首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thymidine kinase from Herpes simplex virus type 1 (TK) was crystallized in an N-terminally truncated but fully active form. The structures of TK complexed with ADP at the ATP-site and deoxythymidine-5'-monophosphate (dTMP), deoxythymidine (dT), or idoxuridine-5'-phosphate (5-iodo-dUMP) at the substrate-site were refined to 2.75 A, 2.8 A, and 3.0 A resolution, respectively. TK catalyzes the phosphorylation of dT resulting in an ester, and the phosphorylation of dTMP giving rise to an anhydride. The presented TK structures indicate that there are only small differences between these two modes of action. Glu83 serves as a general base in the ester reaction. Arg163 parks at an internal aspartate during ester formation and binds the alpha-phosphate of dTMP during anhydride formation. The bound deoxythymidine leaves a 35 A3 cavity at position 5 of the base and two sequestered water molecules at position 2. Cavity and water molecules reduce the substrate specificity to such an extent that TK can phosphorylate various substrate analogues useful in pharmaceutical applications. TK is structurally homologous to the well-known nucleoside monophosphate kinases but contains large additional peptide segments.  相似文献   

2.
When meso-tetrakis(3-N-methylpyridiniumyl)porphyrin (m-TMPyP) formed a complex with poly[d(A-T)(2)], an intense bisignate excitonic CD in the Soret absorption region was observed. The excitonic CD of the m-TMPyP-poly[d(A-T)(2)] complex is unique in that no other combination of the related porphyrin, namely, meso-tetrakis(n-N-methylpyridiniumyl)porphyrin (where n = 2, 4), and polynucleotide including calf thymus DNA, poly[d(G-C)(2)], poly[d(I-C)(2)], and poly(dA).poly(dT), exhibits a comparable CD spectrum. From the [drug]/[DNA] ratio-dependence of the intensity and the shape of the CD spectrum, this porphyrin species is assigned to an extensively aggregated form. The extensively aggregated porphyrin disperses in 1 h after mixing to form moderately stacked porphyrin at a low mixing ratio. The magnitude of linear dichroism of the extensively aggregated porphyrin was small and the sign was negative in the Soret band, which indicated that the molecular plane of porphyrin in the complex is strongly tilted. On the other hand, the molecular plane of porphyrin is almost parallel to the DNA base plane (perpendicular to the DNA helix axis) in the moderately stacked form.  相似文献   

3.
The mitochondrial enzyme thymidine kinase 2 (TK2) phosphorylates deoxythymidine (dT) and deoxycytidine (dC) to form dTMP and dCMP, which in cells rapidly become the negative-feedback end-products dTTP and dCTP. TK2 kinetic activity exhibits Hill coefficients of ~0.5 (apparent negative cooperativity) for dT and ~1 for dC. We present a mathematical model of TK2 activity that is applicable if TK2 exists as two monomer forms in equilibrium.  相似文献   

4.
Modification of human placenta DNA polymerase alpha by (pT)2pC[Pt2 + (NH3)2OH].(pT)7 was investigated. The linear time dependence of the enzyme activity logarithm suggested a pseudo-first order for modification. Kd value of enzyme-affinity reagent complex (0.5 microM) was estimated. The enzyme inactivation by the affinity reagent and protection from inactivation in the presence of oligonucleotides of varying length were used for determining Kd values of the enzyme-ligand complexes. Oligonucleotide d(pT)2pC(pT)7 (Kd 0.15 microM), d(Tp)9T (Kd 0.15 microM) and [d(Tp)9]ddT (Kd 0.15 microM) protected the enzyme from inactivation with equal efficiency. The protective action of oligothymidylates d(Tp)nT (where n changes from 3 to 14) strongly depended on the chain length, the Kd values diminishing from 5.3 to 0.0091 microM in the geometrical progression. The addition of one link to the oligothymidylate chain resulted in 1.71-fold increase in the oligonucleotide affinity for the enzyme specific site. Such a change corresponds to Gibbs energy change of about 0.32 kcal/mole. It is supposed that the monomer units of pentadecathymidylate (at least beginning with the third one) in d(Tp)14T-enzyme complex form neither hydrogen bonds nor electrostatic linkages with the enzyme. Kd values of oligonucleotides as templates are shown to reflect quite well the true affinity of template for the enzyme. This affinity increases in the presence of a primer. However, the ratio of the affinity for different oligonucleotides does not change in the presence or absence of a complementary primer.  相似文献   

