首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sugars are known to stabilize proteins. This study addresses questions of the nature of sugar and proteins incorporated in solid sugar films. Infrared (IR) and Raman spectroscopy was used to examine trehalose and sucrose films and glycerol/water solvent. Proteins and indole-containing compounds that are imbedded in the sugar films were studied by IR and optical (absorption, fluorescence, and phosphorescence) spectroscopy. Water is able to move in the sugar films in the temperature range of 20-300 K as suggested by IR absorption bands of HOH bending and OH stretching modes that shift continuously with temperature. In glycerol/water these bands reflect the glass transition at approximately 160 K. The fluorescence of N-acetyl-L-tryptophanamide and tryptophan of melittin, Ca-free parvalbumin, and staphylococcal nuclease in dry trehalose/sucrose films remains broad and red-shifted over a temperature excursion of 20-300 K. In contrast, the fluorescence of these compounds in glycerol/water solvent shift to the blue as temperature decreases. The fluorescence of the buried tryptophan in Ca-bound parvalbumin in either sugar film or glycerol/water remains blue-shifted and has vibronic resolution over the entire temperature range. The red shift for fluorescence of indole groups exposed to solvent in the sugars is consistent with the motion of water molecules around the excited-state molecule that occurs even at low temperature, although the possibility of static complex formation between the excited-state molecule and water or other factors is discussed. The phosphorescence yield for protein and model indole compounds is sensitive to the matrix glass transition. Phosphorescence emission spectra are resolved and shift little in different solvents or temperature, as predicted by the small dipole moment of the excited triplet state molecule. The conclusion is that the sugar film maintains the environment present at the glass formation temperature for surface Trp and amide groups over a wide temperature excursion. In glycerol/water these groups reflect local changes in the environment as temperature changes.  相似文献   

2.
The fluorescence and phosphorescence spectra of model indole compounds and of cod parvalbumin III, a protein containing a single tryptophan and no tyrosine, were examined in the time scale ranging from subnanoseconds to milliseconds at 25 degrees C in aqueous buffer. For both Ca- bound and Ca-free parvalbumin and for model indole compounds that contained a proton donor, a phosphorescent species emitting at 450 nm with a lifetime of approximately 20-40 ns could be identified. A longer-lived phosphorescence is also apparent; it has approximately the same absorption and emission spectrum as the short-lived triplet molecule. For Ca parvalbumin, the decay of the long-lived triplet tryptophan is roughly exponential with a lifetime of 4.7 ms at 25 degrees C whereas for N-acetyltryptophanamide in aqueous buffer the decay lifetime was 30 microseconds. In contrast, the lifetime of the long-lived tryptophan species is much shorter in the Ca-free protein compared with Ca parvalbumin, and the decay shows complex nonexponential kinetics over the entire time range from 100 ns to 1 ms. It is concluded that the photochemistry of tryptophan must take into account the existence of two excited triplet species and that there are quenching moieties within the protein matrix that decrease the phosphorescence yield in a dynamic manner for the Ca-depleted parvalbumin. In contrast, for Ca parvalbumin, the tryptophan site is rigid on the time scale of milliseconds.  相似文献   

3.
The spectra of azurin absorption, fluorescence, phosphorescence and fluorescence excitation have been measured in aqueous solutions at ordinary and liquid nitrogen temperatures. The fluorescence spectra of azurin even at ordinary temperatures have a well resolved fine vibrational structure. The frequency analysis reveals practically the same wave number distances between the main structure peaks in fluorescence spectra at room and low temperatures and in phosphorescence spectra. The comparison of the protein absorption and excitation spectra shows that all the energy absorbed by tyrosine residues is transferred onto indole chromophore. These data suggest an unusual tryptophan environment in this protein, which is characterized by the absence of any hydrogen bonding or other polar interaction of tryptophan with its environment. The problem of the possibility of contributions of two electronic transitions (1La in equilibrium A and 1Lb in equilibrium A) in absorption and emission spectra of azurin tryptophan arising from their mirror symmetry is discussed.  相似文献   

