共查询到20条相似文献,搜索用时 0 毫秒
1.
Smith TA 《Bioorganic & medicinal chemistry》2005,13(14):4576-4579
Transferrin (Tf) receptor expression is up-regulated on tumour cells. The human serum iron transport protein transferrin (Tf) can bind to many metals including gallium and cobalt. Cobalt has a positron-emitting isotope with a half-life of 18 h and would thus be a useful isotope for imaging purposes. This study has examined the stability of the Co-Tf in the presence of serum and albumin and the uptake of radioactive Co from Co-Tf by tumour cells. Dialysis of 57Co-Tf with serum or with apo-Tf resulted in loss of most 57Co from the complex. The time course of Co uptake from cells incubated with Co-Tf showed an initial rapid association with cells, then a slower rate of accumulation, that is, a similar uptake profile to that of iron. Competition and displacement experiments showed that uptake specifically occurred by interaction with Tf receptors. 相似文献
2.
Zohra Chikh Nguyêt-Thanh Ha-Duong Geneviève Miquel Jean-Michel El Hage Chahine 《Journal of biological inorganic chemistry》2007,12(1):90-100
The kinetics and thermodynamics of Ga(III) exchange between gallium mononitrilotriacetate and human serum transferrin as well
as those of the interaction between gallium-loaded transferrin and the transferrin receptor 1 were investigated in neutral
media. Gallium is exchanged between the chelate and the C-site of human serum apotransferrin in interaction with bicarbonate
in about 50 s to yield an intermediate complex with an equilibrium constant K
1 = (3.9 ± 1.2) × 10−2, a direct second-order rate constant k
1 = 425 ± 50 M−1 s−1 and a reverse second-order rate constant k
−1 = (1.1 ± 3) × 104 M−1 s−1. The intermediate complex loses a single proton with proton dissociation constant K
1a = 80 ± 40 nM to yield a first kinetic product. This product then undergoes a modification in its conformation which lasts
about 500 s to produce a second kinetic intermediate, which in turn undergoes a final extremely slow (several hours) modification
in its conformation to yield the gallium-saturated transferrin in its final state. The mechanism of gallium uptake differs
from that of iron and does not involve the same transitions in conformation reported during iron uptake. The interaction of
gallium-loaded transferrin with the transferrin receptor occurs in a single very fast kinetic step with a dissociation constant
K
d = 1.10 ± 0.12 μM and a second-order rate constant k
d = (1.15 ± 0.3) × 1010 M−1 s−1. This mechanism is different from that observed with the ferric holotransferrin and suggests that the interaction between
the receptor and gallium-loaded transferrin probably takes place on the helical domain of the receptor which is specific for
the C-site of transferrin and HFE. The relevance of gallium incorporation by the transferrin receptor-mediated iron-acquisition
pathway is discussed. 相似文献
3.
The effects of an antibody to the rat transferrin receptor and of rat serum albumin on the uptake of diferric transferrin by rat hepatocytes 总被引:2,自引:0,他引:2
The role of high-affinity specific transferrin receptors and low-affinity, non-saturable processes in the uptake of transferrin and iron by hepatocytes was investigated using fetal and adult rat hepatocytes in primary monolayer culture, rat transferrin, rat serum albumin and a rabbit anti-rat transferrin receptor antibody. The intracellular uptake of transferrin and iron occurred by saturable and non-saturable mechanisms. Treatment of the cells with the antibody almost completely eliminated the saturable uptake of iron but had little effect on the non-saturable process. Addition of albumin to the incubation medium reduced the endocytosis of transferrin by the cells but had no significant effect on the intracellular accumulation of iron. The maximum effect of rat serum albumin was observed at concentrations of 3 mg/ml and above. At a low incubation concentration of transferrin (0.5 microM), the presence of both rat albumin and the antibody decreased the rate of iron uptake by the cells to about 15% of the value found in their absence, but to only 40% when the diferric transferrin concentration was 5 microM. These results confirm that the uptake of transferrin-bound iron by both fetal and adult rat hepatocytes in culture occurs by a specific, receptor-mediated process and a low-affinity, non-saturable process. The low-affinity process increases in relative importance as the iron-transferrin concentration is raised. 相似文献
4.
Iron uptake by rabbit reticulocytes was inhibited by spermine in a concentration-dependent manner. Examination of the single-cycle endocytosis of 125I-transferrin showed that a graded reduction in the rate of exocytosis of transferrin was related to increasing extracellular spermine concentrations. This reduction could affect the recycling of transferrin receptors and resulted in the loss of membrane binding sites in spermine-treated cells. As large vacuoles were observed in cells treated with spermine, the endotubular function of these cells was probably affected. Spermine also enhanced the binding affinity of transferrin to membrane receptors. The mechanism for this enhancement was not clear. 相似文献
5.