5.
The Km and Vmax values for primers d(pA)n, d(pT)n, r(pA)n, r(pU)n where n = 1-16, were compared. The Km values for minimal primers dTMP, dAMP, rUMP, rAMP were found to be 48, 71, 602 and 602 microM, respectively. The Vmax value for any NMP made up approximately 7% of that for (pN)10. The lengthening of any primer per one mononucleotide unit for n from 1 to 10 resulted in the decrease of the Km value 1.8-fold and the increase of the Vmax value 1.35-fold. The ratios of the Km values for primers r(pA)n-d(pA)n and r(pU)n-d(pT)n were 7.5 and 12.5, respectively, for any n. The Km value for [d[pT)8]r(pU) primer was the same as for r(pU)9, but not for d(pT)9. Decanucleotide [d(Tp)9]ddT interacted with the polymerase competitively to the template, but not to the primer. The primer's 3'-OH group was supposed to form the hydrogen bond with the enzyme. The absence of 3'-hydroxygroup in [d(Tp)9]ddT resulted in its inability to compete effectively with the primer. The difference of the affinity of ribo- and deoxyriboprimers is due, apparently, to the existence of the different conformation of the furanose rings in the ribose and deoxyribose.  相似文献   

6.
Although yeast cannot normally incorporate exogenous deoxythymidine 5'-monophosphate (dTMP) into deoxyribonucleic acid, mutants able to do so have been isolated. We have characterized a recessive suppressor of dTMP uptake (sot1) that prevents strains carrying either tup1, tup2, or tup4 from growing on selective medium. The sot1 mutation maps between rad1 and the centromere of chromosome XVI, and is unlinked to any of the tup mutations. The sot1 mutation does not suppress the other pleiotropic effects of the tup1 mutant, notably the lack of mating of tup1 MATalpha strains. The sot1 mutation specifically blocks the uptake of dTMP into tup strains. After growing a sot1 strain in medium containing [3H]dTMP, we showed that the medium still contained more than 90% of the original [3H]dTMP and that this medium could support the incorporation of [3H]dTMP by a tup2 strain. Therefore, sot1 strains do not degrade dTMP in the medium. The sot1 mutation had no effect on the uptake of other nutrients essential for growth, including several amino acids, adenine, and uracil.  相似文献   

7.
8.
We have examined the salt and temperature dependences of the equilibrium binding of the Escherichia coli single strand binding (SSB) tetramer to a series of oligodeoxythymidylates, dT(pT)N-1, with N = 16, 28, 35, 56 and 70. Absolute binding isotherms were obtained, based on the quenching of the intrinsic protein fluorescence upon formation of the complexes. The shorter oligonucleotides, with N = 16, 28 and 35, bind to multiple sites on the SSB tetramer and negative co-operativity is observed among these binding sites. We have quantitatively analyzed these isotherms, using a statistical thermodynamic ("square") model to obtain the intrinsic binding constant KN, and the negative co-operativity constant, sigma N. For all oligonucleotides, we find that KN decreases significantly with increasing concentration of monovalent salt, indicating a large electrostatic component to the free energy of the interaction (e.g. delta log KN/delta log [NaBr] = -2.7, -4.6 and -7.1 for N = 16, 35 and 70, respectively), with contributions from both cations and anions. For oligonucleotides that span two or more subunits, there is a significant unfavorable contribution to the binding free energy for each intersubunit crossing, with an accompanying uptake of anions. Therefore, the extent of anion uptake increases as the number of intersubunit crossings increase. There is a strong temperature dependence for the intrinsic binding of dT(pT)15, such that delta Ho = -26(+/- 3) kcal/mol dT(pT)15. Negative co-operativity exists under all solution conditions tested, i.e. sigma N less than 1, and this is independent of anion concentration and type. However, the negative co-operativity constant does decrease with decreasing concentration of cation. The dependence of sigma 16 on Na+ concentration indicates that an average of one sodium ion is taken up as a result of the negative co-operativity between two dT(pT)15 binding sites. These data and the lack of a temperature dependence for sigma 16 suggest that the molecular basis for the negative co-operativity is predominantly electrostatic and may be due to the repulsion of regions of single-stranded DNA that are required to bind in close proximity on an individual SSB tetramer.  相似文献   