4.
Evaporation of water from a 1/1 mixture of trehalose and sucrose gives rise to optically clear glasses that are transparent in the UV and visible ranges and do not crystallize when they are prepared at ambient temperatures. Two proteins, liver alcohol dehydrogenase and parvalbumin, and the tryptophan derivative N-acetyl-tryptophanamide were incorporated into the glasses. Infrared spectroscopy of the amide I band reveals that the proteins retain secondary structure in the glass over a temperature range of 20-300K. The amide II band of the protein and the HOH bending band of residual water in the glass shift with temperature changes, consistent with increased H-bonding strength as temperature is lowered. Phosphorescence of tryptophan can be seen from the proteins at room temperature, which shows the immobilization of the protein by the glass and the curbing of oxygen diffusion. It is suggested that using mixed sugars to form glasses is a way to immobilize proteins over a wide temperature range without distortions from solvent crystals.  相似文献   

5.
The external heavy atom effect of mercury on the spectroscopic properties of the indole ring has been used to investigate stacking interactions of tryptophan with mercurinucleotides in mixed aggregates formed in frozen aqueous solutions as well as in oligopeptide-polynucleotide complexes. This effect is characterized at 77 K by a quenching of the tryptophan fluorescence, an enhancement of the phosphorescence emission and a drastic shortening of the phosphorescence lifetime. These phenomena result from an enhanced spin-orbit coupling due to a close contact between the mercury atom and the indole ring. Dissociation of the complexes leads to a recovery of the spectroscopic properties of the free tryptophan ring. The possible use of this spin-orbit probe to provide evidence for stacking interactions in protein-nucleic acid complexes is discussed.  相似文献   

6.
Studies on the dependence of indole and tryptophan fluorescence emission spectra on excitation wavelength, ex, show that the emission shifts to longer wavelengths for red-edge excitation in different solid and viscous solvents. In solid systems the spectral shifts for excitation in the range from 290 to 310 nm can reach tens of nm, and they are more significant than changes of ex. In a viscous medium the magnitude of this effect is shown to be directly related to the dipole-reorientational relaxation of solvent molecules in the environment of the chromophore, which allows the relaxation times to be estimated. The method involves simple steady-state measurements of fluorescence spectra at the maximum and at the red edge of the absorption band. Since it is not necessary to obtain information on the fluorescence spectra of completely relaxed states, this method for the estimation of relaxation times may have advantages in studies of proteins compared with the conventional relaxation shift method, and may produce complementary information to that obtained by nanosecond time-resolved spectroscopy.  相似文献   

7.
Zelent B  Yano T  Ohlsson PI  Smith ML  Paul J  Vanderkooi JM 《Biochemistry》2005,44(48):15953-15959
The iron of lactoperoxidase is predominantly high-spin at ambient temperature. Optical spectra of lactoperoxidase indicate that the iron changes from high-spin to low-spin in the temperature range from room temperature to 20 K. The transformation is independent of whether the enzyme is in glycerol/water or solid sugar glass. Addition of the inhibitor benzohydroxamic acid increases the amount of the low-spin form, and again the transformation is independent of whether the protein is in an aqueous solution or a nearly anhydrous sugar. In contrast to lactoperoxidase, horseradish peroxidase remains high-spin over the temperature excursion in both solvents and with addition of benzohydroxamic acid. We conclude that details of the heme pocket of lactoperoxidase allow ligation changes with temperature that are dependent upon the apoprotein but independent of solvent fluctuations. At low pH, lactoperoxidase shows a solvent-dependent transition; the high-spin form is predominant in anhydrous sugar glass, but in the presence of water, the low-spin form is also present in abundance. The active site of lactoperoxidase is not as tightly constrained at low pH as at neutrality, though the enzyme is active over a wide pH range.  相似文献   