Iron (Fe) and transferrin (TF) uptake by human peripheral blood lymphocytes stimulated in vitro with phytohemagglutinin was measured. Pulses of 59FeTF or 125I-TF were added to the cultures either at time 0 or 8 hr before the end of a 72-hr incubation. In time-course experiments, peak iron and transferrin uptake coincided with the peak of tritiated thymidine uptake taken as a measure of cellular activation. Iron, but not transferrin, was accumulated by the cells. Non-linear relationships existed between both iron and transferrin uptake and the degree of activation. Both rose markedly above basal levels only at a level of activation at least 50% of the maximum observed. The results suggest that although iron utilization is related to cellular activity, the uptake mechanism is only activated when an increased iron metabolism has exhausted internal stores. 相似文献
6.
R Baynes G Bukofzer T Bothwell W Bezwoda B Macfarlane 《European journal of cell biology》1987,43(3):372-376
Transferrin receptors have been previously found on human macrophages and it has also been shown that transferrin iron is taken up by these cells. It has therefore been inferred that the uptake is receptor mediated and involves an endocytic pathway. The subject was addressed directly in the present study in which the transferrin-iron-receptor interaction was characterized in cultured human blood monocytes. Specific, saturable diferric transferrin binding was demonstrated, with a kDa of 3.6 X 10(-8) M and a calculated receptor density of 1.25-2.5 X 10(5) receptors per cell. Incubation at 4 degrees C markedly reduced transferrin binding and completely inhibited iron uptake. Chase experiments confirmed progressive cellular loading of iron, with concomitant loss of transferrin. Inhibitors of endocytic vesicle acidification (ammonium chloride and 2,4-dinitrophenol) inhibited iron unloading from endocytosed diferric transferrin, while microtubular inhibitors (colchicine and vindesine) and a microfilament inhibitor (cytochalasin B) reduced diferric transferrin uptake but had little effect on the iron unloading pathway. A similar effect was noted with a calcium ion antagonist (verapamil) and with 2 calmodulin antagonists (chlorpromazine and imipramine). These latter findings suggest the importance of cytoskeleton-membrane interactions via a calcium, calmodulin and protein kinase C mediated system. Endocytosed iron accumulated progressively as ferritin within the cultured monocytes. 相似文献
7.
Iron uptake from transferrin and transferrin endocytic cycle in Friend erythroleukemia cells 总被引:2,自引:0,他引:2
Several aspects of iron metabolism were studied in cultured Friend erythroleukemia cells before and after induction of hemoglobin synthesis by dimethyl sulfoxide. The maximal rate of iron uptake from 59Fe-labeled transferrin, 1.5 X 10(6) atoms of Fe/cell per 30 min in uninduced cells, increased to 3 X 10(6) atoms/cell after 5 days of induction. The increase in iron uptake was not accompanied by a proportional increase in the number of transferrin receptors detected by 125I-labeled transferrin binding, suggesting a more efficient iron uptake by transferrin receptors in induced cells, with the rate of about 26 iron atoms per receptor per hour, compared to 15 atoms in uninduced cells. In agreement with this conclusion are results of the study of cellular 125I or 59Fe labeled transferrin kinetics. In the induced cells transferrin endocytosis and release proceeded with identical rates and all the endocytosed iron was retained inside the cell. On the other hand, transferrin release by uninduced cells was significantly slower and a substantial part of internalized 59Fe was released. On the basis of these results, different efficiency of iron release from internalized transferrin, accompanied by changes in cellular transferrin kinetics, is proposed as one of the factors determining the rate of iron uptake by developing erythroid cells. 相似文献
8.
Z M Qian Q K Liao Y To Y Ke Y K Tsoi G F Wang K P Ho 《Cellular and molecular biology, including cyto-enzymology》2000,46(3):541-548
Previously we had demonstrated the presence of transferrin receptor (TfR) on the plasma membrane of cultured rat cortical astrocytes. In this study, we investigated the roles of TfR in transferrin-bound iron (Tf-Fe) as well as transferrin-free iron (Fe II) uptake by the cells. The cultured rat astrocytes were incubated with 1 microM of double-labelled transferrin (125I-Tf-59Fe) in serum- free DMEM F12 medium or 59Fe II in isotonic sucrose solution at 37 degrees C or 4 degrees C for varying times. The cellular Tf-Fe, Tf and Fe II uptake was analyzed by measuring the intracellular radioactivity with gamma counter. The result showed that Tf-Fe uptake kept increasing in a linear manner at least in the first 30-min. In contrast to Tf-Fe uptake, the internalization of Tf into the cells was rapid initially but then slowed to a plateau level after 10 min. of incubation. The addition of either NH4Cl or CH3NH2, the blockers of Tf-Fe uptake via inhibiting iron release from Tf within endosomes, decreased the cellular Tf-Fe uptake but had no significant effect on Tf uptake. Pre-treated cells with trypsin inhibited significantly the cellular uptake of Tf-Fe as well as Tf. These findings suggested that Tf-Fe transport across the membrane of astrocytes is mediated by Tf-TfR endocytosis. The results of transferrin-free iron uptake indicated that the cultured rat cortical astrocytes had the capacity to acquire Fe II. The highest uptake of Fe II occurred at pH 6.5. The Fe II uptake was time and temperature dependent, iron concentration saturable, inhibited by several divalent metal ions, such as Co2+, Zn2+, Mn2+ and Ni2+ and not significantly affected by phenylarsine oxide treatment. These characteristics of Fe II uptake by the cultured astrocytes suggested that Fe II uptake is not mediated by TfR and implied that a carrier-mediated iron transport system might be present on the membrane of the cultured cells. 相似文献
9.