9.
Intact mitochondria of Neurospora crassa incorporate deoxythymidine 5'-monophosphate (dTMP) into deoxyribonucleic acid but not the label from (methyl-3H) deoxythymidine. Mitochondrial homogenates contain deoxythymidylate kinase (EC 2.7.4.9), deoxycytidylate aminohydrolase (dCMP deaminase) (EC 3.5.4.12), and thymidylate synthetase (EC 2.1.1b), but not thymidine kinase (EC 2.7.1.21) activity. dTMP kinase is loosely bound to the mitochondrial membrane and is solubilized by 0.4 M KCl in mitochondrial homogenates, the dCMP aminohydrolase deaminase) is bound to the inner membrane and is not solubilized by 0.4 M KCl. dTMP synthetase activity is found in the 2,000 times g particulate fractions by homogenization of mitochondria in 0.4 M KCl. The dCMP deaminase activity found in the particulate fraction of the inner membrane is efficiently regulated by the products of the pathway: deoxycytidine 5'-triphosphate activates whereas deoxythymidine 5'-triphosphate inhibits, as found for the soluble enzyme from other sources. These data indicate that mitochondria of N. crassa contain specific enzymes for the biosynthesis of deoxythymidine triphosphate.  相似文献   

10.
Summary When an aqueous solution (pH 7.0) of deoxythymidine 5-phosphate, 4-amino-5-imidazolecarboxamide and cyanamide was dried and heated for 18 h at 60°C, P1, P2-dideoxythymidine 5-pyrophosphate (I) was formed in a 58% yield. Oligonucleotides were not detected in the reaction product. Under conditions employed in the above reaction, (I) was shown to be stable. In prebiotic polymerization reactions employing deoxythymidine 5-triphosphate as the polymerizing species, (I) could therefore function as a primer and minimize the formation of cyclic nucleotides.Abbreviations dT deoxythymidine - dTMP deoxythymidine 5-phosphate - dTppT P1, P2-dideoxythymidine 5-pyrophosphate - dTTP deoxythymidine 5-triphosphate - AICA 4-amino-5-imidazolecarboxamide  相似文献   

11.
The photophysical properties and photodynamic effect of Zn(ii), Pd(ii), Cu(ii) and free-base 5-(4-(trimethylammonium)phenyl)-10,15,20-tris(2,4,6-trimethoxy phenyl)porphyrin (H2P) iodide have been studied in N,N-dimethylformamide (DMF) and in different biomimetic systems. The absorption, fluorescence, triplet state and singlet molecular oxygen production of the metal complexes were all referred to H2P. The photodynamic activity was first analyzed using 9,10-dimethylanthracene and guanosine 5'-monophosphate in N,N-dimethylformamide. The photooxidation processes were also investigated in benzene/benzyl-n-hexadecyldimethyl ammonium chloride/water reverse micelles. Photosensitization efficiency of these porphyrins was H2P approximately ZnP > PdP in homogeneous solution and ZnP > H2P > PdP in micelles, whereas no photooxidation effect was detected using the Cu(ii) complex. Human erythrocytes were used as a biological membrane model. The photohemolytic activity depended on irradiation time, sensitizer and concentration of the agent. When cells were treated with 1 microM sensitizer, the hemolytic activity was H2P > ZnP > CuP. However, it was H2P > ZnP approximately CuP using 5 microM of the respective porphyrin. Although CuP could undergo a type I photoreaction, in all cases the photohemolytic effect considerably diminishes in anoxic conditions, indicating that an oxygen atmosphere is required for the mechanism of cellular membrane damage. The behavior of these amphiphilic metallo porphyrins provides information on the photodynamic activity of these agents in biomimetic microenvironments.  相似文献   

