首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The protozoans Ancistrum mytili (Oligohymenophorea: Ancistridae) and Marteilia refringens/maurini (Marteiliidea: Marteiliidae) were found parasitizing cultured mussels Mytilus galloprovincialis L. in the Thermaikos Gulf (north Aegean Sea, Greece). The former did not affect the condition index of infected mussels, in contrast to the latter, which did so and which also induced hemocyte infiltration in the affected digestive epithelium. The prevalence of both parasites was relatively high in a polluted area.  相似文献   

2.
Summary Field experiments were conducted in order to determine the potential for desiccation and predation to mediate the effect of mussels (Brachidontes semilaevis) on barnacles (Chthamalus anisopoma) in the highly seasonal northern Gulf of California. We did this by removing both mussels and a common mussel predator (Morula ferruginosa: Gastropoda) and by spraying selected sites with sea water during summertime spring low tides. We also determined the effect of crowding on resistance to desiccation in barnacles, and the effect of barnacles on colonization by mussels. The mussel-barnacle community was not affected by keeping experimental quadrats damp during daytime low tides throughout the summer. Exposure to summertime low tides, however, did affect the survivorship of isolated, but not crowded, barnacles; and barnacle clumps enhanced the recruitment of mussels. Hence crowding in barnacles had a positive effect on both barnacle survivorship and mussel recruitment. Morula had a negative effect on mussel density, and mussels had a negative effect on barnacle density. The effect of Morula on barnacle density was positive, presumably due to its selective removal of mussels. These results suggest an indirect mutualism between barnacles and the gastropod predator, because barnacles attract settlement or enhance the survival of mussels, and the predator reduces the competitive effect of mussels on barnacles.  相似文献   

3.
Few experiments have quantified the effects of invasive zebra mussels (Dreissena polymorpha) on man-made reservoirs relative to other aquatic habitats. Reservoirs, however, are the dominate water body type in many of the states that are at the current front of the zebra mussel invasion into the western United States. The objective of this research, therefore, was to determine how zebra mussels affected phytoplankton, turbidity, and dissolved nutrients in water that was collected from three Kansas reservoirs that varied in trophic state (mesotrophic to hypereutrophic), but all experienced frequent cyanobacterial blooms. Laboratory mesocosm experiments were conducted to document the effects of zebra mussels on cyanobacteria and general water quality characteristics in the reservoir water. Zebra mussels significantly reduced algal biomass, and the total biovolume of cyanobacteria (communities were dominated by Anabaena) in each reservoir experiment. The effects of zebra mussels on other major algal groups (diatoms, flagellates, and green algae) and algal diversity were less consistent and varied between the three reservoir experiments. Similarly, the effects of zebra mussels on nutrient concentrations varied between experiments. Zebra mussels increased dissolved phosphorus concentrations in two of the reservoir experiments, but there was no effect of zebra mussels on dissolved phosphorus in the mesotrophic reservoir experiment. Combined, our results strongly suggest that zebra mussels have the potential to significantly impact reservoirs as they continue to expand throughout the western United States. Moreover, the magnitude of these effects may be context dependent and vary depending on the trophic state and/or resident phytoplankton communities of individual reservoirs as has similarly been reported for natural lakes.  相似文献   

4.
Immunocompetence of bay mussels, Mytilus edulis, with hemic neoplasia was investigated with an in vitro yeast phagocytosis assay and by in vivo clearance from the blood of injected Cytophaga sp. bacteria. The yeast phagocytosis assay was conducted with hemocytes maintained in 90% plasma. Neoplastic hemocytes, characterized by enlarged nuclei and scant cytoplasm, failed to phagocytose yeast cells. In contrast, greater than 90% of hemocytes from unaffected animals and morphologically normal hemocytes from mussels with the disease phagocytosed yeast. Substitution of normal plasma with that from a mussel with advanced disease (essentially 100% neoplastic hemocytes) did not affect the phagocytic capability of normal hemocytes. Conversely, normal plasma did not enhance the phagocytic capabilities of neoplastic cells. Mussels with advanced disease showed reduced bacterial clearance; control or lightly affected mussels (less than 11% neoplastic hemocytes) cleared greater than 90% of injected bacteria in 4 hr, while mussels with advanced disease cleared 44-83%. These experiments indicate that mussels with advanced hemic neoplasia have compromised defense systems. This may account for the reported mortality in mussels and other bivalve molluscs with hemic neoplasia.  相似文献   

