首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phenological shifts linked to global warming reflect the ability of organisms to track changing climatic conditions. However, different organisms track global warming differently and there is an increasing interest in the link between phenological traits and plant abundance and distribution. Long-term data sets are often used to estimate phenological traits to climate change, but so far little has been done to evaluate the quality of these estimates. Here, we use a 73-year long data series of first flowering dates for 25 species from north-temperate Sweden to evaluate (i) correlations between first flowering dates and year for different time periods and (ii) linear regression models between first flowering date and mean monthly temperatures in preceding months. Furthermore, we evaluate the potential of this kind of data to estimate the phenological temperature sensitivities (i.e. number of days phenological change per degree temperature change, β60) in such models. The sign of the correlations between first flowering dates and year were highly inconsistent among different time periods, highlighting that estimates of phenological change are sensitive to the specific time period used. The first flowering dates of all species were correlated with temperature, but with large differences in both the strength of the response and the period(s) of the year that were most strongly associated with phenological variation. Finally, our analyses indicated that legacy data sets need to be relatively long-term to be useful for estimating phenological temperature sensitivities (β60) for inter-specific comparisons. In 10-year long observation series only one out of 24 species reached ≥80 % probability of estimating temperature sensitivity (β60) within a ±1 range, and 17 out of 24 species reached ≥80 % probability when observation series were 20 years or shorter. The standard error for β60 ranged from 0.6 to 2.0 for 10-year long observation series, and 19 out of 24 species reached SE < 1 after 15 years. In general, late flowering species will require longer time series than early flowering species.  相似文献   

2.
Many alpine and subalpine plant species exhibit phenological advancements in association with earlier snowmelt. While the phenology of some plant species does not advance beyond a threshold snowmelt date, the prevalence of such threshold phenological responses within plant communities is largely unknown. We therefore examined the shape of flowering phenology responses (linear versus nonlinear) to climate using two long-term datasets from plant communities in snow-dominated environments: Gothic, CO, USA (1974–2011) and Zackenberg, Greenland (1996–2011). For a total of 64 species, we determined whether a linear or nonlinear regression model best explained interannual variation in flowering phenology in response to increasing temperatures and advancing snowmelt dates. The most common nonlinear trend was for species to flower earlier as snowmelt advanced, with either no change or a slower rate of change when snowmelt was early (average 20% of cases). By contrast, some species advanced their flowering at a faster rate over the warmest temperatures relative to cooler temperatures (average 5% of cases). Thus, some species seem to be approaching their limits of phenological change in response to snowmelt but not temperature. Such phenological thresholds could either be a result of minimum springtime photoperiod cues for flowering or a slower rate of adaptive change in flowering time relative to changing climatic conditions.  相似文献   

3.
Phenological models for blooming of apple in a mountainous region   总被引:2,自引:0,他引:2  
Six phenological series were available for ‘Golden Delicious’ apple blooming at six sites in Trentino, an alpine fruit-growing region. Several models were tested to predict flowering dates, all involving a “chilling and forcing” approach. In many cases, application of the models to different climatic conditions results in low accuracy of prediction of flowering date. The aim of this work is to develop a model with more general validity, starting from the six available series, and to test it against five other phenological series outside the original area of model development. A modified version of the “Utah” model was the approach that performed best. In fact, an algorithm using “chill units” for rest completion and a thermal sum for growing-degree-hours (GDH), whose efficiency changes over time depending on the fraction of forcing attained, yielded a very good prediction of flowering. Results were good even if hourly temperatures were reconstructed from daily minimum and maximum values. Errors resulting from prediction of flowering data were relatively small, and root mean square errors were in the range of 1–6 days, being <2 days for the longest phenological series. In the most general form of the model, the summation of GDH required for flowering is not a fixed value, but a function of topoclimatic variables for a particular site: slope, aspect and spring mean temperature. This approach allows extension of application of the model to sites with different climatic features outside the test area.  相似文献   