12.
The binding site and the geometry of Co(III)meso-tetrakis(N-methylpyridinium-4-yl)porphyrin (CoTMPyP) complexed with double helical poly(dA).poly(dT) and poly(dG).poly(dC), and with triple helical poly(dA).[poly(dT)](2) and poly(dC).poly(dG).poly(dC)(+) were investigated by circular and linear dichroism (CD and LD). The appearance of monomeric positive CD at a low [porphyrin]/[DNA] ratio and bisignate CD at a high ratio of the CoTMPyP-poly(dA).poly(dT) complex is almost identical with its triplex counterpart. Similarity in the CD spectra was also observed for the CoTMPyP-poly(dG).poly(dC) and -poly(dC).poly(dG).poly(dC)(+) complex. This observation indicates that both monomeric binding and stacking of CoTMPyP to these polynucleotides occur at the minor groove. However, different binding geometry of CoTMPyP, when bind to AT- and GC-rich polynucleotide, was observed by LD spectrum. The difference in the binding geometry may be attributed to the difference in the interaction between polynucleotides and CoTMPyP: in the GC polynucleotide case, amine group protrude into the minor groove while it is not present in the AT polynucleotide.  相似文献   

13.
R R?mer  U Schomburg  G Krauss  G Maass 《Biochemistry》1984,23(25):6132-6137
The interaction of the Escherichia coli single-stranded DNA binding protein (SSB) with oligo- and poly-nucleotides has been studied by 270-MHz 1H NMR spectroscopy and fast kinetic techniques. d(pT)8 and poly(dT) were used to study noncooperative and cooperative binding, respectively. The H6, H1', and CH3 resonances of d(pT)8 are high-field shifted by less than 0.05 ppm, and H8 and H2 of poly(dA) are low-field shifted upon complexation. The protein resonances remain virtually unshifted. The small shifts upon complexation provide no evidence for extensive stacking interactions between the nucleotide bases and aromatic amino acid side chains of SSB. The d(pT)8 and poly(dA) signals are broadened to about 30 Hz whereas the resonances of poly(dT) are broadened beyond detection upon stoichiometric complexation. Continuous broadening of all poly(dT) signals even at a 10-fold excess of poly(dT) indicates fast exchange of SSB between different binding sites. Dissociation and reassociation rates determined from stopped-flow experiments are too slow by at least 2 orders of magnitude to account for the experimental line widths. Therefore, we conclude that SSB translocates without dissociation from the DNA template. A model for the translocation is outlined. It is based on partial dissociation of octamer sections of poly(dT) from the complex with a rate constant as previously published for the dissociation of d(pT)8 from SSB.  相似文献   

14.
Proton magnetic resonance data have been obtained for 6-methyl-2′-deoxyuridine (dT*), its 3′- and 5′-monophosphates, and its 3′,5′-diphosphate, as well as for the corresponding thymine derivatives. The synthesis of the dideoxynucleoside monophosphates—d(TpT), d(T*pT), d(TpT*), and d(T*pT*)—was accomplished, and spectral data were obtained for these four dimers. The data show that the 6-methyluracil base prefers the syn conformation about the N-glycosyl bond at the monomer and dimer levels. The presence of the syn base leads to increases in the cis couplings of the sugar ring, J1′2″ and J2′3′, which indicate a trend towards eclipsing of the substituents on the C1′-C2′ and C2′-C3′ fragments. This trend is discussed in terms of changes in the pseudorotational parameters which describe the pucker of the ring. The syn base destabilizes the g+ conformer about the C4′-C5′ bond, leading to a preference for the t conformer in all dT* residues at the monomer and dimer levels. Preliminary work on the formation of cyclobutane-type photodimers in d(T*pT) and d(T*pT*) is discussed and presented as evidence for the capability of the syn 6-methyluracil base to form base-stacked complexes.  相似文献   