8.
Mercuric ion interacts with indoles, including tryptophan, to produce complexes whose absorption spectra are broader, less structured, and red-shifted as compared with those of the parent compound. Fluorescence and phosphorescence are totally quenched. In a survey of the effect of transition metal ions on tryptophan fluorescence, the strong quenching by Hg2+ was unique among the uncolored ions. Mercuric nitrate quenched the fluorescence of practically every protein tested, but the sensitivity to quenching varied with the protein. Ovalbumin was the most sensitive to quenching by Hg2+, over 70% of the intrinsic fluorescence being quenched by 2 moles of mercuric ion. Difference absorption spectra show that sulfhydryl groups are attacked by these reagents and Hg2+ is, in addition, perturbing the environment near some tryptophans. In contrast to Hg2+, Zn2+ had negligible effect on protein fluorescence. The emission spectra of proteins which were partly quenched by mercuric ion showed shifts in their maxima to higher or lower wavelengths. This suggests that mercuric ion quenched certain tryptophans more than others, and supports the idea that protein fluorescence is heterogeneous and arises from tryptophans in different microenvironments.  相似文献   

9.
Water is a highly polar molecule that is capable of making four H-bonding linkages. Stability and specificity of folding of water-soluble protein macromolecules are determined by the interplay between water and functional groups of the protein. Yet, under some conditions, water can be replaced with sugar or other polar protic molecules with retention of protein structure. Infrared (IR) spectroscopy allows one to probe groups on the protein that interact with solvent, whether the solvent is water, sugar or glycerol. The basis of the measurement is that IR spectral lines of functional groups involved in H-bonding show characteristic spectral shifts with temperature excursion, reflecting the dipolar nature of the group and its ability to H-bond. For groups involved in H-bonding to water, the stretching mode absorption bands shift to lower frequency, whereas bending mode absorption bands shift to higher frequency as temperature decreases. The results indicate increasing H-bonding and decreasing entropy occurring as a function of temperature, even at cryogenic temperatures. The frequencies of the amide group modes are temperature dependent, showing that as temperature decreases, the amide group H-bonds to water strengthen. These results are relevant to protein stability as a function of temperature. The influence of solvent relaxation is demonstrated for tryptophan fluorescence over the same temperature range where the solvent was examined by infrared spectroscopy.  相似文献   

10.
Phosphorescence characteristics and fluorescence spectra at room temperature and 77°K of 5 indole compounds relevant to 3-indoleacetic acid metabolism have been recorded. Three of these samples were extracted from a biological source and compared to synthetic derivatives.The phosphorescence spectrum of these compounds is very characteristic for the indole chromophore and superior to the fluorescence spectrum for its detection.For the closely related compounds I–V the phosphorescence characteristics are not sufficiently different from each other to allow unambiguous identification.  相似文献   

11.
Tryptophan synthase from Salmonella typhimurium is a bifunctional alpha 2 beta 2 complex that catalyzes the formation of L-tryptophan. We have characterized over the temperature range from 160 to 293 K the fluorescence and phosphorescence properties of the single tryptophan present at position 177 of the beta-subunit and of the pyridoxal 5'-phosphate bound through a Schiff's base in the beta-active site. The comparison between the fluorescence of the pyridoxal phosphate bound either to the protein or to valine free in solution indicates substantial protection for the coenzyme against thermal quenching and a greater intensity of the ketoenamine tautomer band. Trp-177 is highly luminescent, and its proximity to the pyridoxal moiety leads to an over 50% quenching of its fluorescence with both reduced and native coenzyme. The Trp phosphorescence spectrum possesses a narrow, well-defined, 0-0 vibrational band centered at 418.5 nm, a wavelength that indicates strong polar interactions with neighboring charges. The observation of delayed fluorescence in the native complex implies that the excited triplet state is involved in a process of triplet-singlet energy transfer to the ketoenamine tautomer. The rate of energy transfer, heterogeneous in low-temperature glasses with rate constants of 2.26 and 0.07 s-1, becomes homogeneous in fluid solutions as the coenzyme tautomer interconversion is likely faster than the phosphorescence decay. In both apo- and holo-alpha 2 beta 2, the phosphorescence from Trp-177 is long-lived even at ambient temperature.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
The Trp phosphorescence spectrum, intensity and decay kinetics of apo-aspartate aminotransferase, pyridoxamine-5P-aspartate-aminotransferase and pyridoxal-5P-aspartate aminotransferase were measured over a temperature range 160-273 K. The fine structure of the phosphorescence spectra in low-temperature glasses, with 0-0 vibrational bands centered at 408, 415 and 417 nm, for both apoenzyme and pyridoxamine-5P-enzyme reveals a marked heterogeneity of the chromophore environments. Only for the pyridoxal-5P form of the enzyme is the triplet emission strongly quenched and, in this case, the spectrum displays a unique 0-0 vibrational band centered at 415 nm. Concomitant to quenching, there is Trp-sensitized delayed fluorescence of the Schiff base, an indication that quenching of the excited triplet state is due, at least in part, to a process of triplet singlet energy transfer to the ketoenamine tautomer. All three forms of the enzyme are phosphorescent for temperatures up to 273 K. However, across the glass transition temperature the pyridoxal-5P enzyme shows a decrease in lifetime-normalized phosphorescence intensity, a thermal quenching that reduces even further the number of phosphorescing residues at ambient temperature. In fluid solution, the triplet decay is nonexponential and multiple lifetimes stress the heterogeneity in dynamical structure of the chromophores' sites. For the pyridoxal-5P enzyme, where only one or at most two residues are phosphorescent at 273 K, the nonexponential nature of the decay implies the presence of different conformers of the protein not interconverting in the millisecond time scale.  相似文献   

