首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Yin CQ  He BJ  Li SR  Liu YQ  Bai ZW 《Chirality》2009,21(4):442-448
A chiral selector was prepared through the reaction between (1S,2R)-(+)-2-amino-1,2-diphenylethanol and phenyl isocyanate. This selector was immobilized on aminated silica gel, respectively, with bifunctional group linkers of 1,4-phenylene diisocyanate, methylene-di-p-phenyl diisocyanate, and terephthaloyl chloride to produce corresponding three chiral stationary phases. The prepared compounds and chiral stationary phases were characterized by FT-IR, elemental analysis, (1)H NMR, and solid-state (1)H NMR. The enantioseparation ability of these chiral stationary phases was evaluated with structurally various chiral compounds. The chiral stationary phase prepared with 1,4-phenylene diisocyanate as linker showed excellent enantioseparation ability. The influence of different linkages on the enantioseparation was discussed.  相似文献   

2.
This study describes successful method development and separation of two stereo isomers of 2-[4-(methylsulfonyl)phenyl]-3-(3(R)-oxocyclopentyl)propanoic acid by reverse phase high-performance liquid chromatography. Baseline resolution was achieved on a J'sphere-ODS-H80 (150 mm × 4.6 mm, 4 μm) column using mobile phase consisting of 0.05% triflouroacetic acid in water-acetonitrile (85:15, v/v) at a flow rate of 1.0 ml/min. The detection was carried out at 228 nm. The title compound, in turn, can be obtained by C-alkylation of methyl 2-[4-(methylthio)phenyl]acetate with 2(S)-iodomethyl-8,8-dimethyl-6,10-dioxaspiro[4.5]decane followed by consecutive hydrolysis and oxidation. The partially validated analytical method (system suitability, peak homogeneity, linearity, precision, robustness, and solution stability) has limit of detection and limit of quantification, 0.15 and 0.50 μg/ml respectively. Alternatively, the new method is being routinely utilized to monitor epimerization of α-carbon of the propanoic acid in the title compound by crystallization-induced dynamic resolution.  相似文献   

3.
An efficient methodology for the preparation of the α‐tetrasubstituted proline analog (S,S,S)‐2‐methyloctahydroindole‐2‐carboxylic acid, (S,S,S)‐(αMe)Oic, and its enantiomer, (R,R,R)‐(αMe)Oic, has been developed. Starting from easily available substrates and through simple transformations, a racemic precursor has been synthesized in excellent yield and further subjected to HPLC resolution using a cellulose‐derived chiral stationary phase. Specifically, a semipreparative (250 mm × 20 mm ID) Chiralpak® IC column has allowed the efficient resolution of more than 4 g of racemate using a mixture of n‐hexane/tert‐butyl methyl ether/2‐propanol as the eluent. Multigram quantities of the target amino acids have been isolated in enantiomerically pure form and suitably protected for incorporation into peptides. Chirality, 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

4.
Cellulose‐tris(3,5‐dimethylphenylcarbamate) was prepared after a reported method and was coated onto an aminopropylated mesopore spherical silica gel. The final product was used as a chiral stationary phase of high performance liquid chromatography for the enantioseparation of a series of glycerin sulfides and glycerin selenides. Mixtures of hexane and 2‐propanol were used as mobile phases. The effects of 2‐propanol concentration in the mobile phase on the retention and resolution were investigated. Some enantiomers of the glycerin monosulfides and monoselenides could be separated satisfactorily, but none of the disulfides could be separated. The structural features of the solutes that influence chiral separation were discussed. Chirality 11:598–601, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

5.
Peng Y  He Q  Rohani S  Jenkins H 《Chirality》2012,24(5):349-355
During the resolution of 2-chloromandelic acid with (R)-(+)-N-benzyl-1-phenylethylamine, the crystals of the less soluble salt were grown, and their structure were determined and presented. The chiral discrimination mechanism was investigated by examining the weak intermolecular interactions (such as hydrogen bond, CH/π, and van der Waals interactions) and molecular packing mode in crystal structure of the less soluble diastereomeric salt. A one-dimensional double-chain hydrogen-bonding network and a "lock-and-key" supramolecular packing mode are disclosed. The investigation demonstrates that hydrophobic layers with corrugated surfaces can fit into the grooves of one another to realize a compact packing, when the molecular structure of resolving agent is much larger than that of the racemate. This "lock-and-key" assembly is recognized to be another characteristic of molecular packing contributing to the chiral discrimination, in addition to the well-known sandwich-like packing by hydrophobic layers with planar boundary surfaces.  相似文献   