15.
The complex formation of porphyrins with DNA leads to changes of stability of DNA. In the present study we investigated binding properties and the thermodynamic parameters of a water-soluble, cationic planar Cu(II)-containing meso-tetrakis(4-N-butyl-pyridiniumyl)porphyrin [CuTButPyP4] and nonplanar Co(II)-containing meso-tetrakis(4-N-butyl-pyridiniumyl)porphyrin [CoButPyP4] with calf thymus DNA in the presence of divalent manganese ions. For displaying the changes of thermodynamic parameters (Tm and ΔT) the melting curves of DNA-porphyrin complexes in the presence of Mn2+ ions have been obtained. The enthalpy (ΔH) of helix-coil transition has been also evaluated. It was shown that the binding of ions to DNA proceeds in two stages depending on the manganese/DNA phosphates molar ratio [Mn]/[P]. At the first stage (0.001 < [Mn]/[P] < 1), the interaction of manganese ions with DNA phosphates occurs, causing an additional screening of their negative charge and the stabilization of the double helix. As a result, the best conditions for intercalation of CuTButPyP4 or of peripheral rings of CoButPyP4 occur. The significant increase of Tm, but less changes of ΔT were observed. At the second stage (1 < [Mn]/[P] < 4), the ions interact with both the phosphates and the nitrogen bases of DNA. At this stage, it is possible for the manganese ion to coordinate simultaneously to the oxygen atom of the phosphate and the neighboring base of DNA. At a higher [Mn]/[P] ratio, the destabilization of the double helix begins, and partial breakage of the hydrogen bonds between the nitrogen bases occurs. Respectively the destabilization of DNA in the presence of both porphyrins takes place.  相似文献   

16.
The excited singlet states of 9-aminophenanthrene and its N-aminoalkyl derivatives are strongly fluorescent in cyclohexane. Addition of low concentrations of Et(3)N, Pr(2)NH, or PrNH(2) results in a red shift of the emission maximum and moderately decreased fluorescence intensity. Analysis of the fluorescence behavior using a combination of singular value decomposition with self-modeling and kinetic analysis provides evidence for the sequential formation of 1 : 1 (exciplex) and 1 : 2 (triplex) complexes between the excited 9-aminophenanthrene and ground-state alkylamine, both of which are strongly fluorescent. Both the formation and decay of the exciplex and triplex are dependent upon the extent of amine N-alkylation. Rate constants and equilibrium constants for complex formation follow the order 1 degree approximately 2 degree > 3 degree, analogous to that for the formation of ground-state complexes between amines and the soft Lewis base HgBr(2). Similarly, N-aminoalkyl derivatives of 9-aminophenanthrene form intramolecular exciplexes. Excited-state complex formation is attributed to a Lewis acid-base interaction between the excited aminophenanthrene (lone-pair acceptor) and ground-state amine (lone-pair donor). The factors which determine the stability of excited-state Lewis acid-base complexes are characteristic of the specific excited-state acceptor. No universal scale of lone-pair donor strength can be expected to describe the formation of such complexes.  相似文献   