13.
The binding of the corepressor, L-tryptophan, and an inducer, indole propanoic acid, to the trp repressor from Escherichia coli was studied by absorbance, fluorescence, circular dichroic and proton NMR spectroscopy. The two ligands bind to the same site on the repressor in the same orientation; they are molecular competitors. The binding site is of relatively low polarity and contains at least one methyl group that lies 0.3 nm over the indole moiety near the C5 proton of the bound ligand, and an aromatic residue, probably tyrosine. The dissociation constant was determined as a function of temperature and pH. At 25 degrees C in 0.1 M phosphate buffer, pH 7.6, the dissociation constant is 18 +/- 2 microM for both ligands. In the same buffer system, the van't Hoff enthalpy for dissociation is 35.5 +/- 1 kJ/mol for tryptophan, and 30.5 +/- 2 kJ/mol for indole propanoic acid. The affinity of the repressor for indole propanoic acid is independent of pH in the range 7 less than 10, but decreases four fold for tryptophan in the same range. The amino group of tryptophan makes a significant contribution to its binding affinity. Difference NMR spectra showed that there are few changes of protein resonances on binding ligands. The NMR signals of the bound resonances were assigned by difference and nuclear Overhauser effect spectroscopy. The properties of the bound resonances are consistent with the ligands being largely immobilised within the binding site. The difference spectra, and the known functional differences of the two ligands, suggest that tryptophan induces a slightly different conformational state in the repressor from that induced by indole propanoic acid. There is no evidence for a global transition. The rate of dissociation of ligands is relatively large, being in the range 400-600 s-1.  相似文献   

14.
The D-galactose/D-glucose-binding protein (GGBP) from E. coli serves as an initial component for both chemotaxis toward glucose and high-affinity active transport of the sugar. In this work, we have used phosphorescence spectroscopy to investigate the effects of glucose and calcium on the dynamics and stability of GGBP. We found that GGBP exhibits a phosphorescence spectrum composed of two energetically distinct 0,0-vibrational bands centered at 404.43 and 409.61 nm; the large energy separation between them indicates two classes of chromophores making distinct dipolar interactions with their surrounding. Interestingly, the high-energy spectral component (404.43 nm) is one of the bluest spectra reported to date in proteins. Considering the ground state dipole direction, low-energy configurations for the indole side chain in proteins leading to blue-shifted spectra can arise from negative charges in proximity to the imidazole-ring nitrogen and/or positive charges near C4-C5 of the benzene ring. Among the five tryptophan residues of GGBP, Trp-284, located at the N-terminal domain of the protein, and Trp-183, located in the protein hinge region, make strong attractive charge interactions with surrounding side chains. Regarding Trp-284, the indole ring nitrogen is in contact with the negative charge of the Asp-267, whereas Trp-183 is next to the Glu-149 residue. In the latter, the ground state energy is further lowered by the proximity of the Arg-158 to the negative end (near C6) of the indole dipole. Regarding the red spectral component (409.61 nm), it is more intense than the blue component, presumably because more residues contribute to it. lambda 0,0 is typical of environments that are weakly polar or characterized by charges positioned near 90 degrees from the ground state dipole direction (the case of W195 and W127). The binding of glucose modifies the phosphorescence lifetime values as well as the spectrum of GGBP, shifting the blue band 0.54 nm to the blue and the red band 1 nm to the red. Finally, the removal of the calcium from GGBP structure causes variations in lifetime values and spectral shifts similar to those induced by glucose binding to the native protein. Aided by a detailed inspection of the three-dimensional structure of GGBP, these results contribute to a better understanding of the structure/function relationship of this protein.  相似文献   

