首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, the recently developed Extreme Learning Machine (ELM) is used for direct multicategory classification problems in the cancer diagnosis area. ELM avoids problems like local minima, improper learning rate and overfitting commonly faced by iterative learning methods and completes the training very fast. We have evaluated the multi-category classification performance of ELM on three benchmark microarray datasets for cancer diagnosis, namely, the GCM dataset, the Lung dataset and the Lymphoma dataset. The results indicate that ELM produces comparable or better classification accuracies with reduced training time and implementation complexity compared to artificial neural networks methods like conventional back-propagation ANN, Linder's SANN, and Support Vector Machine methods like SVM-OVO and Ramaswamy's SVM-OVA. ELM also achieves better accuracies for classification of individual categories.  相似文献   

2.
Clustering methods for microarray gene expression data   总被引:1,自引:0,他引:1  
Within the field of genomics, microarray technologies have become a powerful technique for simultaneously monitoring the expression patterns of thousands of genes under different sets of conditions. A main task now is to propose analytical methods to identify groups of genes that manifest similar expression patterns and are activated by similar conditions. The corresponding analysis problem is to cluster multi-condition gene expression data. The purpose of this paper is to present a general view of clustering techniques used in microarray gene expression data analysis.  相似文献   

3.

Background  

Large discrepancies in signature composition and outcome concordance have been observed between different microarray breast cancer expression profiling studies. This is often ascribed to differences in array platform as well as biological variability. We conjecture that other reasons for the observed discrepancies are the measurement error associated with each feature and the choice of preprocessing method. Microarray data are known to be subject to technical variation and the confidence intervals around individual point estimates of expression levels can be wide. Furthermore, the estimated expression values also vary depending on the selected preprocessing scheme. In microarray breast cancer classification studies, however, these two forms of feature variability are almost always ignored and hence their exact role is unclear.  相似文献   

4.
5.
6.

Background  

With the advance of microarray technology, several methods for gene classification and prognosis have been already designed. However, under various denominations, some of these methods have similar approaches. This study evaluates the influence of gene expression variance structure on the performance of methods that describe the relationship between gene expression levels and a given phenotype through projection of data onto discriminant axes.  相似文献   

7.

Background  

Designing appropriate machine learning methods for identifying genes that have a significant discriminating power for disease outcomes has become more and more important for our understanding of diseases at genomic level. Although many machine learning methods have been developed and applied to the area of microarray gene expression data analysis, the majority of them are based on linear models, which however are not necessarily appropriate for the underlying connection between the target disease and its associated explanatory genes. Linear model based methods usually also bring in false positive significant features more easily. Furthermore, linear model based algorithms often involve calculating the inverse of a matrix that is possibly singular when the number of potentially important genes is relatively large. This leads to problems of numerical instability. To overcome these limitations, a few non-linear methods have recently been introduced to the area. Many of the existing non-linear methods have a couple of critical problems, the model selection problem and the model parameter tuning problem, that remain unsolved or even untouched. In general, a unified framework that allows model parameters of both linear and non-linear models to be easily tuned is always preferred in real-world applications. Kernel-induced learning methods form a class of approaches that show promising potentials to achieve this goal.  相似文献   

8.
Qiao X  Liu Y 《Biometrics》2009,65(1):159-168
Summary .  In multicategory classification, standard techniques typically treat all classes equally. This treatment can be problematic when the dataset is unbalanced in the sense that certain classes have very small class proportions compared to others. The minority classes may be ignored or discounted during the classification process due to their small proportions. This can be a serious problem if those minority classes are important. In this article, we study the problem of unbalanced classification and propose new criteria to measure classification accuracy. Moreover, we propose three different weighted learning procedures, two one-step weighted procedures, as well as one adaptive weighted procedure. We demonstrate the advantages of the new procedures, using multicategory support vector machines, through simulated and real datasets. Our results indicate that the proposed methodology can handle unbalanced classification problems effectively.  相似文献   

9.

Background

An important use of data obtained from microarray measurements is the classification of tumor types with respect to genes that are either up or down regulated in specific cancer types. A number of algorithms have been proposed to obtain such classifications. These algorithms usually require parameter optimization to obtain accurate results depending on the type of data. Additionally, it is highly critical to find an optimal set of markers among those up or down regulated genes that can be clinically utilized to build assays for the diagnosis or to follow progression of specific cancer types. In this paper, we employ a mixed integer programming based classification algorithm named hyper-box enclosure method (HBE) for the classification of some cancer types with a minimal set of predictor genes. This optimization based method which is a user friendly and efficient classifier may allow the clinicians to diagnose and follow progression of certain cancer types.

Methodology/Principal Findings

We apply HBE algorithm to some well known data sets such as leukemia, prostate cancer, diffuse large B-cell lymphoma (DLBCL), small round blue cell tumors (SRBCT) to find some predictor genes that can be utilized for diagnosis and prognosis in a robust manner with a high accuracy. Our approach does not require any modification or parameter optimization for each data set. Additionally, information gain attribute evaluator, relief attribute evaluator and correlation-based feature selection methods are employed for the gene selection. The results are compared with those from other studies and biological roles of selected genes in corresponding cancer type are described.