5.
  1. Increases in total suspended solids (TSS) reduce feeding and reproductive success of unionid mussels, but mussels in turbid rivers are less affected than those in clear rivers, probably due to differences in gill and palp morphology. This study was designed to determine whether the differences observed between adult mussels in populations from turbid versus clear rivers are due to phenotypic plasticity.
  2. Parasitic larvae (glochidia) of Lampsilis siliquoidea (Fatmucket) obtained from a low turbidity river (TSS < 5 mg/L) were transformed on Ambloplites rupestris (Rock Bass) in the laboratory to obtain juvenile mussels for rearing under clear and turbid conditions in the laboratory (i.e. nominally 0 versus 50 mg/L suspended river sediment). Juveniles obtained were reared under these contrasting conditions until age 3–4 weeks, when they were examined in a feeding experiment under a range of TSS concentrations (0, 5, 10, 15, 20, 25 mg/L).
  3. The clearance rate (volume cleared of particles per unit time) of algae by juveniles from both rearing conditions was similar for the no-TSS control and declined with increased TSS. The rate of decline was, however, lower in the group reared under turbid conditions, which is consistent with reports for adult mussels.
  4. Our results indicate that differences in the clearance rate response to high TSS observed in mussels in clear and turbid rivers are probably driven in part by phenotypic plasticity. This finding provides a mechanism to explain how freshwater mussels thrive under turbid conditions as well as informs conservation efforts involving reintroduction of mussels in this highly imperilled taxon.
  相似文献   

6.
Yu  Neng  Culver  David A. 《Hydrobiologia》1999,392(2):205-215
Experiments and field surveys were conducted in Hargus Lake (Ohio, U.S.) to investigate the effect of lake stratification on the survival, growth and distribution of zebra mussels. During the lake stratification period, relatively stable temperature and dissolved oxygen (DO) gradients persisted across the water column, allowing us to examine the chronic effect of hypoxia on zebra mussels. Zebra mussels were incubated in cages and suspended at different depths in the water column at both pelagic (max. depth = 12 m) and littoral (max. depth = 3.5 m) sites from April 18 to September 28, 1994. No mussel survived to the end of the experiment in cages ≥ 5.5 m, whereas the highest survival rate (76%) occurred at 5 m depth where temperature and DO remained fairly stable for at least 3 months. The threshold oxygen level for survival was between 1.0–1.7 mg l-1 when water temperature was at about 17–18 °C. While zebra mussels′ survival rate was not affected under the sublethal hypoxic conditions, their growth was greatly retarded by poor water quality. The field survey showed that the zebra mussels and macrophytes had about the same distribution and their biomasses were positively related. The percentage of mussels in aggregates increased towards their maximum distribution depth. The maximum distribution depth of the naturally occurring zebra mussels was only 2.8 m, whereas the adult mussels could survive the entire stratification period when being artificially placed on the 3.5 m bottom, and young mussels could colonize the 3.5 m bottom if solid substrates were provided. We conclude that lack of substrate, rather than hypoxia, was the limiting factor of zebra mussel distribution above 5 m depth in Hargus Lake. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

