首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In an earlier investigation (Shanmugam, K. T., Buchanan, B. B., and Arnon, D. I. (1972) Biochim. Biophys. Acta 256, 477-486) the extraction of ferredoxin from Rhodospirillum rubrum cells with the aid of a detergent (Triton X-100) and acetone revealed the existence of two types of ferredoxin (I and II) and led to the conclusion that both are membrane-bound. In the present investigation, ferredoxin and acid-labile sulfur analyses of photosynthetic membranes (chromatophores) and soluble protein extracts of the photosynthetic bacteria R. rubrum and Rhodopseudomonas spheroides showed that ferredoxins I and II are primarily components of the soluble protein fraction. After their removal, washed R. rubrum chromatophores were found to contain a considerable amount of tightly bound iron-sulfur protein(s), as evidenced by acid-labile sulfur and electron paramagnetic resonance analyses. Thus, like all other photosynthetic cells examined to date, R. rubrum cells contain both soluble ferredoxins and iron-sulfur proteins tightly bound to photosynthetic membranes. The molecular weights of ferredoxins I and II from photosynthetically grown R. rubrum cells were found to be 8,800 and 14,500, respectively. Using these molecular weights, the molar extinction coefficients at 390 nm for ferredoxins I and II were determined to be 30.3 and 17.2 mM-1 CM-1, respectively. Ferredoxin I contains 8 non-heme iron and 8 acid-labile sulfur atoms per molecule; ferredoxin II contains 4 non-heme iron and 4 acid-labile sulfur atoms per molecule. Ferredoxin I was found only in photosynthetically grown cells whereas ferredoxin II was present in both light- and dark-grown cells. Ferredoxin II from both light- and dark-grown cells has the same molecular weight (14,500) and absorption spectrum and has 4 iron and 4 acid-labile sulfur atoms per molecule. Low temperature electron paramagnetic resonance spectra of oxidized and photoreduced ferredoxins I and II from R. rubrum were recorded. The EPR spectrum of oxidized ferredoxin II exhibited a single resonance line at g = 2.012. Oxidized ferredoxin I, however, exhibited a spectrum that may arise from the superimposition of two resonance lines near g = 2.012. Photoreduced ferredoxin II displayed a rhombic EPR spectrum with a g value of 1.94. Photoreduced ferredoxin I exhibited a similar EPR spectrum at a temperature of 16 K, but when the temperature was lowered to 4.5 K the spectrum of ferredoxin I changed. This temperature-dependent spectrum may result from a weak spin-spin interaction between two iron-sulfur clusters. These results are consistent with the conclusion that R. rubrum ferredoxins I and II are, respectively, 8 iron/8 sulfur and 4 iron/4sulfur proteins.  相似文献   

2.
A [2Fe-2S] ferredoxin was found in Pseudomonas ovalis which was grown in a medium supplemented with glucose and ammonium sulfate. The molecular weight of the 2Fe ferredoxin was estimated to be 13,000. It contained 2.2 gramatoms of non-heme iron and 2.3 gramatoms of acid-labile sulfur per mole protein. The absorption and circular dichroism spectra were characteristic of those of [2Fe-2S] type ferredoxins, especially adrenodoxin and putidaredoxin. The electron paramagnetic resonance spectrum of the reduced protein showed an axial symmetry (g = 2.020, g = 1.939). The amino acid composition was determined.  相似文献   

3.
On addition of NADH or NADPH to the mitochondrial outer membrane fraction from rat liver, an electron paramagnetic resonance (EPR) spectrum is observed which is characteristic of a protein, containing an iron-sulfur center. The g-values are 2.01, 1.94 and 1.89. Quantitation of the EPR absorption and analysis of the acid labile sulfur content suggest that the paramagnetic center contains two iron and two acid labile sulfur atoms. The concentration of the center in the outer membrane is about 0.5 nmoles/mg protein.  相似文献   