15.
Variability in the temperature dependence of disulfide quenching of the tryptophan phosphorescence of globular proteins in rigid glasses is illustrated with lysozyme and α-bungarotoxin. A laser-pulsed phosphorescence study of this short-range interaction with a model indole-disulfide system is described. The perturbation of secondary dibutyl disulfide on the triplet state of the indole moiety in 2-(3-indolyl)ethyl phenyl ketone in rigid media is found to display a bimodal temperature dependence. The quenching rate constant at contact between chromophore and perturber is observed to be temperature independent below 30 K, but to increase with temperature between 30 and 100 K with an activation energy of ~200 cm-1. The results suggest that the underlying quenching interaction involves a photo-induced one-electron transfer from the excited state of indole to the disulfide.  相似文献   

16.
With the aim of finding non-equilibrium dipole-relaxational electronic excited states of tryptophan residues in proteins the dependence of the fluorescence emission maximum on excitation wavelength was studied for several proteins containing a single tryptophan residue per molecule. Spectral shifts upon red-edge excitation are not observed for short wavelength-emitting proteins (azurin, two-calcium form of whiting parvalbumin, ribonucleases C 2 and T 1). This may be because of the non-polar environment of the tryptophan residues in these proteins or because of the absence of dipole-orientational broadening of spectra. The effect was also not found for proteins emitting at long wavelengths (max. at 341–350 nm) —melittin at low ionic strength, IT-Aj1 protease inhibitor, myelin basic protein. In these proteins, the tryptophan residues are exposed to the rapidly relaxing aqueous solvent. Spectral shifts associated with red-edge excitation are observed for proteins emitting in the medium spectral range — human serum albumin in the N and F forms, IT-Aj1 protease inhibitor at pH 2.9, melittin at high ionic strength as well as the albumin-dodecylsulfate complex. This suggests the existence in these proteins of a distribution of microstates for tryptophan environment with various orientation of dipoles and of slow (on the nanosecond time scale) mobility of the field of these dipoles. As a result the emission proceeds from electronic excited states which are not at equilibrium.  相似文献   

17.
The tryptophan phosphorescence spectrum, intensity and decay kinetics of G-actin and F-actin were measured over a temperature range of 140-293 K. The fine structure in the phosphorescence spectra at low temperature, with O,O vibrational bands centered at 405 nm and 415.5 nm for both species, reveals a marked heterogeneity of the chromophore environment. The thermal quenching profile distinguishes these sites in terms of their flexibility, and shows that probably only one of the four tryptophan residues is still phosphorescent at ambient temperature due to its location in a relatively rigid buried core. Although some differences are demonstrated between G-actin and F-actin at low temperature, the identity of the triplet lifetime at ambient temperature strongly supports the notion that the conformation of the macromolecule is largely unaffected by polymerization. Preliminary phosphorescence anisotropy measurements demonstrate both the occurrence of singlet-singlet energy transfer among tryptophan residues and a strong immobilization of actin in the polymerized state.  相似文献   