7.
Wacker A  Von Elert E 《Oecologia》2003,135(3):332-338
Species such as Dreissena polymorpha sometimes contribute substantially in the transfer of primary to secondary production. During the ontogenetic cycle, the reproductive investment of adult mussels is one of the main parameters that affect recruitment success. We studied how food quality and temperature affect the reproductive investment in term of egg mass of D. polymorpha in a lake by sampling mussels monthly from 4 m and 15 m depths. Temperature affected reproduction directly and also indirectly through the food. To assess whether temperature and/or food conditions led to the differences observed in mussels sampled from the two depths, mussels were reared in the laboratory under two different temperature regimes for 3 months, simulating the temperature of the lake at 4 m and 15 m depth. Possible effects of food quality were tested at each temperature using four diets differing in fatty acid composition. Temperature played an important role as a trigger for spawning, and the type of diet clearly affected the reproductive investment. When the heterokont chromophyte alga Nannochloropsis limnetica, which is rich in polyunsaturated fatty acids (PUFAs) and long-chained PUFAs (>C18), was fed to mussels, an increased egg mass was obtained. This result was in contrast to that found when the green alga Scenedesmus obliquus and the cyanobacterium Aphanothece sp., both of which are deficient in long-chained PUFAs, were offered as food to the mussels. Such a PUFA-dependent food quality may affect reproduction in lakes. Food quality effects vary seasonally in a lake and may be most important in summer, when low-food-quality green algae and cyanobacteria are abundant. The low biochemical quality of these blooms may affect at least the later period of gametogenesis of D. polymorpha, which reproduces from June to August.  相似文献   

8.
Small scale spatial patterns of abundance, growth and condition of the mussel Mytilus edulis on sub-littoral boulders (approx. 1–2 m high) were investigated at the island of Askö in the northern Baltic proper. The effect of side (exposed/sheltered with respect to wave action and sunlight) of boulder and position (up/down) on boulder was investigated. A large spatial variability in abundance of M. edulis between boulders and between various sites within boulders were found. The highest numbers of mussels were found on the wave exposed side, near the top of boulders. Shell growth was favoured by a sheltered side and a down position. The body condition (meat weight/shell weight) of mussels was, on the other hand, affected only by position, the condition of mussels being better at the up position. Consequently, there seems to be temporal differences in the condition for growth within a spatial position. The body condition of the mussels was best near the top of boulders in the spring, but long-term shell growth was favoured by a sheltered side and a down position. This may reflect changes in the composition and availability of food during the year with phytoplankton as the major food source during the spring bloom and resuspension of benthic production and detritus as relatively more important during the rest of the year.  相似文献   

9.
The purpose of this study was to determine how zebra mussels affected cladoceran community structure under eutrophic conditions. We conducted a mesocosm study where we manipulated the presence of zebra mussels and the presence of large-bodied Daphnia (Daphnia magna and Daphnia pulicaria). We also conducted a complimentary life-table experiment to determine how water from the zebra mussel treatment affected the life history characteristics of the cladoceran species. We anticipated that small- and large-bodied cladoceran species would respond differently to changes in algal quality and quantity under the effects of zebra mussels. Large-bodied Daphnia successfully established in the zebra mussel treatment but failed to grow in the control. We did not observe positive relationships between food concentrations and cladoceran abundances. However, the phosphorus content in the seston indicated that food quality was below the threshold level for large-bodied cladocerans at the beginning of the experiment. We believe that zebra mussels quickly enhanced the phosphorus content in the seston due to the excretion of inorganic phosphorus, thus facilitating the development of large-bodied Daphnia. In conclusion, our results suggest that zebra mussels can alter the phosphorus content of seston in lakes and this can affect the dynamics of crustacean zooplankton.  相似文献   