4.
A second ferredoxin protein was isolated from the thermophilic anaerobic bacterium Clostridium thermoaceticum and termed ferredoxin II. This ferredoxin was found to contain 7.9 +/- 0.3 iron atoms and 7.4 +/- 0.4 acid-labile sulfur atoms per mol of protein. Extrusion studies of the iron-sulfur centers showed the presence of two [Fe4-S4] centers per mol of protein and accounted for all of the iron present. The absorption spectrum was characterized by maxima at 390 nm (epsilon 390 = 30,400 M-1cm-1) and 280 nm (epsilon 280 = 41.400 M-1 cm-1) and by a shoulder at 300 nm. The ration of the absorbance of the pure protein at 390 nm to the absorbance at 280 nm was 0.74. Electron paramagnetic resonance data showed a weak signal in the oxidized state, and the reduced ferredoxin exhibited a spectrum typical of [Fe4-S4] clusters. Double integration of the reduced spectra showed that two electrons were necessary for the complete reduction of ferredoxin II. Amino histidine, and 1 arginine, and a molecular weight of 6,748 for the native protein. The ferredoxin is stable under anaerobic conditions for 60 min at 70 degrees C. The average oxidation-reduction potential for the two [Fe4-S4] centers was measured as -365 mV.  相似文献   

5.
One of the three components of the naphthalene dioxygenase occurring in induced cells of Pseudomonas sp. strain NCIB 9816 has been purified to homogeneity. The protein contained 2 g-atoms each of iron and acid-labile sulfur and had an apparent molecular weight of 13,600. The evidence indicates that it is a ferredoxin-type protein that functions as an intermediate electron transfer protein in naphthalene dioxygenase activity.  相似文献   

6.
1. A large-scale purification of the nitrogenase components from Azotobacter chroococcum yielded two non-haem iron proteins, both of which were necessary for nitrogenase activity and each had a specific activity of approximately 2000 +/- 300 nmol of acetylene reduced/mg protein per min in the presence of sautrating amounts of the other. This procedure freed the Mo-Fe protein from a protein contaminant which had an electron paramagnetic resonance signal at g = 1.94. 2. Both proteins were purified to homogeneity as determined by disc gel electrophoresis and ultracentrifugal analysis. Both proteins were oxygen-sensitive but not cold-labile. Ultracentrifugal analysis indicated that both proteins dissociated to a slight degree at concentrations below 2 mg/ml. 3. The larger of the two proteins had a molecular weight of 227 000 and contained 1.9 +/- 0.3 atoms of Mo, 23 +/- 2 atoms of Fe, 20 +/- 2 acid-labile sulphide and 47 tryptophan residues/mol. The protein consists of 4 subunits of mol. wt 60 000 (approx.). The reduced protein showed electron paramagmetic resonance signals at g = 4.29, 3.65 and 2.013 but not in the area of g = 5 to 6. Upon oxidation abosrbance increased throughout the visible region of the ultraviolet visible spectrum, with a maximum difference between oxidised and reduced protein occurring at 430 nm. 4. The smaller protein had a molecular weight of 64 000 and contained 4 g-atoms of Fe and 4 acid-labile sulphide groups/mol but no tryptophan. It had two subunits of mol. wt 30 800. The reduced protein showed electron paramagnetic resonance signhe protein retained almost full activity after oxidation with phenazine methosulphate. The ultraviolet visible spectrum of oxidised protein was clearly different from that of the oxygen-inactivated protein: it had a sharp peak at 269 nm and a broad absorbance between 340 and 470 nm with a maximum difference between oxidised and reduced forms at 430 nm. Oxygen-inactivated protein showed a sharp peak at 277.5 nm and broad peaks from 305 to 360, 400 to 425 and 435 to 475 nm. 5. Amino acid analyses of both proteins showed that most common amino acids were present with a preponderance of acidic residues. Analyses of compositional relatedness showed that the nitrogenase proteins from A. chroococcum were most closely related to those from A. vinelandii and least so to those from Clostridium pasteurianum.  相似文献   