The uptake and binding of 59Fe, 67Ga and 239Pu complexed with citrate of transferrin (Tf) and of 125I-labelled Fe-Tf by human lymphoblasts (WI-L2 cells) have been studied. Uptake kinetics of 59Fe-Tf and [125I]-Tf point to internalization by receptor mediated endocytosis. 67Ga binding and uptake is always less. This may be explained by a lower affinity of Ga-complexes for the cell surface. Factors which influence Fe uptake have a similar effect on Ga. 239Pu uptake and binding, however, are different, especially in that Tf does not stimulate 239Pu uptake and may actually decrease it. 相似文献
10.
Zahur Zaman Marie-Jeanne Heynen Robrecht L. Verwilghen 《Biochimica et Biophysica Acta (BBA)/General Subjects》1980,632(4):553-561
Mechanism of transferrin iron uptake by rat reticulocytes was studied using 59Fe- and 125I-labelled rat transferrin. Whereas more than 80% of the reticulocyte-bound 59Fe was located in the cytoplasmic fraction, only 25–30% of 125I-labelled transferrin was found inside the cells. As shown by the presence of acetylcholine esterase, 10–15% of the cytoplasmic 125I-labelled transferrin might have been derived from the contamination of this fraction by the plasma membrane fragments. Electron microscopic autoradiography indicated 26% of the cell-bound 125I-labelled transferrin to be inside the reticulocytes. Both the electron microscopic and biochemical studies showed that the rat reticulocytes endocytosed their plasma membrane independently of transferrin. Sepharose-linked transferrin was found to be capable of delivering 59Fe to the reticulocytes. Our results suggest that penetration of the cell membrane by transferrin is not necessary for the delivery of iron and that, although it might make a contribution to the cellular iron uptake, internalization of transferrin reflects endocytotic activity of the reticulocyte cell membrane. 相似文献
11.
Albumin prevents nonspecific transferrin binding and iron uptake by isolated hepatocytes 总被引:5,自引:0,他引:5
Bovine serum albumin inhibits binding of transferrin by hepatocytes in suspension by 60-70%. Iron uptake is inhibited by less than 20%. A Scatchard analysis of the transferrin-binding data reveals a biphasic plot in the absence of bovine serum albumin, but a monophasic plot in the presence of bovine serum albumin. Bovine serum albumin inhibits low-affinity binding of transferrin (125000 molecules/cell), but has no effect on high-affinity binding (38000 molecules/cell). In pronase-treated cells, transferrin binding is reduced by 40%, and when bovine serum albumin is added, the binding is reduced by a further 40%. Corresponding figures for iron uptake are 70 and 10%, respectively. The results are strong evidence that the major part of iron uptake by hepatocytes occurs from transferrin bound to the plasma membrane transferrin receptor. 相似文献
12.
Rabbit serum transferrin is isolated by a procedure designed to preserve its conformation and disulfide linkages. A progress report is presented on the determination of its amino acid sequence, as part of studies on its primary, secondary and tertiary structure. The sequence of 378 residues, of the approximately 680 residues in the molecule, are determined. Observations are made on the site of carbohydrate attachment, iron binding sites and half-cystine residue location. The results are discussed in relation to the X-ray crystallographic studies of human lactoferrin (lactotransferrin) and of rabbit serum transferrin being made in other laboratories. 相似文献
13.