4.
The onset of the growing season of trees has been earlier by 2.3 days per decade during the last 40 years in temperate Europe because of global warming. The effect of temperature on plant phenology is, however, not linear because temperature has a dual effect on bud development. On one hand, low temperatures are necessary to break bud endodormancy, and, on the other hand, higher temperatures are necessary to promote bud cell growth afterward. Different process‐based models have been developed in the last decades to predict the date of budbreak of woody species. They predict that global warming should delay or compromise endodormancy break at the species equatorward range limits leading to a delay or even impossibility to flower or set new leaves. These models are classically parameterized with flowering or budbreak dates only, with no information on the endodormancy break date because this information is very scarce. Here, we evaluated the efficiency of a set of phenological models to accurately predict the endodormancy break dates of three fruit trees. Our results show that models calibrated solely with budbreak dates usually do not accurately predict the endodormancy break date. Providing endodormancy break date for the model parameterization results in much more accurate prediction of this latter, with, however, a higher error than that on budbreak dates. Most importantly, we show that models not calibrated with endodormancy break dates can generate large discrepancies in forecasted budbreak dates when using climate scenarios as compared to models calibrated with endodormancy break dates. This discrepancy increases with mean annual temperature and is therefore the strongest after 2050 in the southernmost regions. Our results claim for the urgent need of massive measurements of endodormancy break dates in forest and fruit trees to yield more robust projections of phenological changes in a near future.  相似文献   

5.
Phenological data and the corresponding meteorological data are collected from the Minqin Desert Botanical Garden. Variations of phenological periods of N. tangutorum (a drought-resistant shrub) are analyzed, and correlations between the starting dates of all phenological periods and the corresponding precipitation, temperature, and relative humidity are discussed. Our conclusions suggest that the growing season of N. tangutorum has been extended by 18.3 days during 1975–2007, which has a significant correlation with yearly average temperatures. Starting and ending dates and duration time of budding period all display no apparent change, while starting date of the remaining spring phenophases shows an advance, and the ending date shows a delay. The duration time of these phenophases shows an apparent increase overall. However, the starting and ending dates of autumn’s phenological events all show a delay, and no clear trend is observed in duration time. Average short-term precipitation, temperature and relative humidity have an apparent influence on the starting date of most phenophases. However, no influences by average long-term precipitation, temperature and relative humidity were observed. The phenological variations of N. tangutorum have a great influence on its growth and reproduction, which will affect efforts to prevent desertification in the Minqin County.  相似文献   

6.
 We have examined the relationship between phenological data and concurrent large-scale meterological data. As phenological data we have chosen the beginning of the flowering of Galanthus nivalis L. (flowering date) in Northern Germany, and as large-scale meteorological data we use monthly mean near-surface air temperatures for January, February and March. By means of canonical correlation analysis (CCA), a strong linear correlation between both sets of variables is identified. Twenty years of observed data are used to build the statistical model. To validate the derived relationship, the flowering date is downscaled from air temperature observations of an independent period. The statistical model is found to reproduce the observed flowering dates well, both in terms of variability as well as amplitude. Air temperature data from a general circulation model of climate change are used to estimate the flowering date in the case of increasing atmospheric carbon dioxide concentration. We found that at a time of doubled CO2 concentration (expected by about 2035) G. nivalis L. in Northern Germany will flower ∼2 weeks and at the time of tripled CO2 concentration (expected by about 2085) ∼4 weeks earlier than presently. Received: 7 August 1996 / Accepted: 27 November 1996  相似文献   

7.
The linear relationship between temperature and developmentrate has been widely recognized and it has been suggested thatthermal units (the summation of daily mean temperature abovea base temperature) can predict the phenological developmentof a crop. The aim of this paper was to determine the base temperaturefor different phenological phases of wheat. Two mediterraneanwheat cultivars and five sowing dates were used to obtain differentmean temperatures during development and different developmentalrates. The linear regression of development rate against meantemperatures for each period indicated that there were no uniquebase temperatures for all stages of the life span and valuesclose to 4°C and to 9·5°C were found to be bestfits for base temperatures before and after the terminal spikeletstage of both cultivars. A model to predict wheat developmentwas validated with another data set, which included differentwheat cultivars and sowing dates. Estimates of the error indevelopmental prediction by using a single base temperatureof 0°C is discussed as a function of separate developmentstages. Key words: Wheat development, base temperature, thermal time, Triticum aestivum  相似文献   