7.
The tetrameric form of a Desulfovibrio gigas ferredoxin, named Fd II, mediates electron transfer between cytochrome c3 and sulfite reductase. We have studied two stable oxidation states of this protein with M?ssbauer spectroscopy and electron paramagnetic resonance. We found 3 iron atoms/monomer and a spin concentration of 0.9 spins/monomer for the oxidized protein. Taken together, the EPR and M?ssbauer data demonstrate conclusively the presence of a spin-coupled structure containing 3 iron atoms and labile sulfur. The M?ssbauer data show also that this metal center is structurally similar, if not identical, with the low potential center of a ferredoxin from Azotobacter vinelandii, a novel cluster described recently (Emptage, M.H., Kent, T.A., Huynh, B.H., Rawlings, J., Orme-Johnson, W.H., and Münck, E. (1980) J. Biol. Chem. 255, 1793-1796).  相似文献   

8.
An artificial Fe-S* protein was prepared by the reaction of bovine serum albumin with FeSO4 and Na2S or with a synthetic Fe-S*-1,4-butanenedithiol complex. These improved methods enabled us to characterize the derivatives from serum albumin. The Fe-S* albumin complex has about 20 iron ions and 14 labile sulfur atoms per molecule of the protein, whose absorption spectrum closely resembled that of 2Fe-2S* proteins. Its electron paramagnetic resonance spectrum exhibited signals different from those of ferredoxins. The addition of p-chloromercuriphenylsulfonate quenched the optical absorption in the visible region as well as the electron paramagnetic resonance signals. These properties of the albumin-iron complex are similar to those of iron-sulfur dithiothreitol and mercaptoethanol complexes, suggesting that the albumin-iron complex has one or more protein ligands besides sulfur lignads. Presumably, the oxygen atom of the tyrosine residue, or other hydroxyamino acids participates in the complex formation. In this context, the albumin polypeptide appears to be incapable of forming an iron-sulfur cluster identical to those of ferredoxins. Yet, from the albumin-iron derivative, the extrusion of the iron-sulfur core with benzenethiol provided products similar to those from ferredoxins. The iron-selenium and iron-tellurium derivatives of the bovine serum albumin were prepared and partially characterized by optical absorption and electron paramagnetic resonsnace spectroscopies. These results imply that both selenium and tellurium can be incorporated into the protein molecule as the respective labile components.  相似文献   

9.
A purification procedure is described for the components of Bacillus polymyxa nitrogenase. The procedure requires the removal of interfering mucopolysaccharides before the two nitrogenase proteins can be purified by the methods used with other nitrogenase components. The highest specific activities obtained were 2750 nmol C2H4 formed . min-1 . mg-1 MoFe protein and 2521 nmol C2H4 formed . min-1 . mg-1 Fe protein. The MoFe protein has a molecular weight of 215 000 and contains 2 molybdenum atoms, 33 iron atoms and 21 atoms of acid-labile sulfur per protein molecule. The Fe protein contains 3.2 iron atoms and 3.6 acid-labile sulfur atoms per molecule of 55 500 molecular weight. Each Fe protein binds two ATP molecules. The EPR spectra are similar to those of other nitrogenase proteins. MgATP changes the EPR of the Fe protein from a rhombic to an axial-type signal.  相似文献   

10.
A two-iron-two-sulphur non-haem iron protein, the ferredoxin from Spirulina maxima, has been studied by means of electron paramagnetic resonance (EPR) in the range where the spectrum loses resolution with increasing temperature. The spin-lattice relaxation times were deduced from linewidths measured by spectral simulation and their variation as a function of temperature is interpreted in terms of an Orbach mechanism. On this basis, the exchange integral between the two iron atoms, assuming as antiferromagnetic interaction between them, is estimated to be - 83 cm-1.  相似文献   

