsequent analysis of these two loci. FRI was mapped to the top of chromosome 4 between markers w122 and m506, using restriction fragment length polymorphism (RFLP) analysis. Due to lack of segregation in of the late-flowering phenotype under the environmental conditions used, KRY could only be localized, by subtractive genotyping, to chromosome 5 or part of chromosome 3. The map position of FRI indicates that it is not allelic to any of the late-flowering loci identified by mutagenesis of the early-flowering ecotype Landsberg erecta. The late-flowering phenotype conferred by the Stockholm allele of FRI is modified (towards earlier flowering) by Landsberg erecta alleles at an unknown number of loci, perhaps accounting for the absence of fri mutations among mutant lines recovered in Landsberg erecta.  相似文献   

2.
Quantitative trait loci (QTL) analyses based on restriction fragment length polymorphism maps have been used to resolve the genetic control of flowering time in a cross between twoArabidopsis thaliana ecotypes H51 and Landsbergerecta, differing widely in flowering time. Five quantitative trait loci affecting flowering time were identified in this cross (RLN1-5), four of which are located in regions containing mutations or loci previously identified as conferring a late-flowering phenotype. One of these loci is coincident with theFRI locus identified as the major determinant for late flowering and vernalization responsiveness in theArabidopsis ecotype Stockholm.RLN5, which maps to the lower half of chromosome five (between markers mi69 and m233), only affected flowering time significantly under short day conditions following a vernalization period. The late-flowering phenotype of H51 compared to Landsbergerecta was due to alleles conferring late flowering at only two of the five loci. At the three other loci, H51 possessed alleles conferring early flowering in comparison to those of Landsbergerecta. Combinations of alleles conferring early and late flowering from both parents accounted for the transgressive segregation of flowering time observed within the F2 population. Three QTL,RLN1,RLN2 andRLN3 displayed significant genotype-by-environment interactions for flowering time. A significant interaction between alleles atRLN3 andRLN4 was detected.  相似文献   

3.
Quantitative trait loci (QTL) analyses based on restriction fragment length polymorphism maps have been used to resolve the genetic control of flowering time in a cross between twoArabidopsis thaliana ecotypes H51 and Landsbergerecta, differing widely in flowering time. Five quantitative trait loci affecting flowering time were identified in this cross (RLN1-5), four of which are located in regions containing mutations or loci previously identified as conferring a late-flowering phenotype. One of these loci is coincident with theFRI locus identified as the major determinant for late flowering and vernalization responsiveness in theArabidopsis ecotype Stockholm.RLN5, which maps to the lower half of chromosome five (between markers mi69 and m233), only affected flowering time significantly under short day conditions following a vernalization period. The late-flowering phenotype of H51 compared to Landsbergerecta was due to alleles conferring late flowering at only two of the five loci. At the three other loci, H51 possessed alleles conferring early flowering in comparison to those of Landsbergerecta. Combinations of alleles conferring early and late flowering from both parents accounted for the transgressive segregation of flowering time observed within the F2 population. Three QTL,RLN1,RLN2 andRLN3 displayed significant genotype-by-environment interactions for flowering time. A significant interaction between alleles atRLN3 andRLN4 was detected.  相似文献   

4.
The late-flowering phenotype of mutations in the LUMINIDEPENDENS (LD) gene and the late flowering caused by the naturally occurring dominant gene FRIGIDA (FRI) are suppressed in the Landsberg erecta (Ler) strain of Arabidopsis thaliana. This suppression is dependent on a locus on chromosome 5 designated FLC. Of the ecotypes tested, only the Ler strain contains the suppressor allele of FLC; ld mutations and FRI cause late flowering in the other genetic backgrounds. The allele at FLC also has a moderate effect on flowering time in the absence of FRI or ld mutations. The flowering time effects of FLC are gene dosage dependent.  相似文献   