10.
The acute upper lethal temperature (AULT) at different rates of increase was evaluated as a tool for the design of cheaper and environmentally friendlier control strategies for the invasive bivalve Limnoperna fortunei. Survivorship of 6 ± 2 mm and 20 ± 2 mm mussels acclimated to 12, 23 and 28 ° C and subjected to different heating rates (1 ° C per 5, 15 and 30 min) was estimated in the laboratory. The temperatures required to kill 50% (LT(50)) and 100% (SM(100)) of the mussels, and the mean death temperature (MDT) varied between 42.2 and 51 ° C over 54 experiments. Heating rates significantly (p < 0.001) affected LT(50), SM(100), and MDT. AULT was not affected by mussel size and acclimation temperatures. Limnoperna appears to be more resistant to high temperatures than Dreissena polymorpha, a mussel invasive in the USA and Europe. Lethal temperatures of L. fortunei are within the current thermal operational industrial capacities, suggesting that heat treatment is a viable alternative for controlling its fouling in utility systems.  相似文献   

11.
Pacific oysters Crassostrea gigas (Thunberg, 1793) were introduced to the northern Wadden Sea (North Sea, Germany) by aquaculture in 1986 and finally became established. Even though at first recruitment success was rare, three consecutive warm summers led to a massive increase in oyster abundances and to the overgrowth of native mussel beds (Mytilus edulis L.). These mussels constitute biogenic reefs on the sand and mud flats in this area. Survival and growth of the invading C. gigas were investigated and compared with the native mussels in order to predict the further development of the oyster population and the scope for coexistence of both species. Field experiments revealed high survival of juvenile C. gigas (approximately 70%) during the first three months after settlement. Survival during the first winter varied between > 90% during a mild and 25% during a cold winter and was independent of substrate (i.e., mussels or oysters) and tide level. Within their first year C. gigas reached a mean length of 35-53 mm, and within two years they grew to 68-82 mm, which is about twice the size native mussels would attain during that time. Growth of juvenile oysters was not affected by substrate (i.e., sand, mussels, and other oysters), barnacle epibionts and tide level, but was facilitated by fucoid algae. By contrast, growth of juvenile mussels was significantly higher on sand flats than on mussel or oyster beds and higher in the subtidal compared to intertidal locations. Cover with fucoid algae increased mussel growth but decreased their condition expressed as dry flesh weight versus shell weight. High survival and growth rates may compensate for years with low recruitment, and may therefore allow a fast population increase. This may lead to restrictions on habitat use by native mussels in the Wadden Sea.  相似文献   

12.
Lappalainen  Antti  Westerbom  Mats  Vesala  Sami 《Hydrobiologia》2004,514(1-3):87-92
The blue mussel (Mytilus edulis) is one of the key species in the Baltic Sea ecosystem and it is living at the edge of its range in the western Gulf of Finland. Roach (Rutilus rutilus) is a freshwater fish species that has benefited from recent coastal eutrophication and is at present highly abundant in the outer archipelago of the Gulf of Finland. In 2000 and 2001, a total of 516 roach were sampled for diet analysis in three study areas. Shelled molluscs formed over 95% of the diet of roach, blue mussels being the dominant single species. The proportion of this species in the food of roach in the three study areas ranged between 38–61% for smaller roach (<225 mm) and 39–85% for larger (>225 mm) roach, indicating that blue mussel is a highly important food source for roach in outer archipelago areas of the western Gulf of Finland, in contrast to reports from other parts of the northern Baltic Sea. The scarcity of large blue mussels in mussel beds in the easternmost study area was reflected in the lower proportion of blue mussels in the diet of larger roach. However, the growth of roach was not affected by the availability of blue mussels. The twofold differences observed in the annual growth of roach between warm and cold years demonstrated that temperature is an important factor controlling the growth of roach in the western Gulf of Finland.  相似文献   

13.
The impact of multiple invading species can be magnified owing to mutual facilitation--termed 'invasional meltdown'--but invasive species can also be adversely affected by their interactions with other invaders. Using a unique reciprocal host-parasite relationship between a bitterling fish (Rhodeus amarus) and unionid mussels, we show that an invasive mussel reverses the roles in the relationship. Bitterling lay their eggs into mussel gills, and mussel larvae parasitize fish. Bitterling recently colonized Europe and parasitize all sympatric European mussels, but are unable to use a recently invasive mussel, Anodonta woodiana. The parasitic larvae of A. woodiana successfully develop on R. amarus, whereas larvae of European mussels are rejected by bitterling. This demonstrates that invading species may temporarily benefit from a coevolutionary lag by exploiting evolutionarily naive hosts, but the resulting relaxed selection may facilitate its exploitation by subsequent invading species, leading to unexpected consequences for established interspecific relationships.  相似文献   