11.
Structures of mitochondrial ubihydroquinone:cytochrome c oxidoreductase (bc(1) complex) from several animal sources have provided a basis for understanding the functional mechanism at the molecular level. Using structures of the chicken complex with and without inhibitors, we analyze the effects of mutation on quinol oxidation at the Q(o) site of the complex. We suggest a mechanism for the reaction that incorporates two features revealed by the structures, a movement of the iron sulfur protein between two separate reaction domains on cytochrome c(1) and cytochrome b and a bifurcated volume for the Q(o) site. The volume identified by inhibitor binding as the Q(o) site has two domains in which inhibitors of different classes bind differentially; a domain proximal to heme b(L), where myxothiazole and beta-methoxyacrylate- (MOA-) type inhibitors bind (class II), and a distal domain close to the iron sulfur protein docking interface, where stigmatellin and 5-n-undecyl-6-hydroxy-4,7-dioxobenzothiaole (UHDBT) bind (class I). Displacement of one class of inhibitor by another is accounted for by the overlap of their volumes, since the exit tunnel to the lipid phase forces the hydrophobic "tails" to occupy common space. We conclude that the site can contain only one "tailed" occupant, either an inhibitor or a quinol or one of their reaction products. The differential sensitivity of strains with mutations in the different domains is explained by the proximity of the affected residues to the binding domains of the inhibitors. New insights into mechanism are provided by analysis of mutations that affect changes in the electron paramagnetic resonance (EPR) spectrum of the iron sulfur protein, associated with its interactions with the Q(o)-site occupant. The structures show that all interactions with the iron sulfur protein must occur at the distal position. These include interactions between quinone, or class I inhibitors, and the reduced iron sulfur protein and formation of a reaction complex between quinol and oxidized iron sulfur protein. The step with high activation energy is after formation of the reaction complex, likely in formation of the semiquinone and subsequent dissociation of the complex into products. We suggest that further progress of the reaction requires a movement of semiquinone to the proximal position, thus mapping the bifurcated reaction to the bifurcated volume. We suggest that such a movement, together with a change in conformation of the site, would remove any semiquinone formed from further interaction with the oxidized [2Fe-2S] center and also from reaction with O(2) to form superoxide anion. We also identify two separate reaction paths for exit of the two protons released in quinol oxidation.  相似文献   

12.
The archaebacterium, Pyrococcus furiosus, grows optimally at 100 degrees C by a fermentative type metabolism in which H2 and CO2 are the only detectable products. The organism also reduces elemental sulfur (S0) to H2S. Cells grown in the absence of S0 contain a single hydrogenase, located in the cytoplasm, which has been purified 350-fold to apparent homogeneity. The yield of H2 evolution activity from reduced methyl viologen at 80 degrees C was 40%. The hydrogenase has a Mr value of 185,000 +/- 15,000 and is composed of three subunits of Mr 46,000 (alpha), 27,000 (beta), and 24,000 (gamma). The enzyme contains 31 +/- 3 g atoms of iron, 24 +/- 4 g atoms of acid-labile sulfide, and 0.98 +/- 0.05 g atoms of nickel/185,000 g of protein. The H2-reduced hydrogenase exhibits an electron paramagnetic resonance (EPR) signal at 70 K typical of a single [2Fe-2S] cluster, while below 15 K, EPR absorption is observed from extremely fast relaxing iron-sulfur clusters. The oxidized enzyme is EPR silent. The hydrogenase is reversibly inhibited by O2 and is remarkably thermostable. Most of its H2 evolution activity is retained after a 1-h incubation at 100 degrees C. Reduced ferredoxin from P. furiosus also acts as an electron donor to the enzyme, and a 350-fold increase in the rate of H2 evolution is observed between 45 and 90 degrees C. The hydrogenase also catalyzes H2 oxidation with methyl viologen or methylene blue as the electron acceptor. The temperature optimum for both H2 oxidation and H2 evolution is greater than 95 degrees C. Arrhenius plots show two transition points at approximately 60 and approximately 80 degrees C independent of the mode of assay. That occurring at 80 degrees C is associated with a dramatic increase in H2 production activity. The enzyme preferentially catalyzes H2 production at all temperatures examined and appears to represent a new type of "evolution" hydrogenase.  相似文献   

13.
Superoxide dismutases from a blue-green alga, Plectonema boryanum.   总被引:20,自引:0,他引:20  
Iron-containing and manganese-containing superoxide dismutases were found in Plectonema boryanum. The Mn-enzyme occupies about 10% of total activity. The Fe-enzyme was purified to near homogeneity. It contains 2 atoms of iron per mol. Its molecular weight is 41,700 and it is composed of two subunits of identical molecular weight without disulfide linkage. Amino acid composition is presented. Electron paramagnetic resonance spectrum revealed that iron occurs in a high spin ferric form and in some anisotropic environment. The absorption spectrum and the absence of acid-labile enzymes are insensitive to cyanide. Although the Fe-enzyme is sensitive to hydrogen peroxide, the Mn-enzyme is not.  相似文献   