Conclusions/Significance

The performance of our algorithm overall was better than the other algorithms reported in the literature and classifiers found in WEKA data-mining package. Since it does not require a parameter optimization and it performs consistently very high prediction rate on different type of data sets, HBE method is an effective and consistent tool for cancer type prediction with a small number of gene markers.  相似文献   

10.

Background  

Accurate diagnosis of cancer subtypes remains a challenging problem. Building classifiers based on gene expression data is a promising approach; yet the selection of non-redundant but relevant genes is difficult.  相似文献   

11.
MOTIVATION: The nearest shrunken centroids classifier has become a popular algorithm in tumor classification problems using gene expression microarray data. Feature selection is an embedded part of the method to select top-ranking genes based on a univariate distance statistic calculated for each gene individually. The univariate statistics summarize gene expression profiles outside of the gene co-regulation network context, leading to redundant information being included in the selection procedure. RESULTS: We propose an Eigengene-based Linear Discriminant Analysis (ELDA) to address gene selection in a multivariate framework. The algorithm uses a modified rotated Spectral Decomposition (SpD) technique to select 'hub' genes that associate with the most important eigenvectors. Using three benchmark cancer microarray datasets, we show that ELDA selects the most characteristic genes, leading to substantially smaller classifiers than the univariate feature selection based analogues. The resulting de-correlated expression profiles make the gene-wise independence assumption more realistic and applicable for the shrunken centroids classifier and other diagonal linear discriminant type of models. Our algorithm further incorporates a misclassification cost matrix, allowing differential penalization of one type of error over another. In the breast cancer data, we show false negative prognosis can be controlled via a cost-adjusted discriminant function. AVAILABILITY: R code for the ELDA algorithm is available from author upon request.  相似文献   

12.
MOTIVATION: High-density DNA microarray measures the activities of several thousand genes simultaneously and the gene expression profiles have been used for the cancer classification recently. This new approach promises to give better therapeutic measurements to cancer patients by diagnosing cancer types with improved accuracy. The Support Vector Machine (SVM) is one of the classification methods successfully applied to the cancer diagnosis problems. However, its optimal extension to more than two classes was not obvious, which might impose limitations in its application to multiple tumor types. We briefly introduce the Multicategory SVM, which is a recently proposed extension of the binary SVM, and apply it to multiclass cancer diagnosis problems. RESULTS: Its applicability is demonstrated on the leukemia data (Golub et al., 1999) and the small round blue cell tumors of childhood data (Khan et al., 2001). Comparable classification accuracy shown in the applications and its flexibility render the MSVM a viable alternative to other classification methods. SUPPLEMENTARY INFORMATION: http://www.stat.ohio-state.edu/~yklee/msvm.htm  相似文献   

13.
Recent research has demonstrated quite convincingly that accurate cancer diagnosis can be achieved by constructing classifiers that are designed to compare the gene expression profile of a tissue of unknown cancer status to a database of stored expression profiles from tissues of known cancer status. This paper introduces the JCFO, a novel algorithm that uses a sparse Bayesian approach to jointly identify both the optimal nonlinear classifier for diagnosis and the optimal set of genes on which to base that diagnosis. We show that the diagnostic classification accuracy of the proposed algorithm is superior to a number of current state-of-the-art methods in a full leave-one-out cross-validation study of five widely used benchmark datasets. In addition to its superior classification accuracy, the algorithm is designed to automatically identify a small subset of genes (typically around twenty in our experiments) that are capable of providing complete discriminatory information for diagnosis. Focusing attention on a small subset of genes is useful not only because it produces a classifier with good generalization capacity, but also because this set of genes may provide insights into the mechanisms responsible for the disease itself. A number of the genes identified by the JCFO in our experiments are already in use as clinical markers for cancer diagnosis; some of the remaining genes may be excellent candidates for further clinical investigation. If it is possible to identify a small set of genes that is indeed capable of providing complete discrimination, inexpensive diagnostic assays might be widely deployable in clinical settings.  相似文献   

14.
The ability to measure genome-wide expression holds great promise for characterizing cells and distinguishing diseased from normal tissues. Thus far, microarray technology has been useful only for measuring relative expression between two or more samples, which has handicapped its ability to classify tissue types. Here we present a method that can successfully predict tissue type based on data from a single hybridization. A preliminary web-tool is available online (http://rafalab.jhsph.edu/barcode/).  相似文献   