14.
Abstract. Blue crabs (Callinectes sapidus) prey on hooked mussels (Ischadium recurvum) growing epizoically on oyster clumps in estuaries along the Louisiana coast. In prey size‐selection experiments, blue crabs preferred small mussels (<30‐mm shell length) to larger mussels, possibly because handling time increased with mussel size. When crabs were given a choice of solitary mussels versus mussels in clumps on oysters in the laboratory, mortality was lower by 86% in clumped mussels. However, no size selection by crabs occurred with mussels in clumps, likely because smaller mussels escaped predation in crevices between larger mussels or oysters. When individuals of two size classes of mussels were exposed to water containing the scent of crabs and of mussels consumed by blue crabs, an increase in byssal thread production was induced in all mussels, but byssal thread production rate was higher for small mussels than for large mussels. We conclude that increased predation risk for small mussels has resulted in higher size‐specific production of byssal threads, and that predator‐induced production of byssal threads, which may increase clumping behavior, may reduce their risk of mortality to predatory blue crabs.  相似文献   

15.
The impacts of seawater acidification and salinity shifts on metabolism, energy reserves, and oxidative status of mussels have been largely neglected. With the aim to increase the current knowledge for the mussel Mytilus galloprovincialis a 28-day chronic test was conducted during which mussels were exposed to two pH (7.8 and 7.3; both at control salinity 28) and three salinity (14, 28 and 35, at control pH, 7.8) levels. After exposure to different conditions, mussels electron transport system activity, energy reserves (protein and glycogen content) carbonic anhydrase activity, antioxidant defences and cellular damage were measured. Results obtained showed that mussels exposed to seawater acidification presented decreased metabolic capacity that may have induced lower energy expenditure (observed in higher glycogen, protein and lipids content at this condition). Low pH condition induced the increase of carbonic anhydrase activity that was related to acid-base balance, while no significant activation of antioxidant defence mechanisms was observed resulting in higher LPO. Regarding the impacts of salinity, the present study showed that at the highest salinity (35) mussels presented lower metabolic activity (also related to lower energetic expenditure) and an opposite response was observed at salinity 14. Carbonic anhydrase slightly increased at stressful salinity conditions, a mechanism of homeostasis maintenance. Lower metabolic activity at the highest salinity, probably related to valves closure, helped to mitigate the increase of LPO in this condition. At low salinity (14), despite an increase of antioxidant enzymes activity, LPO increased, probably as a result of ROS overproduction from higher electron transport system activity. The present findings demonstrated that Mytilus galloprovincialis oxidative status and metabolic capacity were negatively affected by low pH and salinity changes, with alterations that may lead to physiological impairments namely on mussels reproductive output, growth performance and resistance to disease, with ecological and economic implications.Indicators: Physiological and biochemical changes in Mytilus galloprovincialis in response to low pH and salinity changes  相似文献   

16.
Predators may induce changes in prey feeding that indirectly influence both the impact of prey on resource abundances and their interactions with other species in their community. We evaluated whether clearance and excretion (faeces plus pseudofaeces) of phytoplankton by zebra mussels were affected by the presence of predatory cues from roach, Rutilus rutilus, and signal crayfish, Pasifastacus leniusculus . We found that non-lethal effects of predators can alter zebra mussel clearance rate and thus the impact of zebra mussels on phytoplankton. Risk cues released by both predators had similar negative effects on clearance rate of zebra mussels and cascading positive indirect effects on phytoplankton resources. Predation risk had a stronger effect on zebra mussels' clearance rate of cyanobacteria and diatoms than cryptophytes and chrysophytes. The presence of predators did not significantly affect the rate at which zebra mussels expelled and excreted phytoplankton, although there was a tendency for more chlorophyll to be expelled and excreted in the presence of predators. Our results contribute to the growing evidence that predators indirectly affect resource dynamics and food web structure through their non-lethal effects on consumers. Our results suggest that exotic species such as zebra mussels can show behavioural responses to both native (e.g. roach) and exotic (e.g. crayfish) predators.  相似文献   