14.
The sulfur-reducing bacterium Spirillum 5175 was investigated with regard to membrane constituents that might be part of the sulfur oxidoreductase which converts elemental sulfur to hydrogen sulfide. Regardless of the electron acceptor used for cultivation of the bacteria, i.e. elemental sulfur, fumarate, or nitrate (Sp. 5175S,F,N), the qualitative pattern of cytochromes and Fe-S proteins did not change significantly, as documented by ultraviolet/visible and electron paramagnetic resonance spectroscopy of oxidized (as isolated) and reduced (dithionite) samples. With elemental sulfur the prominent cytochrome exhibited absorption maxima at 553, 522.5 and 426 nm in the reduced state. In fumarate-grown cells two prominent cytochromes were found with maxima at 561, 551, 530, 521 and 430 nm. Two b-type cytochromes with Em at -198 mV and -20 mV vs the standard hydrogen electrode were identified in the membrane fraction of Sp. 5175F. A yellow pigment was extracted and identified as a flexirubin-type pigment. Although present in large quantities, it seemed not to be involved in the reduction of elemental sulfur. Menaquinone, MK 6 (Mr 580) was the prominent quinone identified in Sp. 5175. Characterization of a second quinone was not attempted because of its much lower concentration. The membrane constituents of Sp. 5175 were solubilized by a variety of detergents and detergent mixtures. A colorimetric procedure with photochemically reduced phenosafranin as the electron donor and cysteamine trisulfide (RS-S-SR, R = -CH2CH2NH2) as the electron acceptor was used to detect sulfur oxidoreductase activity. Three membrane proteins of Sp. 5175 were purified: (1) an [NiFe] hydrogenase, homogeneous by SDS/polyacrylamide gel electrophoresis, with electron paramagnetic resonance signals as isolated at gx,y,z = 2.01, 2.16, 2.33 (100 K), and a strong signal at g = 2.02 below 20 K; (2) a cytochrome b, Fe-S-dependent fumarate reductase, and (3) a protein apparently linked to the sulfur oxidoreductase activity. In contrast to fumarate reductase, no b-type cytochrome was present in the fractions exhibiting sulfur oxidoreductase activity. The presence of Fe-S centers was demonstrated by electron paramagnetic resonance spectroscopy at 10 K. It is not clear whether the c-type cytochrome in the same fractions is part of the sulfur-reducing apparatus of Sp. 5175.  相似文献   

15.
A novel iron-sulfur protein was purified from the extract of Desulfovibrio desulfuricans (ATCC 27774) to homogeneity as judged by polyacrylamide gel electrophoresis. The purified protein is a monomer of 57 kDa molecular mass. It contains comparable amounts of iron and inorganic labile sulfur atoms and exhibits an optical spectrum typical of iron-sulfur proteins with maxima at 400, 305, and 280 nm. M?ssbauer data of the as-isolated protein show two spectral components, a paramagnetic and a diamagnetic, of equal intensity. Detailed analysis of the paramagnetic component reveals six distinct antiferromagnetically coupled iron sites, providing direct spectroscopic evidence for the presence of a 6Fe cluster in this newly purified protein. One of the iron sites exhibits parameters (delta EQ = 2.67 +/- 0.03 mm/s and delta = 1.09 +/- 0.02 mm/s at 140 K) typical for high spin ferrous ion; the observed large isomer shift indicates an iron environment that is distinct from the tetrahedral sulfur coordination commonly observed for the iron atoms in iron-sulfur clusters and is consistent with a penta- or hexacoordination containing N and/or O ligands. The other five iron sites are most probably high spin ferric. Three of them show parameters characteristic for tetrahedral sulfur coordination. In correlation with the EPR spectrum of the as-purified protein which shows a resonance signal at g = 15.3 and a group of signals between g = 9.8 and 5.4, this 6Fe cluster is assigned to an unusual spin state of 9/2 with zero field splitting parameters D = -1.3 cm-1 and E/D = 0.062. Other EPR signals attributable to minor impurities are also observed at the g = 4.3 and 2.0 regions. The diamagnetic M?ssbauer component represents a second iron cluster, which, upon reduction with dithionite, displays an intense S = 1/2 EPR signal with g values at 2.00, 1.83, and 1.31. In addition, an EPR signal of the S = 3/2 type is also observed for the dithionite-reduced protein.  相似文献   