15.
Gene expression profiling on microarrays is widely used to measure the expression of large numbers of genes in a single experiment. Because of the high cost of this method, feasible numbers of replicates are limited, thus impairing the power of statistical analysis. As a step toward reducing technically induced variation, we developed a procedure of sample preparation and analysis that minimizes the number of sample manipulation steps, introduces quality control before array hybridization, and allows recovery of the prepared mRNA for independent validation of results. Sample preparation is based on mRNA separation using oligo(dT) magnetic beads, which are subsequently used for first-strand cDNA synthesis on the beads. cDNA covalently bound to the magnetic beads is used as template for second-strand cDNA synthesis, leaving the intact mRNA in solution for further analysis. The quality of the synthesized cDNA can be assessed by quantitative polymerase chain reaction using 3'- and 5'-specific primer pairs for housekeeping genes such as glyceraldehyde-3-phosphate dehydrogenase. Second-strand cDNA is chemically labeled with fluorescent dyes to avoid dye bias in enzymatic labeling reactions. After hybridization of two differently labeled samples to microarray slides, arrays are scanned and images analyzed automatically with high reproducibility. Quantile-normalized data from five biological replica display a coefficient of variation 45% for 90% of profiled genes, allowing detection of twofold changes with false positive and false negative rates of 10% each. We demonstrate successful application of the procedure for expression profiling in plant leaf tissue. However, the method could be easily adapted for samples from animal including human or from microbial origin.  相似文献   

16.
17.
DNA microarray technology provides a promising approach to the diagnosis and prognosis of tumors on a genome-wide scale by monitoring the expression levels of thousands of genes simultaneously. One problem arising from the use of microarray data is the difficulty to analyze the high-dimensional gene expression data, typically with thousands of variables (genes) and much fewer observations (samples), in which severe collinearity is often observed. This makes it difficult to apply directly the classical statistical methods to investigate microarray data. In this paper, total principal component regression (TPCR) was proposed to classify human tumors by extracting the latent variable structure underlying microarray data from the augmented subspace of both independent variables and dependent variables. One of the salient features of our method is that it takes into account not only the latent variable structure but also the errors in the microarray gene expression profiles (independent variables). The prediction performance of TPCR was evaluated by both leave-one-out and leave-half-out cross-validation using four well-known microarray datasets. The stabilities and reliabilities of the classification models were further assessed by re-randomization and permutation studies. A fast kernel algorithm was applied to decrease the computation time dramatically. (MATLAB source code is available upon request.).  相似文献   

18.
MOTIVATION: One important application of gene expression microarray data is classification of samples into categories, such as the type of tumor. The use of microarrays allows simultaneous monitoring of thousands of genes expressions per sample. This ability to measure gene expression en masse has resulted in data with the number of variables p(genes) far exceeding the number of samples N. Standard statistical methodologies in classification and prediction do not work well or even at all when N < p. Modification of existing statistical methodologies or development of new methodologies is needed for the analysis of microarray data. RESULTS: We propose a novel analysis procedure for classifying (predicting) human tumor samples based on microarray gene expressions. This procedure involves dimension reduction using Partial Least Squares (PLS) and classification using Logistic Discrimination (LD) and Quadratic Discriminant Analysis (QDA). We compare PLS to the well known dimension reduction method of Principal Components Analysis (PCA). Under many circumstances PLS proves superior; we illustrate a condition when PCA particularly fails to predict well relative to PLS. The proposed methods were applied to five different microarray data sets involving various human tumor samples: (1) normal versus ovarian tumor; (2) Acute Myeloid Leukemia (AML) versus Acute Lymphoblastic Leukemia (ALL); (3) Diffuse Large B-cell Lymphoma (DLBCLL) versus B-cell Chronic Lymphocytic Leukemia (BCLL); (4) normal versus colon tumor; and (5) Non-Small-Cell-Lung-Carcinoma (NSCLC) versus renal samples. Stability of classification results and methods were further assessed by re-randomization studies.  相似文献   

19.
This paper studies the problem of building multiclass classifiers for tissue classification based on gene expression. The recent development of microarray technologies has enabled biologists to quantify gene expression of tens of thousands of genes in a single experiment. Biologists have begun collecting gene expression for a large number of samples. One of the urgent issues in the use of microarray data is to develop methods for characterizing samples based on their gene expression. The most basic step in the research direction is binary sample classification, which has been studied extensively over the past few years. This paper investigates the next step-multiclass classification of samples based on gene expression. The characteristics of expression data (e.g. large number of genes with small sample size) makes the classification problem more challenging. The process of building multiclass classifiers is divided into two components: (i) selection of the features (i.e. genes) to be used for training and testing and (ii) selection of the classification method. This paper compares various feature selection methods as well as various state-of-the-art classification methods on various multiclass gene expression datasets. Our study indicates that multiclass classification problem is much more difficult than the binary one for the gene expression datasets. The difficulty lies in the fact that the data are of high dimensionality and that the sample size is small. The classification accuracy appears to degrade very rapidly as the number of classes increases. In particular, the accuracy was very low regardless of the choices of the methods for large-class datasets (e.g. NCI60 and GCM). While increasing the number of samples is a plausible solution to the problem of accuracy degradation, it is important to develop algorithms that are able to analyze effectively multiple-class expression data for these special datasets.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号