17.
Effects of two presumably dominant competitors, the blue mussel Mytilus edulis and the barnacle Balanus improvisus on recruitment, population dynamics and community structure on hard substrata were experimentally investigated in the subtidal Kiel Fjord, Western Baltic. The hypothesis that blue mussels and/or barnacles are local dominants and strongly influence succession and community structure was tested by monitoring succession in the presence and absence of simulated predation on either or both species. Manipulations included blue mussel removal, barnacle removal, combined blue mussel and barnacle removal, as well as a control treatment for natural (non-manipulated) succession. In the second part of the experiment, recovery from the treatments was monitored over 1 year.During the manipulative phase of the experiment, blue mussels had a negative effect on recruitment of species, whereas barnacles had no significant effect. Even so, a negative synergistic effect of blue mussels and barnacles was detected. Calculation of species richness and diversity H′ (Shannon Index) showed a negative synergistic effect of blue mussels and barnacles on community structure. Additionally, diversity H′ was negatively affected by the dominant competitor M. edulis. These effects were also detectable in the ANOSIM-Analysis. The non-manipulative phase of the experiment brought about a drastic loss of diversity and species richness. Blue mussels dominated all four communities. Barnacles were the only other species still being able to coexist with mussels. Effects of simulated predation disappeared fast.Thus, in the absence of predation on blue mussels, M. edulis within a few months dominates available space, and diversity of the benthic community is low. In contrast, when mussel dominance is controlled by specific predators, more species may persist and diversity remains high.  相似文献   

18.
Some locations in Sydney Harbour (Sydney, Australia) contain large amounts of contaminants (heavy metals and hydrocarbons), sometimes in concentrations thought to affect biological systems. In order to estimate effects of sediment-bound contaminants on the physiology of organisms living above the sediment, the rates of clearance and respiration and the efficiency of absorption of mussels, Mytilus sp., living in a contaminated location were measured, the scope for growth (SfG) was calculated and compared to that of mussels living in uncontaminated locations. Two different models were proposed to explain expected differences. The first was that the contaminants at the impacted location reduced the SfG of local mussels; the second was that at the contaminated location only those mussels survived that had a small SfG (genetic differences between populations might be a reason for differential survival). To test which model applied, mussels were transplanted between the contaminated and uncontaminated locations. Moving and disturbing mussels (handling, tagging and caging) required the inclusion of two control treatments. These treatments were essential for a proper evaluation of the results but have generally not been included in similar studies. Effects of moving were estimated by translocating mussels from the uncontaminated and from the contaminated location to similar locations. To estimate effects of disturbance, mussels in the experimental locations were given the same treatment as the experimental mussels, but were returned to the place of origin. It was predicted that translocating and disturbing mussels would have no effect on the SfG, which would be similar to that of mussels at the place of origin. As expected, SfG was smaller (because rate of clearance was reduced) in undisturbed mussels at the contaminated location compared with those of mussels at the uncontaminated location. Because there were significant effects of disturbance on the SfG of mussels at the contaminated location, it was concluded that this difference was not caused by differences between the amounts of contaminants in the two locations, but was caused by other confounding factors (physical disturbance by crabs and fouling organisms). That the interpretation of the results would have been different if proper controls were not included is discussed in this paper and the importance of proper experimental controls is stressed.  相似文献   