5.
The majority of mutations that delay flowering in Arabidopsis thaliana have been identified in studies of the Landsberg erecta (Ler) ecotype. In this report we describe a gene (referred to as FLD) that, when mutated, delays flowering in the Columbia ecotype but has a minimal phenotype in the Ler genetic background. The late-flowering phenotype of fld mutants requires a non-Ler allele of another gene involved in the control of flowering time, Flowering Locus C. fld mutants retain a photoperiod response, and the flowering time of fld mutants can be reduced by cold treatment and low red/far-red light ratios.  相似文献   

6.
7.
The repressor FLOWERING LOCUS C (FLC) holds a key position among the genes, which drive Arabidopsis floral transition along the vernalization pathway. The FRIGIDA (FRI) gene activates FLC expression, and the interplay of strong and weak alleles of FLC and FRI in many cases explains the variations in Arabidopsis requirement for cold induction. In annual and biennial life forms of Brassica, the variations in time to flower have been also related to FLC; whereas the place of FRI in the vernalization process has not been sufficiently elucidated. In contrast to Arabidopsis, FRI in Brassica genomes A and C and presumably B is represented by two expressible loci, FRI.a and FRI.b, each of them manifesting genome-specific polymorphisms. FRI.a and FRI.b sequences from diploid species B. rapa (genome A) and B. oleracea (genome C) are conserved (96–99% similarity) in subgenomes A and C of tetraploid species B. carinata (genome BC), B. juncea (genome AB), and B. napus (genome AC). Phylogenetic analysis of FRI sequences in the genus Brassica clearly discerns the lineages A/C and B, while in the family Brassicaceae, two FRI clusters discriminated by such analysis correspond to the lineages I (including the genus Arabidopsis) and II (including the genus Brassica). The origin of two FRI loci is discussed in the context of the Brassicaceae evolution via paleopolyploidy and subsequent genome reorganization.  相似文献   

8.
Winter-annual ecotypes of Arabidopsis are relatively late flowering, unless the flowering of these ecotypes is promoted by exposure to cold (vernalization). This vernalization-suppressible, late-flowering phenotype results from the presence of dominant, late-flowering alleles at two loci, FRIGIDA (FRI) and FLOWERING LOCUS C (FLC). In this study, we report that flc null mutations result in early flowering, demonstrating that the role of active FLC alleles is to repress flowering. FLC was isolated by positional cloning and found to encode a novel MADS domain protein. The levels of FLC mRNA are regulated positively by FRI and negatively by LUMINIDEPENDENS. FLC is also negatively regulated by vernalization. Overexpression of FLC from a heterologous promoter is sufficient to delay flowering in the absence of an active FRI allele. We propose that the level of FLC activity acts through a rheostat-like mechanism to control flowering time in Arabidopsis and that modulation of FLC expression is a component of the vernalization response.  相似文献   

9.
FLOWERING LOCUS M (FLM) is a MADS-domain gene that acts as an inhibitor of flowering in Arabidopsis. Here we describe the genetic interaction of FLM with genes in the photoperiod and autonomous flowering pathways. Although the sequence of FLM is most similar to that of FLC, FLM and FLC interact with different flowering pathways. It has been previously shown that flc lesions suppress the late-flowering phenotype of FRI-containing lines and autonomous-pathway mutants. However, flm lesions suppress the late-flowering phenotype of photoperiod-pathway mutants but not that of FRI-containing lines or autonomous-pathway mutants. Another MADS-domain flowering repressor with a mutant phenotype similar to FLM is SVP. The late-flowering phenotype of FLM over-expression is suppressed by the svp mutation, and an svp flm double mutant behaves like the single mutants. Thus FLM and SVP are in the same flowering pathway which interacts with the photoperiod pathway. Abbreviations: CO, CONSTANS; FLC, FLOWERING LOCUS C; FLM, FLOWERING LOCUS M; FRI, FRIGIDA; GI, GIGANTEA; LD, LUMINIDEPENDENS; SVP, SHORT VEGETATIVE PHASE; FCA is not an abbreviation  相似文献   