6.
In our recent work, a series of dendritic chiral stationary phases (CSPs) were synthesized, in which the chiral selector was L‐2‐(p‐toluenesulfonamido)‐3‐phenylpropionyl chloride (selector I), and the CSP derived from three‐generation dendrimer showed the best separation ability. To further investigate the influence of the structures of dendrimer and chiral selector on enantioseparation ability, in this work, another series CSPs ( CSPs 1‐4 ) were prepared by immobilizing (1S,2R)‐1,2‐diphenyl‐2‐(3‐phenylureido)ethyl 4‐isocyanatophenylcarbamate (selector II) on one‐ to four‐generation dendrimers that were prepared in previous work. CSPs 1 and 4 demonstrated the equivalent enantioseparation ability. CSPs 2 and 3 showed the best and poorest enantioseparation ability respectively. Basically, these two series of CSPs exhibited the equivalent enantioseparation ability although the chiral selectors were different. Considering the enantioseparation ability of the CSP derived from aminated silica gel and selector II is much better than that of the one derived from aminated silica gel and selector I, it is believed that the dendrimer conformation essentially impacts enantioseparation. Chirality, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

7.
Lo HH  Kao CH  Lee DS  Yang TK  Hsu WH 《Chirality》2003,15(8):699-702
Biosynthesis of (S)-(+)-2-amino-4-phenylbutanoic acid (1) was performed by nonenantioselective hydantoinase and L-N-carbamoylase using racemic 5-[2-phenylethyl]-imidazolidine-2,4-dione (rac-2) as a substrate. The compounds involved in this biocatalysis process could be simultaneously resolved by high-performance liquid chromatography using Chirobiotic T column with a mobile phase of EtOH/H(2)O = 10/90 at pH 4.2-4.5. To our knowledge, this is the first report of the successful production of 1 by the combination of recombinant hydantoinase and L-N-carbamoylase.  相似文献   

8.
The enantiomers of various 1-(alpha-aminobenzyl)-2-naphthol and 1-(aminoalkyl)-2-naphthol analogs were separated on cellulose-tris-3,5-dimethylphenyl carbamate-based chiral stationary phases (Chiralcel OD-H and Chiralcel OD-RH), using n-hexane/2-propanol/diethylamine or phosphate buffer/organic modifier mobile phases. The 3,5-dimethylphenyl carbamoylated cellulose columns were effective in both normal and rev ersed-phase modes. The effects of the mobile phase composition, the pH, the buffer concentration, and the structures of the substituents on the 2-naphthol on the enantioseparations were studied. The absolute configuration and elution sequence were determined for 1-(1-amino-2-methylpropyl)-2-naphthol: the elution sequence was S < R.  相似文献   

9.
C(2)-Symmetric chiral diethoxyphosphoramide 4, diethoxythiophosphoramide 5, and diisopropoxyphosphoramide 6 of (1R, 2R)-1,2-diaminocyclohexane were prepared by the reactions of diethoxyphosphinic chloride, diethoxythiophosphinic chloride, and diisopropoxyphosphinic chloride with (1R, 2R)-1,2-diaminocyclohexane, respectively. They were used as catalytic chiral ligands in the asymmetric addition reactions of diethylzinc to aldehydes in the presence of titanium(IV) isopropoxide to give the corresponding sec-alcohols with 43-70% ee. Chiral ligands 4 and 5 gave the sec-alcohols with opposite absolute configuration.  相似文献   

10.
A novel methodology using a chiral molecular tool of MalphaNP acid (1), 2-methoxy-2-(1-naphthyl)propionic acid, useful for preparation of enantiopure secondary alcohols and determination of their absolute configurations by the (1)H NMR anisotropy method was developed; racemic MalphaNP acid (1) was enantioresolved with (-)-menthol, and the enantiopure MalphaNP acid (S)-(+)-(1) obtained was allowed to react with racemic alcohol, yielding a mixture of diastereomeric esters, which was clearly separated by HPLC on silica gel. By applying the sector rule of (1)H NMR anisotropy effect, the absolute configuration of the first-eluted MalphaNP ester was unambiguously determined. Solvolysis or reduction of the first-eluted MalphaNP esters yielded enantiopure alcohols.  相似文献   