17.
Tuberculosis (TB) is the primary cause of mortality among infectious diseases. Mycobacterium tuberculosis thymidylate kinase (TMPK(Mtub)) catalyzes the ATP-dependent phosphorylation of deoxythymidine 5'-monophosphate (dTMP). Essential to DNA replication, this enzyme represents a promising target for developing new drugs against TB, because the configuration of its active site is unique within the TMPK family. Indeed, it has been proposed that, as opposed to other TMPKs, catalysis by TMPK(Mtub) necessitates the transient binding of a magnesium ion coordinating the phosphate acceptor. Moreover, 3'-azidodeoxythymidine monophosphate (AZTMP) is a competitive inhibitor of TMPK(Mtub), whereas it is a substrate for human and other TMPKs. Here, the crystal structures of TMPK(Mtub) in complex with deoxythymidine (dT) and AZTMP were determined to 2.1 and 2.0 A resolution, respectively, and suggest a mechanism for inhibition. The azido group of AZTMP perturbs the induced-fit mechanism normally adopted by the enzyme. Magnesium is prevented from binding, and the resulting electrostatic environment precludes phosphoryl transfer from occurring. Our data provide a model for drug development against tuberculosis.  相似文献   

18.
19.
The comparison of the Km and Vmax values for the various primers was carried out. The primers were either completely complementary to the template or contained the non-complementary bases in different positions from the 3'-end. The number of the bases from the 3'-end to the noncomplementary nucleotide but not the primers length was supposed to determine the efficiency of the interaction of the primers containing noncomplementary bases with the enzyme. The Km values for d[(pC) (pT)7] (1.2 microM), d[(pC)3(pT)7] (2.5 microM, d[(pT)2pC(pT)7] (1.4 microM)d[(pT)4pC(pT)5(4.3 microM); d[(pT)7pC(pT)2] (11 microM) are comparable with the Km values for d(pT)7 (1.4 microM); d(pT)5 (4.2 microM) and d(pT)3 (15 mkM), respectively, but not for the decathymidilate d[(Tp)9T] (0.23 microM). The complementary interaction between the first nucleotide from the 3'-end of the primer and the template appear to play the particular role in the interaction of the enzyme with the primer. The Km values for d[(pT)10pC] and d[(pA)9pC] (with the corresponding templates) are 38 and 6 times the ones for d[(Tp)10T] and d(pA)10. However, the Km values for d[(pA)9p(rib)] (0.56 microM) which contains the deoxyribozylurea residue at the 3'-end is practically equal to the Km for d(pA)9 (0.56 microM). The Vmax values for d[(pT)10pC] and d[(pA)9pC] are 1.7 and 2.3 times the values for d[(Tp)10T] and d(pA)10, respectively. The primer affinity decreases, just as its conversion rate increases when the noncomplementary base in the primer is transferred from the 5'-to 3'-end; that results in the rate of primers elongation decrease in total.  相似文献   

20.
The following individual diastereomers of oligothymidylate ethyl esters (the alkyl phosphodiester group is asymmetric with R or S configuration) have been prepared: d[(Tr)8Tp'(Et)T] (I), d[(Tp)8Tp'(Et)T] (II), d[(Tp)8Tp'(Et)TpT] (III), d[(Tp)8Tp' X (Et)TpT] (IV). A totally esterified analogue d[[(Tp(Et)7]T] (V) was obtained as a diastereomeric mixture. All oligothymidylate derivatives revealed substrate activity as primers of DNA polymerase with poly(dA) as a template. The values of the maximal reaction rates were equal to 14; 2,6; 68; 24 and 0,1% for oligothymidylates (I)-(V) with respect to Vm value (100%) for (Tp)9T. Km values of oligothymidylates (I)-(V), 2,7; 2,5; 0,51; 7,2 microM, were obtained in relation to Km for d[(Tp)9T] (0,4 microM). Diastereomers (I) and (II) were not destroyed by Klenow fragment of DNA polymerase I which has only 3'----5' exonuclease activity. However, these derivatives were hydrolyzed by complete DNA polymerase I due to its 5'----3' exonuclease activity, the reaction rate being 3-10 times lower than in case of d[(Tp)9T]. The data suggest an essential contribution to the primer binding from the positive enzyme group interaction with the 3'-end negatively charged phosphate group of oligonucleotide, together with the primer complementary interaction with the template. At least two phosphodiester groups of the oligonucleotide primer are essential for the reaction of polymerization following the correct binding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号