8.
Recent changes in climate have led to significant shifts in phenology, with many studies demonstrating advanced phenology in response to warming temperatures. The rate of temperature change is especially high in the Arctic, but this is also where we have relatively little data on phenological changes and the processes driving these changes. In order to understand how Arctic plant species are likely to respond to future changes in climate, we monitored flowering phenology in response to both experimental and ambient warming for four widespread species in two habitat types over 21 years. We additionally used long‐term environmental records to disentangle the effects of temperature increase and changes in snowmelt date on phenological patterns. While flowering occurred earlier in response to experimental warming, plants in unmanipulated plots showed no change or a delay in flowering over the 21‐year period, despite more than 1 °C of ambient warming during that time. This counterintuitive result was likely due to significantly delayed snowmelt over the study period (0.05–0.2 days/yr) due to increased winter snowfall. The timing of snowmelt was a strong driver of flowering phenology for all species – especially for early‐flowering species – while spring temperature was significantly related to flowering time only for later‐flowering species. Despite significantly delayed flowering phenology, the timing of seed maturation showed no significant change over time, suggesting that warmer temperatures may promote more rapid seed development. The results of this study highlight the importance of understanding the specific environmental cues that drive species’ phenological responses as well as the complex interactions between temperature and precipitation when forecasting phenology over the coming decades. As demonstrated here, the effects of altered snowmelt patterns can counter the effects of warmer temperatures, even to the point of generating phenological responses opposite to those predicted by warming alone.  相似文献   

9.
We investigated documents and diaries from the ninth to the fourteenth centuries to supplement the phenological data series of the flowering of Japanese cherry (Prunus jamasakura) in Kyoto, Japan, to improve and fill gaps in temperature estimates based on previously reported phenological data. We then reconstructed a nearly continuous series of March mean temperatures based on 224 years of cherry flowering data, including 51 years of previously unused data, to clarify springtime climate changes. We also attempted to estimate cherry full-flowering dates from phenological records of other deciduous species, adding further data for 6 years in the tenth and eleventh centuries by using the flowering phenology of Japanese wisteria (Wisteria floribunda). The reconstructed tenth century March mean temperatures were around 7°C, indicating warmer conditions than at present. Temperatures then fell until the 1180s, recovered gradually until the 1310s, and then declined again in the mid-fourteenth century.  相似文献   

10.
Climate change alters the phenology of various plants. For example, increasing temperatures shift the first flowering and full blossom days of Yoshino cherry trees and affect cultural events related to cherry blossoms. We developed models to estimate the first flowering and full blossom dates of Yoshino cherry in Japan based on temperature and phenological data observed at 82 stations in Japan for 68 years (1953–2020). Three machine learning algorithms, namely, the random forest (RF), artificial neural network (ANN), and gradient boosting decision tree (GBDT) algorithms, were utilized, and the hyperparameters were optimized using Optuna. The GBDT models produced the best estimation accuracy, with an overall root mean square error (RMSE) = 1.53 and 1.48 days for the first flowering date and full blossom date, respectively. Furthermore, our analysis using Shapley Additive Explanations (SHAP) revealed that in the RF and GBDT models, the low temperature in winter and high temperature in spring would advance the estimated first flowering and full blossom dates.  相似文献   