10.
Ambient temperature is one of the major environmental factors that modulate plant growth and development. There is extensive natural genetic variation in thermal responses of plants exemplified by the variation exhibited by the accessions of Arabidopsis thaliana. In this work we have studied the enhanced temperature response in hypocotyl elongation and flowering shown by the Tsu‐0 accession in long days. Genetic mapping in the Col‐0 × Tsu‐0 recombinant inbred line (RIL) population identified several QTLs for thermal response including three major effect loci encompassing candidate genes FRIGIDA (FRI), FLOWERING LOCUS C (FLC) and FLOWERING LOCUS T (FT). We confirm and validate these QTLs. We show that the Tsu‐0 FRI allele, which is the same as FRI‐Ler is associated with late flowering but only at lower temperatures in long days. Using transgenic lines and accessions, we show that the FRI‐Ler allele confers temperature‐sensitive late flowering confirming a role for FRI in photoperiod‐dependent thermal response. Through quantitative complementation with heterogeneous inbred families, we further show that cis‐regulatory variation at FT contributes to the observed hypersensitivity of Tsu‐0 to ambient temperature. Overall our results suggest that multiple loci that interact epistatically govern photoperiod‐dependent thermal responses of A. thaliana.  相似文献   

11.
Three naturally occurring late flowering, vernalization responsive ecotypes ofArabidopsis thaliana, Pitztal, Innsbruck and Kiruna-2, were each crossed with the early flowering ecotypes of Landsbergerecta, Columbia and Niederzenz. Analysis of the subsequent generations suggested that late flowering in Kiruna-2 is recessive and mainly determined by a single, late flowering gene. This late flowering gene is not, however, the same as that in any of the late flowering mutants generated in the Landsbergerecta background. Both Pitztal and Innsbruck appear to contain the same dominant gene which confers late flowering to these ecotypes. The early flowering parents Niederzenz and Landsberg both contain genes which modify the phenotype of this dominant late flowering locus, causing F1 plants to flower either earlier (Landsberg) or later (Niederzenz) than the late parent. Mapping of the dominant late flowering locus from Pitztal demonstrated that late flowering co-segregated with an RFLP marker from one end of chromosome 4. This is a similar position to that ofFLA, the gene responsible for late flowering of theArabidopsis ecotypes Sf-2 and Le-O.  相似文献   

12.
We have analyzed the response to vernalization and light quality of six classes of late-flowering mutants (fb, fca, fe, fg, ft, and fy) previously isolated following mutagenesis of the early Landsberg race of Arabidopsis thaliana (L.) Heynh. When grown in continuous fluorescent illumination, four mutants (fca, fe, ft, and fy) and the Landsberg wild type exhibited a reduction in both flowering time and leaf number following 6 weeks of vernalization. A significant decrease in flowering time was also observed for all the mutants and the wild type when constant fluorescent illumination was supplemented with irradiation enriched in the red and far red regions of the spectrum. In the most extreme case, the late-flowering phenotype of the fca mutant was completely suppressed by vernalization, suggesting that this mutation has a direct effect on flowering. The fe and fy mutants also showed a more pronounced response than wild type to both vernalization and incandescent supplementation. The ft mutant showed a similar response to that of the wild type. The fb and fg mutants were substantially less sensitive to these treatments. These results are interpreted in the context of a multifactorial pathway for induction of flowering, in which the various mutations affect different steps of the pathway.  相似文献   

13.
Genger RK  Peacock WJ  Dennis ES  Finnegan EJ 《Planta》2003,216(3):461-466
Demethylation of DNA promotes flowering in plants from the vernalization-responsive ecotype C24 of Arabidopsis thaliana (L.) Heynh., but delays flowering in the ecotype Landsberg erecta which is not responsive to vernalization. To investigate these contrasting effects of low methylation we have monitored flowering times and expression of two repressors of flowering, FLC and FWA, in low-methylation plants from three late-flowering mutants in the ecotype Landsberg erecta. Demethylation of DNA decreased FLC expression in the vernalization-responsive mutants, but was not associated with a promotion of flowering; rather, in some lines, demethylation delayed flowering. The opposing effects of demethylation could be explained by its differential effect on the expression of two repressors of flowering. FLC was down-regulated in plants with low methylation, promoting flowering, while FWA was activated in response to demethylation, which probably delays the transition to flowering. Expression of the FWA gene did not delay flowering in plants of ecotype C24; our data suggest that the FWA protein of C24 may be non-functional.  相似文献   