The kinetics of transferrin endocytosis and iron uptake from transferrin in rabbit reticulocytes 总被引:17,自引:0,他引:17
The endocytosis of diferric transferrin and accumulation of its iron by freshly isolated rabbit reticulocytes was studied using 59Fe-125I-transferrin. Internalized transferrin was distinguished from surface-bound transferrin by its resistance to release during treatment with Pronase at 4 degrees C. Endocytosis of diferric transferrin occurs at the same rate as exocytosis of apotransferrin, the rate constants being 0.08 min-1 at 22 degrees C, 0.19 min-1 at 30 degrees C, and 0.45 min-1 at 37 degrees C. At 37 degrees C, the maximum rate of transferrin endocytosis by reticulocytes is approximately 500 molecules/cell/s. The recycling time for transferrin bound to its receptor is about 3 min at this temperature. Neither transferrin nor its receptor is degraded during the intracellular passage. When a steady state has been reached between endocytosis and exocytosis of the ligand, about 90% of the total cell-bound transferrin is internal. Endocytosis of transferrin was found to be negligible below 10 degrees C. From 10 to 39 degrees C, the effect of temperature on the rate of endocytosis is biphasic, the rate increasing sharply above 26 degrees C. Over the temperature range 12-26 degrees C, the apparent activation energy for transferrin endocytosis is 33.0 +/- 2.7 kcal/mol, whereas from 26-39 degrees C the activation energy is considerably lower, at 12.3 +/- 1.6 kcal/mol. Reticulocytes accumulate iron atoms from diferric transferrin at twice the rate at which transferrin molecules are internalized, implying that iron enters the cell while still bound to transferrin. The activation energies for iron accumulation from transferrin are similar to those of endocytosis of transferrin. This study provides further evidence that transferrin-iron enters the cell by receptor-mediated endocytosis and that iron release occurs within the cell. 相似文献
14.
15.
16.
Summary The aim of this study was to compare quantitatively the capacity to transcytose (i.e. to uptake and release) transferrin (Tf) with the pinocytic activity of suspended adult rat hepatocytes. An oligodisperse preparation of131I-polyvinylpyrrolidone (PVP;Mr 36000) was used to measure the inward and outward aspects of the pinocytic process in separate experiments. Cell association of rat125I-Tf was measured at Tf concentrations approaching physiological, where59Fe uptake obeyed first-order kinetics. Release studies with both PVP and Tf were carried out under conditions which minimized the probability ofde novo endocytosis of a molecule already released. Sets of experimental points representing cell-associated radioactivities were converted into continuous algebraic functions by fitting with two-term (release studies) or three-term (uptake studies) exponential equations. Transport of PVP and Tf through the cells was computed from these equations by deconvolution. This analysis showed that, under the present experimental conditions, the fractional transcytosis rates of Tf and PVP by hepatocytes were in the ratio of I:0.77. These values imply that, in the physiological range of Tf concentrations, about 75% of the Fe taken up by hepatocytes may be due to a pinocytic mechanism (fluid-phase or mixed). Inclusion of chloroquine (1 mM) in the suspending medium, both in uptake and release experiments, resulted in more PVP and Tf passing through the cells, while Fe uptake was reduced. It is suggested that the base probably exerted its enhancing effect on transcytosis by shunting the subcellular transport of PVP and Tf to the outward leg through a shorter circuit.Abbreviations BSA bovine serum albumin - HBSS Hank's balanced salt solution - Hepes 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid - MEM minimal essential medium - PVP polyvinylpyrrolidone - Tf transferrin 相似文献
17.
Single-chain nature of human serum transferrin 总被引:10,自引:0,他引:10
18.
Chantal Eid Miryana HémadiNguyêt-Thanh Ha-Duong Jean-Michel El Hage Chahine 《Biochimica et Biophysica Acta (BBA)/General Subjects》2014
Background
Dietary and recycled iron are in the Fe2 + oxidation state. However, the metal is transported in serum by transferrin as Fe3 +. The multi-copper ferroxidase ceruloplasmin is suspected to be the missing link between acquired Fe2 + and transported Fe3 +.Methods
This study uses the techniques of chemical relaxation and spectrophotometric detection.Results
Under anaerobic conditions, ceruloplasmin captures and oxidizes two Fe2 +. The first uptake occurs in domain 6 (< 1 ms) at the divalent iron-binding site. It is accompanied by Fe2 + oxidation by Cu2 +D6. Fe3 + is then transferred from the binding site to the holding site. Cu+D6 is then re-oxidized by a Cu2 + of the trinuclear cluster in about 200 ms. The second Fe2 + uptake and oxidation involve domain 4 and are under the kinetic control of a 200 s change in the protein conformation. With transferrin and in the formed ceruloplasmin–transferrin adduct, two Fe3 + are transferred from their holding sites to two C-lobes of two transferrins. The first transfer (~ 100 s) is followed by conformation changes (500 s) leading to the release of monoferric transferrin. The second transfer occurs in two steps in the 1000–10,000 second range.Conclusion
Fe3 + is transferred after Fe2 + uptake and oxidation by ceruloplasmin to the C-lobe of transferrin in a protein–protein adduct. This adduct is in a permanent state of equilibrium with all the metal-free or bounded ceruloplasmin and transferrin species present in the medium.General significance
Ceruloplasmin is a go-between dietary or recycled Fe2 + and transferrin transported Fe3 +. 相似文献19.