16.
We have studied the molybdenum-iron protein (MoFe protein, also known as component I) from Azobacter vinelandi using M?ssbauer spectroscopy and electron paramagnetic resonance on samples enriched with 57Fe. These spectra can be interpreted in terms of two EPR active centers, each of which is reducible by one electron. A total of four different chemical environments of Fe can be discerned. One of them is a cluster of Fe atoms with a net electronic spin of 3/2, one of them is high-spin ferrous iron and the remaining two are iron in a reduced state (probably in clusters). The results are as follows: Chemical analysis yields 11.5 Fe atoms and 12.5 labile sulfur atoms per molybdenum atom; the molecule contains two Mo atoms per 300 000 daltons. The EPR spectrum of the MoFe protein exhibits g values at 4.32, 3.65 and 2.01, associated with the ground state doublet of a S = 3/2 spin system. The spin Hamiltonian H = D(S2/z minus 5/4 + lambda(S2/x minus S2/y)) + gbeta/o S-H fits the experimental data for go = 2.00 and lambda = 0.055. Quantitative analysis of the temperature dependence of the EPR spectrum yields D/k = 7.5 degrees K and 0.91 spins/molybdenum atom, which suggests that the MoFe protein has two EPR active centers. Quantitative evaluation of M?ssbauer spectra shows that approximately 8 iron atoms give rise to one quadrupole doublet; at lower temperatures magnetic spectra, associated with the groud electronic doublet, are observed; at least two magnetically inequivalent sites can be distinguished. Taken together the data suggest that each EPR center contains 4 iron atoms. The EPR and M?ssbauer data can only be reconciled if these iron atoms reside in a spin-coupled (S = 3/2) cluster. Under nitrogen fixing conditions the magnetic M?ssbauer spectra disappeared concurrently with the EPR signal and quadrupole doublets are obserced at all temperatures. The data suggest that each EPR active center is reduced by one electron. The M?ssbauer investigation reveals three other spectral components characteristic of iron nuclei in an environment of integer or zero electronic spin, i.e. they reside in complexes which are "EPR-silent". One of the components (3-4 iron atoms) has M?ssbauer parameters characteristic of the high-spin ferrous iron as in reduced ruberdoxin. However, measurements in strong fields indicate a diamagnetic environment. Another component, representing 9-11 iron atoms, seems to be diamagnetic also. It is suggested that these atoms are incorporated in spin-coupled clusters.  相似文献   

17.
Purified spinach nitrite reductase, a protein that contains siroheme, is characterized by absorption maxima in the visible region at 385 and 573 nm. On addition of the substrate nitrite, the bands shift to 360 and 570 nm. Dithionite also causes shifts in the maxima of the visible absorption region. Electron paramagnetic resonance studies show that the untreated enzyme contains a high-spin Fe3+ heme and that the addition of cyanide, an inhibitor that is competitive with nitrite, results in a spin-state change of the heme. Electron paramagnetic resonance analysis of the enzyme in the presence of dithionite or dithionite plus cyanide indicates the presence of a reduced iron-sulfur center with rhombic symmetry (g-values of 2.03, 1.94, and 1.91). In contrast, when the enzyme is treated with dithionite plus nitrite, the EPR spectrum of an NO-heme complex (g-values of 2.07 and 2.00) is observed. The presence of an iron-sulfur center has also been confirmed by chemical analyses of the nonheme iron and acid-labile sulfide in nitrite reductase. These results are discussed in terms of a mechanism for nitrite reduction that involves electron transfer between the iron-sulfur center and siroheme.  相似文献   