14.
Tag1 is an autonomous transposable element (3.3 kb in length) first identified as an insertion in the CHL1 (NRT1) gene of Arabidopsis thaliana. Tag1 has been found in the Landsberg erecta ecotype of A. thaliana but not in Columbia or WS. In this paper, 41 additional ecotypes were examined for the presence of Tag1. Using an internal Tag1 fragment as probe, we found that DNA from 19 of the 41 ecotypes strongly hybridized to Tag1. Almost all of the Tag1-containing ecotypes had only one or two copies of Tag1 per haploid genome, as determined by Southern blot analysis. The only exception, Bf-1 from Bretagny-sur-Orge, France, had four copies. Two ecotypes, Di-G and S96, gave identical Southern blot patterns to that of Landsberg erecta and were subsequently shown to contain Tag1 at the same two positions found in Landsberg erecta (loci designated as Tag1-2 and Tag1-3). Two other ecotypes, Ag-0 and Lo-1, had a Tag1 element located at Tag1-2 but not at Tag1-3. The distance between these two loci was determined to be 0.37 cM. Analysis of DNA from two related species, A. griffithiana and A. pumila, showed that both species contain sequences that hybridize to Tag1 and that could be amplified with an oligonucleotide specific to the terminal inverted repeats of Tag1. These results show that Tag1 and related elements are present, and may be useful for insertional mutagenesis, in many A. thaliana ecotypes and several Arabidopsis species.  相似文献   

15.
Late-flowering mutants that have been described in ecotypes other than Landsberg erecta (Ler) have been found to be dominant alleles of the FRI locus located on chromosome 4, which determines lateness in many very late ecotypes. The extreme lateness of dominant FRI alleles depends on dominant alleles at the FLC locus that maps on the top of chromosome 5. FLC alleles with this effect have been found in all ecotypes tested (Col, Ws, S96, Est and Li) except Ler. Most likely the same locus confers lateness to the luminidependens (ld) mutant. Genotypes with a dominant FRI allele and the monogenic recessive ld mutant are only slightly later with recessive Ler alleles at the FLC locus. Genotypes where the dominant FLC alleles are combined with FRI or with the ld mutant, are strongly responsive to vernalization, which is much less effective in the FLC-Ler background.  相似文献   

16.
An evolutionary response to selection requires genetic variation; however, even if it exists, then the genetic details of the variation can constrain adaptation. In the simplest case, unlinked loci and uncorrelated phenotypes respond directly to multivariate selection and permit unrestricted paths to adaptive peaks. By contrast, ‘antagonistic’ pleiotropic loci may constrain adaptation by affecting variation of many traits and limiting the direction of trait correlations to vectors that are not favoured by selection. However, certain pleiotropic configurations may improve the conditions for adaptive evolution. Here, we present evidence that the Arabidopsis thaliana gene FRI (FRIGIDA) exhibits ‘adaptive’ pleiotropy, producing trait correlations along an axis that results in two adaptive strategies. Derived, low expression FRI alleles confer a ‘drought escape’ strategy owing to fast growth, low water use efficiency and early flowering. By contrast, a dehydration avoidance strategy is conferred by the ancestral phenotype of late flowering, slow growth and efficient water use during photosynthesis. The dehydration avoidant phenotype was recovered when genotypes with null FRI alleles were transformed with functional alleles. Our findings indicate that the well-documented effects of FRI on phenology result from differences in physiology, not only a simple developmental switch.  相似文献   