11.
Although recent global warming trends in air temperature are not as pronounced as those observed only one decade ago, global mean temperature is still at a very high level. Does plant phenology – which is believed to be a suitable indicator of climate change – respond in a similar way, that is, does it still mirror recent temperature variations? We explored in detail long-term flowering onset dates of snowdrop, cherry, and lime tree and relevant spring temperatures at three sites in Germany (1901–2012) using the Bayesian multiple change-point approach. We investigated whether mean spring temperature changes were amplified or slowed down in the past decade and how plant phenology responded to the most recent temperature changes. Incorporating records with different end points (i.e., 2002 and 2012), we compared differences in trends and inferred possible differences caused by extrapolating phenological and meteorological data. The new multiple-change point approach is characterized by an enhanced structure and greater flexibility compared to the one change point model. However, the highest model probabilities for phenological (meteorological) records were still obtained for the one change point (linear) model. Marked warming trends in the recent decade were only revealed for mean temperatures of March to May, here better described with one or two change point models. In the majority of cases analyzed, changes in temperatures were well mirrored by phenological changes. However, temperatures in March to May were linked to less strongly advancing onset dates for lime tree flowering during the period 1901-2012, pointing to the likely influence of photoperiodic constraints or unfulfilled chilling requirements. Due to the slowdown of temperature increase, analyses conducted on records ending in 2002 demonstrated distinct differences when compared with records ending in 2012. Extrapolation of trends could therefore (along with the choice of the statistical method) lead to distinctly different results and most recent data should be integrated in order not to over- or underestimate future phenological changes.  相似文献   

12.
 Several methods have been used in plant phenology to find the best starting date in spring and the best threshold or basic temperature for growth and development of perennial plants. In the present paper the date giving the highest correlation coefficient for development to various phenophases, in relation to 24-hourly mean air temperatures was chosen as the best starting value in further analyses. For many woody plants this date was very often found to be 1 April based on phenological and climatological observations at about 60 sites in western Norway (at about 61°N). The early flowering species Corylus avellana and Salix caprea and the early leaf-bud breaking Prunus padus seemed to start development earlier in Spring, while the late sprouting Fraxinus excelsior showed the highest correlation coefficient using 15 April. If daytime temperatures were used in the calculations, the ”best” starting date was generally found to be later than for the 24-hour mean temperatures. This variation must be seen as resulting from the different basic temperatures for the development of various species. Estimates of basic temperatures in various species and periods may be given, for example by finding the value having the least variance in heat sums or by various regression analyses. A technique has been developed to minimise the influence of significance of correlation, using the intercept with the temperature axis by merging the two least squares rectilinear regression lines that can be found between plant development and mean air temperature (from the estimated best starting date) at r=+1 or –1. The basic temperature seemed to vary from –5.9°C for leaf-bud break of P. padus to 5.5°C for leaf-bud break of F. excelsior, with basic temperatures of several other woody plants having intermediate values. These values are compared with those found by other methods. Received: 26 May 1998 / Accepted: 7 September 1998  相似文献   

13.
Shifting flowering phenology with rising temperatures is occurring worldwide, but the rarity of co‐occurring long‐term observational and temperature records has hindered the evaluation of phenological responsiveness in many species and across large spatial scales. We used herbarium specimens combined with historic temperature data to examine the impact of climate change on flowering trends in 141 species collected across 116,000 km2 in north‐central North America. On average, date of maximum flowering advanced 2.4 days °C−1, although species‐specific responses varied from − 13.5 to + 7.3 days °C−1. Plant functional types exhibited distinct patterns of phenological responsiveness with significant differences between native and introduced species, among flowering seasons, and between wind‐ and biotically pollinated species. This study is the first to assess large‐scale patterns of phenological responsiveness with broad species representation and is an important step towards understanding current and future impacts of climate change on species performance and biodiversity.  相似文献   

14.
The impact of global warming on phenology has been widely studied, and almost consistently advancing spring events have been reported. Especially in alpine regions, an extraordinary rapid warming has been observed in the last decades. However, little is known about phenological phases over the whole vegetation period at high elevations. We observed 12 phenological phases of seven tree species and measured air temperature at 42 sites along four transects of about 1000 m elevational range in the years 2010 and 2011 near Garmisch‐Partenkirchen, Germany. Site‐ and species‐specific onset dates for the phenological phases were determined and related to elevation, temperature lapse rates and site‐specific temperature sums. Increasing temperatures induced advanced spring and delayed autumn phases, in which both yielded similar magnitudes. Delayed leaf senescence could therefore have been underestimated until now in extending the vegetation period. Not only the vegetation period, but also phenological periods extended with increasing temperature. Moreover, sensitivity to elevation and temperature strongly depends on the specific phenological phase. Differences between species and groups of species (deciduous, evergreen, high elevation) were found in onset dates, phenological response rates and also in the effect of chilling and forcing temperatures. Increased chilling days highly reduced forcing temperature requirements for deciduous trees, but less for evergreen trees. The problem of shifted species associations and phenological mismatches due to species‐specific responses to increasing temperature is a recent topic in ecological research. Therefore, we consider our findings from this novel, dense observation network in an alpine area of particular importance to deepen knowledge on phenological responses to climate change.  相似文献   