18.
Steady-state and time-resolved fluorescence, as well as phosphorescence measurements, were used to resolve the luminescence properties of the three individual tryptophan residues of barnase. Assignment of the fluorescence properties was performed using single-tryptophan-containing mutants and the results were compared with the information available from the study of wild-type and two-tryptophan-containing mutants (Willaert, Lowenthal, Sancho, Froeyen, Fersht, Engelborghs, Biochemistry 1992;31:711-716). The fluorescence and the phosphorescence emission of wild-type barnase is dominated by Trp35, although Trp71 has the strongest intrinsic fluorescence when present alone. Fluorescence emission of these two tryptophan residues is blue-shifted and pH-independent. The fluorescence decay parameters of Trp94 are pH-dependent, and an intramolecular collision frequency of 2 to 5 x 10(9) s(-1) between Trp94 and His18 is calculated. Fluorescence emission of Trp94 is red-shifted. Fluorescence anisotropy decay reveals the local mobility of the individual tryptophan residues and this result correlates well with their phosphorescence properties. Trp35 and Trp71 display a single phosphorescence lifetime, which reflects the rigidity of their environment. Surface Trp94 does not exhibit detectable phosphorescence emission. The existence of energy transfer between Trp71 and Trp94, as previously detected by fluorescence measurements, is also observed in the phosphorescence emission of barnase. Dynamic quenching causes the phosphorescence intensity to be protein-concentration dependent. In addition, fluorescence anisotropy shows concentration dependency, and this can be described by the formation of trimers in solution.  相似文献   

19.
Parvalbumin, aldolase and liver alcohol dehydrogenase (ADH), proteins exhibiting long-lived phosphorescence lifetimes at room temperature, were examined for their reactivity with ferricytochrome c (cytochrome c Fe3+) as an external electron acceptor. Illumination of a reaction mixture containing protein and cytochrome c in the absence of oxygen brought about reduction of cytochrome c in relation to the duration of light. The largest portion of reduced cytochrome c was found with a sample containing ADH, where a 50% reduction of cytochrome c was reached after 5 min of illumination with a xenon lamp. Parvalbumin and aldolase were about half as effective under the same conditions. Several lines of evidence support the idea that the reaction of cytochrome c occurred by a long-range electron transfer from the excited triplet state of tryptophan. First, cytochrome c quenches the tryptophan phosphorescence and with parvalbumin, its bimolecular quenching rate constant, kq, was 2.9 x 10(6) M-1 s-1. Second, when the illuminated reaction mixture was supplied with 0.2 mM to 1 mM nitrite, a concentration range of nitrite which quenches the tryptophan phosphorescence but not the fluorescence, the amount of reduced cytochrome c on illumination markedly decreased. Finally, for all illuminated protein samples, the extent of cytochrome c reduction occurred parallel to a decrease in tryptophan content as judged from a decrease in fluorescence intensity and/or a decrease in tryptophan absorption at 280 nm.  相似文献   

20.
The fluorescence properties of proteinase K are described and related to the X-ray model refined at 1.48 A resolution. Upon excitation of proteinase K at 295 nm the fluorescence is determined by the two tryptophan residues, Trp-8 and Trp-212. The tryptophans are partly buried just below the surface of the molecule. Neither Trp is in a highly hydrophobic environment, suggesting that this cannot be the explanation for the fluorescence at 330 nm: formation of exiplexes with adjacent peptide bonds would seem to be the more likely cause. Trp-8 is located in a 'cavity', close to an internal cluster of water molecules. The contribution of Trp-8 to the total indole emission is 60% and that of Trp-212 is 40%. The tryptophan fluorescence quantum yield is constant in the pH range 3-9. The fluorescence spectrum resulting from the simultaneous excitation of the tyrosyl and tryptophyl residues at 280 nm is dominated by the indole fluorophores: 61% of the light absorbed by the tyrosyl side chains is transferred to the two indole rings. Iodide and caesium are not efficient quenchers of the proteinase K tryptophan fluorescence, which is explained by restricted access of the ions to the somewhat buried Trp side chains and by electrostatic repulsion of caesium ions. Acrylamide quenching proceeds via both a dynamic and a static process and the data show homogeneity of the indole fluorescence arising from fluorophores in similar environments. The activation energy for the thermal deactivation of the excited tryptophans is 54 kJ mol-1. This value is substantially higher than those found for other proteinases from microorganisms and arises from the thermostability of proteinase K. Photooxidation of proteinase K in the presence of proflavine follows the kinetics of a first order reaction. The two tryptophans differ in their photoreactivity, Trp-212 being considerably more reactive.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号