17.
FRIGIDA (FRI) and FLOWERING LOCUS C (FLC) are two genes that, unless plants are vernalized, greatly delay flowering time in Arabidopsis thaliana. Natural loss-of-function mutations in FRI cause the early flowering growth habits of many A. thaliana accessions. To quantify the variation among wild accessions due to FRI, and to identify additional genetic loci in wild accessions that influence flowering time, we surveyed the flowering times of 145 accessions in long-day photoperiods, with and without a 30-day vernalization treatment, and genotyped them for two common natural lesions in FRI. FRI is disrupted in at least 84 of the accessions, accounting for only approximately 40% of the flowering-time variation in long days. During efforts to dissect the causes for variation that are independent of known dysfunctional FRI alleles, we found new loss-of-function alleles in FLC, as well as late-flowering alleles that do not map to FRI or FLC. An FLC nonsense mutation was found in the early flowering Van-0 accession, which has otherwise functional FRI. In contrast, Lz-0 flowers late because of high levels of FLC expression, even though it has a deletion in FRI. Finally, eXtreme array mapping identified genomic regions linked to the vernalization-independent, late-flowering habit of Bur-0, which has an alternatively spliced FLC allele that behaves as a null allele.  相似文献   

18.
A segregating F2 population of Arabidopsis thaliana derived from a cross between the late-flowering ecotype Hannover/Münden (HM) and the early-flowering ecotype Wassilewskija (WS) was analyzed for flowering time and other morphological traits. Two unlinked quantitative trait loci (QTLs) affecting days to first flower (DFF-a and DFF-b) mapped to chromosome 5. QTLs which affect node number (NN), leaf length at flowering (LLF), and leaf length at 35 days (LL35) also mapped to chromosome 5; LLF-a, LL35-a, NN-a map to the same region of chromosome 5 as DFF-a; LLF-b and LL35-bmap to the same region of chromosome 5 as DFF-b. Another QTL affecting leaf length at flowering (LLF-c) maps to chromosome 3. The proximity of DFF-a, LLF-a, LL35-a and NN-a, as well as the similarity in gene action among these QTLs (additivity), suggest that they may be pleiotropic consequences of a single gene at this locus. Similarly, LL35-b and LLF-b map near each other and both display recessive gene action, again suggesting the possibility of pleiotropy. DFF-b, which also maps near LL35-b and LLF-b, displays largely additive gene action (although recessive gene action could not be ruled out). This suggests that DFF-b may represent a different gene from LL35-b and/or LLF-b. DFF-a maps near two previously identified mutants: co (which also affects flowering time and displays gene action consistent with additivity) and flc. Similar map locations and gene actions of QTLs affecting the correlated traits DFF, LLF, LL35 and NN suggest that these genomic regions harbor naturally occurring allelic variants involved in the general transition of the plant from vegetative to reproductive growth.  相似文献   

19.
Flowering time and vernalization requirement were studied in eight natural Karelian populations (KPs) of Arabidopsis thaliana. These KPs consisted of late-flowering plants with elevated expression of flowering repressor FLC and a reduced expression level of flowering activator SOC1 compared to the early-flowering ecotypes Dijon-M and Cvi-0. Despite variations in flowering time and the vernalization requirement among the KPs, two-week-old seedlings showed no changes in either the nucleotide sequence of the FRI gene or the relative expression levels of FRI and its target gene FLC that would be responsible for this variation. An analysis of abscisic acid (ABA) biosynthesis and catabolism genes (NCED3 and CYP707A2) did not show significant differences between late-flowering KPs and the early-flowering ecotypes Dijon-M and Cvi-0. Cold treatment (4°C for 24 h) induced the expression of not only NCED3, but also RD29B, a gene involved in the ABA-dependent cold-response pathway. The relative levels of cold activation of these genes were nearly equal in all genotypes under study. Thus, the ABA-dependent cold response pathway does not depend on FLC expression. The lack of significant differences between northern populations, as well as the ecotypes Dijon- M (Europe) and Cvi-0 (Cape Verde Islands), indicates that this pathway is not crucial for fitness to the northern environment.  相似文献   

20.
Summary We have examined the late-flowering behavior of two ecotypes of Arabidopsis thaliana, Sf-2 and Le-0. The late-flowering trait segregates as a single dominant gene in crosses with the early-flowering Columbia ecotype. This gene, which we refer to as FLA, is located at one end of chromosome 4 between RFLP markers 506 and 3843 and is thus distinct from previously mapped genes that affect flowering time. The extreme delay in flowering time caused by the FLA gene can be overcome by vernalization in both the ecotypes in which it occurs naturally and in the Columbia ecotype into which this gene has been introgressed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号