15.
Airborne pollen concentration patterns reflect flowering phenology of a given species, and it may be a sensitive regional indicator in climate change studies. This paper presents the relationship between a strategic biological event, such as olive flowering, and the air temperature trend, registered over a large scale (1982–2007) in the Umbria region. The aim of the study was to determine relationships between phenological behaviour (flowering) of olive trees and the air temperature trend (1982–2007) in the Umbria region. The phenological data on flowering phase were registered indirectly through an aerobiological monitoring technique. The obtained results showed a strong relationship between phenology and thermal trend. This characteristic was confirmed from results of correlations between temperature (mean temperature from 1st March) and flowering dates, especially that of full flowering (r = −0.9297). Moreover, the results showed an advance trend of 6, 8 and 10 days, respectively of start, full and end of flowering dates. The advance of the recorded flowering time in this period is to ascribe mainly to the increase of mean temperature and above all to that registered in months of May and June.  相似文献   

16.
In the context of global warming, the general trend towards earlier flowering dates of many temperate tree species is likely to result in an increased risk of damage from exposure to frost. To test this hypothesis, a phenological model of apple flowering was applied to a temperature series from two locations in an important area for apple production in Europe (Trentino, Italy). Two simulated 50-year climatic projections (A2 and B2 of the Intergovernmental Panel on Climate Change - Special Report on Emission Scenarios) from the HadCM3 general circulation model were statistically downscaled to the two sites. Hourly temperature records over a 40-year period were used as the reference for past climate. In the phenological model, the heat requirement (degree hours) for flowering was parameterized using two approaches; static (constant over time) and dynamic (climate dependent). Parameterisation took into account the trees’ adaptation to changing temperatures based on either past instrumental records or the downscaled outputs from the climatic simulations. Flowering dates for the past 40 years and simulated flowering dates for the next 50 years were used in the model. A significant trend towards earlier flowering was clearly detected in the past. This negative trend was also apparent in the simulated data. However, the significance was less apparent when the “dynamic” setting for the degree hours requirement was used in the model. The number of frost episodes and flowering dates, on an annual basis, were graphed to assess the risk of spring frost. Risk analysis confirmed a lower risk of exposure to frost at present than in the past, and probably either constant or a slightly lower risk in future, especially given that physiological processes are expected to acclimate to higher temperatures. An erratum to this article can be found at  相似文献   

17.
Knowledge of plant–weather relationships can improve crop management, resulting in higher quality and more stable crop yields. The annual timing of spring phenophases in mid-latitudes is largely a response to temperature, and reflects the thermal conditions of previous months. The effect of air temperature on the variability of hazelnut (Corylus avellana L.) phenophases (leafing, flowering) was investigated. Meteorological and phenological data for five cultivars were analysed over the periods 1969–1979 (P1) and 1994–2007 (P2) in Maribor, Slovenia. Phenological data series were correlated strongly to the temperature of the preceding months (R 2: 0.64–0.98) and better correlated to daily maximum and mean temperatures than to daily minimum temperatures. About 75% of phenophases displayed a tendency towards earlier appearance and a shorter flowering duration during P2, which could be explained by the significant temperature changes (+0.3°C/decade) from December to April between 1969 and 2007. An increase in air temperature of 1°C caused an acceleration in leafing by 2.5–3.9 days, with flowering showing higher sensitivity since a 1°C increase promoted male flowering by 7.0–8.8 days and female flowering by 6.3–8.9 days. The average rate of phenological change per degree of warming (days earlier per +1°C) did not differ significantly between P1 and P2. An estimation of chilling accumulation under field conditions during 1993–2009, between 1 November and 28 February, showed that all four of these months contributed approximately similar amounts of accumulated chilling units. The growing degree days (GDD) to flowering were calculated by an estimated base temperature of 2°C and 1 January as a starting date, given the most accurate calculations. In general, thermal requirements were greater in P2 than in P1, although this difference was not significant. Longer-time series data extended to other agricultural and wild plants would be helpful in tracking possible future changes in phenological responses to local climate.  相似文献   