18.
The iron-sulfur protein of biphenyl 2,3-dioxygenase (ISPBPH) was purified from Pseudomonas sp. strain LB400. The protein is composed of a 1:1 ratio of a large (alpha) subunit with an estimated molecular weight of 53,300 and a small (beta) subunit with an estimated molecular weight of 27,300. The native molecular weight was 209,000, indicating that the protein adopts an alpha 3 beta 3 native conformation. Measurements of iron and acid-labile sulfide gave 2 mol of each per mol of alpha beta heterodimer. The absorbance spectrum showed peaks at 325 and 450 nm with a broad shoulder at 550 nm. The spectrum was bleached upon reduction of the protein with NADPH in the presence of catalytic amounts of ferredoxinBPH and ferredoxinBPH oxidoreductase. The electron paramagnetic resonance spectrum of the reduced protein showed three signals at gx = 1.74, gy = 1.92, and gz = 2.01. These properties are characteristic of proteins that contain a Rieske-type [2Fe-2S] center. Biphenyl was oxidized to cis-(2R,3S)-dihydroxy-1-phenylcyclohexa-4,6-diene by ISPBPH in the presence of ferredoxinBPH, ferredoxinBPH oxidoreductase, NADPH, and ferrous iron. Naphthalene was also oxidized to a cis-dihydrodiol, but only 3% was converted to product under the same conditions that gave 92% oxidation of biphenyl. Benzene, toluene, 2,5-dichlorotoluene, carbazole, and dibenzothiophene were not oxidized. ISPBPH is proposed to be the terminal oxygenase component of biphenyl 2,3-dioxygenase where substrate binding and oxidation occur via addition of molecular oxygen and two reducing equivalents.  相似文献   

19.
Oxidized cytochrome c6 from Anabaena PCC 7119 was studied by electron spin echo envelope modulation spectroscopy. Hyperfine couplings of the unpaired electron with several nuclei were detected, in particular those of the nitrogens bound to the iron atom. Combining the experimental information here presented and previous continuous wave-electron paramagnetic resonance and electron nuclear double resonance results, some details on the electronic structure of the heme center in the protein are obtained. These results are discussed on the basis of a molecular model that considers one unpaired electron localized mainly in the iron d orbitals and propagation of the spin density within the heme center via spin polarization of the nitrogen σ-orbitals. The coexistence of two heme forms at physiological pH values in this c-type cytochrome is also discussed taking into account the experimental evidence.  相似文献   

20.
The membrane-bound hydrogenase of the photosynthetic bacterium Rhodospirillum rubrum has been purified 490-fold with a yield of 5.8%. The enzyme was homogeneous by disc gel electrophoresis. A method for the permanent, oxygen-insensitive, staining of hydrogenase on polyacrylamide gels is described. The enzyme is a monomer of molecular weight about 66,000 containing four iron and four acid-labile sulfur atoms per molecule. The electron paramagnetic resonance spectrum at 20 °K exhibits a strong signal in the oxidized state only with g > 2—this is characteristic of high potential iron-sulfur protein. The hydrogenase is thermostable and also resistant to both denaturation agents and oxygen inactivation. Carbon monoxide reversibly inhibits the enzyme but metal-complexing and thiol-blocking reagents have little effect on activity. The enzyme will catalyze both H2 evolution and H2 uptake in the presence of many artificial electron carriers but the two activities differ in their pH optima. There is a correlation between H2 evolution activity and the redox potential of the mediator dye. Ferredoxins and pyridine nucleotides do not readily interact with the hydrogenase. We have shown that irradiation of a solution containing methyl viologen, EDTA, proflavin, and R. rubrum hydrogenase will evolve hydrogen continuously for over 9 h. However, the enzyme evolves hydrogen at only very low rates from in vitro chloroplast-ferredoxin and chloroplast-methyl viologen systems. R. rubrum hydrogenase has a number of properties in common with the hydrogenases purified from two other photosynthetic bacteria, Chromatium and Thiocapsa, but is distinct from the hydrogenases of nonphotosynthetic bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号