19.
Depuration or elimination of diarrhetic shellfish toxins (DST) was followed for 73 days in 1- and 2-year-old mussels. The age groups also differed in size, providing a broad approach to studying the effect of the differences in physiology accompanying the differences in size. Content of DST was analysed both on groups and individual mussels. Environmental variables were measured to evaluate their effect on depuration.We found no significant differences in elimination rate of DST between 1- and 2-year-old mussels under natural conditions. This suggests that size and age do not affect the elimination rate of the DST. The present study is the first study on the effect of age and size on the elimination rate of algal toxins in bivalves. The natural variations in food levels and temperature were not found to affect the elimination rate of DST.The digestive gland weights in the 1-year-old mussels increased four times while the DST content per individual decreased eight times. This demonstrated that dilution of toxins due to tissue growth could have an important contribution to declines in toxin concentrations. Changes in tissue mass are affected by environmental variables via growth or starvation, and when such changes lead to concentration or dilution of toxins this does not reflect the accumulation or removal of toxins from the tissues. We hence suggest that when evaluating the actual elimination capacity of the mussels, as in the present study, the total content of toxins per individual should be used, rather than toxin concentrations.The 1-year-old mussels had faster growth compared to the 2-year-old mussels in both total soft tissue and digestive glands. The mechanism of DST elimination is still unknown. If this process involves metabolism of the toxins, one could expect the rates of elimination to follow overall metabolic rates. However, the results from the present study suggest that large differences in growth rates, which also include difference in feeding and metabolic rates, do not affect the elimination rate of DST. Our results support the assumption that the depuration rates cannot be accelerated, even in artificial systems, as a cost-effective way to solve the problem with toxic mussels for the industry.  相似文献   

20.
1. In situ exclosure experiments in the Mississippi and Ohio Rivers determined the importance of fish predation in regulating zebra mussels (Dreissena polymorpha), an increasingly important constituent of the benthic invertebrate assemblages in both rivers. 2. We evaluated the effects of predatory fish on the density, biomass and size distribution of zebra mussels in a floodplain reach of the upper Mississippi River and in a naturally constrained reach of the Ohio River. Fifty, six-sided, predator-exclusion cages and fifty ‘partial’ cages (mesh at the upstream end only) were deployed, with half the cages containing willow snags and half clay tiles suspended 12–16 cm above the bottom. A single snag or tile sample unit was removed from each cage at approximately monthly intervals from July to October 1994. Types and relative abundances of molluscivorous fish were evaluated by electrofishing near the cages in both rivers. Actual and potential recruitment of young zebra mussels on to the substrata were measured using benthic samples in both rivers and estimated (Ohio River only) from counts of planktonic veligers. 3. Zebra mussels were consumed by at least three fish species in the upper Mississippi River (mostly carp, Cyprinus carpio, and redhorse suckers, Moxostoma sp.) and five species in the Ohio River (primarily smallmouth buffalo, Ictiobus bubalus, and channel catfish, Ictalurus punctatus), but potential recruitment seemed adequate to replace consumed mussels, at least in the Ohio River. The number of juvenile benthic mussels showed no apparent link with the density of veligers soon after initiation of reproduction. Recruitment of juveniles on snags and tiles was not affected by cage type (thus eliminating a potentially confounding ‘cage effect’). 4. Fish significantly influenced mussel populations, but the impact was often greatest among low density populations in the upper Mississippi. Density and biomass differed in both rivers for cage type (higher inside cages), substratum (greater on tiles), and date (increased over time). Presumed size-selective predation was present in the Mississippi (greater on larger size classes) but was not evident in the Ohio. We hypothesize that fish in the Mississippi can more easily select larger prey from the low density populations; whereas size-selective predation on tightly packed zebra mussels in the Ohio would be difficult. 5. Although fish can reduce numbers of Dreissena polymorpha in the two rivers, current levels of fish predation seem insufficient to regulate zebra mussel densities because of its great reproductive capacity. The recent invasion of zebra mussels, however, could lead to larger fish populations while promoting greater carbon retention and overall ecosystem secondary production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号