18.
Air temperature is one of the most frequent parameters for the application of pheno-climatic models which can give information for the forecasting of the beginning of pollination of various species. For the present study 12 years of aerobiological monitoring data concerning the pollination of hazel, alder, elm, poplar, and willow have been employed to forecast the beginning of their pollination assuming that the beginning of pollination of one species corresponds to a specific moment of phenological development for another species with later pollination. The difference expressed in days between the pollination of two winter taxa with successive flowering is very variable. If this interval is expressed in terms of heat (summation of mean daily temperature above a certain threshold) the differences are smaller. The delay between the pollination of alder and elm varies between 3 and 21 days depending on the climatic trend, but during this period elm on average accumulates 26 degree-days (base temperature 4°C) with a lesser variability. In this way we can begin to calculate the heat requirement for elm from the beginning of alder flowering. This application can be used for other couples obtaining statistical values which are more significant than those obtained with the phenological model, with the exception of willow. The results indicate that for the majority of the species with winter flowering there is a linear relation between the flowering dates and air temperature.  相似文献   

19.
To date, phenological research has provided evidence that climate warming is impacting both animals and plants, evidenced by the altered timing of phenophases. Much of the evidence supporting these findings has been provided by analysis of historic records and present-day fieldwork; herbaria have been identified recently as an alternative source of phenological data. Here, we used Rubus specimens to evaluate herbaria as potential sources of phenological data for use in climate change research and to develop the methodology for using herbaria specimens in phenological studies. Data relevant to phenology (collection date) were recorded from the information cards of over 600 herbarium specimens at Ireland’s National Herbarium in Dublin. Each specimen was assigned a score (0–5) corresponding to its phenophase. Temperature data for the study period (1852 – 2007) were obtained from the University of East Anglia’s Climate Research Unit (CRU); relationships between temperature and the dates of first flower, full flower, first fruit and full fruit were assessed using weighted linear regression. Of the five species of Rubus examined in this study, specimens of only one (R. fruticosus) were sufficiently abundant to yield statistically significant relationships with temperature. The results revealed a trend towards earlier dates of first flower, full flower and first fruit phenophases with increasing temperature. Through its multi-phenophase approach, this research serves to extend the most recent work—which validated the use of herbaria through use of a single phenophase—to confirm herbarium-based research as a robust methodology for use in future phenological studies.  相似文献   

20.
Climate change has resulted in major changes in plant phenology across the globe that includes leaf‐out date and flowering time. The ability of species to respond to climate change, in part, depends on their response to climate as a phenological cue in general. Species that are not phenologically responsive may suffer in the face of continued climate change. Comparative studies of phenology have found phylogeny to be a reliable predictor of mean leaf‐out date and flowering time at both the local and global scales. This is less true for flowering time response (i.e., the correlation between phenological timing and climate factors), while no study to date has explored whether the response of leaf‐out date to climate factors exhibits phylogenetic signal. We used a 52‐year observational phenological dataset for 52 woody species from the Forest Botanical Garden of Heilongjiang Province, China, to test phylogenetic signal in leaf‐out date and flowering time, as well as, the response of these two phenological traits to both temperature and winter precipitation. Leaf‐out date and flowering time were significantly responsive to temperature for most species, advancing, on average, 3.11 and 2.87 day/°C, respectively. Both leaf‐out and flowering, and their responses to temperature exhibited significant phylogenetic signals. The response of leaf‐out date to precipitation exhibited no phylogenetic signal, while flowering time response to precipitation did. Native species tended to have a weaker flowering response to temperature than non‐native species. Earlier leaf‐out species tended to have a greater response to winter precipitation. This study is the first to assess phylogenetic signal of leaf‐out response to climate change, which suggests, that climate change has the potential to shape the plant communities, not only through flowering sensitivity, but also through leaf‐out sensitivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号