11.
As a chiral precursor for the important anticoagulant Edoxaban, enantioselective synthesis of (S)-3-cyclohexene-1-carboxylic acid is of great significance. The complicated procedures and generation of massive solid waste discourage its chemical synthesis, and the alternative biocatalysis route calls for an enzyme capable of asymmetric hydrolysis of racemic methyl-3-cyclohexene-1-carboxylate. To this end, we engineered the E. coli esterase BioH for improved S-enantioselectivity via rational design. By combinatorial modulation of steric and aromatic interactions, a positive mutant Mu3 (L24A/W81A/L209A) with relatively high S-selectivity in hydrolyzing racemic methyl-3-cyclohexene-1-carboxylate was obtained, improving the enantiomeric excess from 32.3% (the wild type) to 70.9%. Molecular dynamics simulation was conducted for both (R)- or (S)- complexes of the wild type and Mu3 to provide hints for the mechanism behind the increased S-selectivity. Moreover, the reaction conditions of Mu3 in methyl-3-cyclohexene-1-carboxylate hydrolysis was optimized to improve the conversion rate to 2 folds.  相似文献   

12.
The determination of the enantiomeric impurity, i.e., the percentage of (+) N?0437 (= N?0924) in several batches of (??) N-0437 (= N-0923) by chiral HPLC is described. Enantiomeric impurities were calculated based on the peak areas of the two baseline separated enantiomers in the chromatogram. The enantiomeric impurities found in different batches ranged from 0.02% to 0.11%. Calibration curves of the two isomers of N-0437 (Fig. 1,) were made twice to study the reproducibility and linearity of the method. The absorbance ratio, N-0923/N-0924, was found to be 1.02 with a relative standard deviation (RSD) of 9% over the whole concentration range used for the calibration curves.  相似文献   

13.
(2S,3S)-3-methyl- and 3-isopropylaspartic acids were synthesized by bioconversion of the corresponding alkylfumarates (mesaconate and 3-isopropylfumarate) using β-methylaspartase from cell-free extracts of Clostridium tetanomorphum. Optically pure (2S,3S)-3-alkylaspartic acids were transformed in several steps to benzyl (3S,4R)-3-alkylmalolactonates without any racemization of the two chiral centers. These optically active α,β-substituted-β-lactones were polymerized by anionic ring opening polymerization yielding optically active semi-crystalline polyesters. 13C NMR analysis of poly[benzyl β-3-isopropylmalate] in CDCl3 has shown that only the iso-type stereosequence is present in the polymer, indicating that the macromolecular chain is constituted by the only units of benzyl β-(2S,3S)-3-isopropylmalate monomer. The polymerization reaction was done without any racemization of the two stereogenic centers as in the case of benzyl (3S,4R)-3-methylmalolactonate. © 1996 Wiley-Liss, Inc.  相似文献   

14.
Hyun MH  Cho YJ  Song Y  Choi HJ  Kang BS 《Chirality》2007,19(1):74-81
A new doubly tethered chiral stationary phase (CSP 5) based on (+)-(18-crown-6)-2,3,11,12-tetracarboxylic acid was developed by attaching the second tethering group to silica gel through a carbon atom of the first tethering group of the corresponding singly tethered CSP (CSP 2) containing an N-CH3 tertiary amide linkage, which was previously developed in our laboratory, in order to enhance the CSP stability without the loss of chiral recognition efficiency. The new CSP was quite effective in the resolution of various racemic alpha-amino acids, amines, and amino alcohols, and the chiral recognition efficiency of the new CSP was even greater than that of the corresponding singly tethered CSP especially in terms of the resolution factors (RS). The stability of the new CSP was greater than that of the corresponding singly tethered CSP. The chromatographic resolution behaviors of the new CSP were generally consistent with those of the corresponding singly tethered CSP.  相似文献   

15.
The chiral recognition mechanism of a cinchona alkaloid-based chiral stationary phase (CSP) showing high enantiomer discrimination potential for 2-methoxy-2-(1-naphthyl)propionic acid (MalphaNP acid) was investigated. Conformational and structural analyses of the 1:1 complexes of 9-O-(tert-butylcarbamoyl) quinine selector (SO) and MalphaNP acid (selectand, SA) were carried out employing NMR spectroscopy in solution, Fourier-transform infrared (FT-IR) spectroscopy, and solid-state X-ray diffraction analysis. Intramolecular NOEs of a soluble analogue of the CSP afforded the conformational states of the free and complexed form of the selector. The (1)H-NMR spectra revealed that the free form of the SO constitutes anti-open as well as anti-closed and/or syn-closed conformers. Upon complexation with the (S)-MalphaNP acid enantiomer to form the more stable diastereomeric associate, a conformational transition of the selector takes place, resulting in the synthesis of the anti-open conformer nearly exclusively. FT-IR spectra reveal that, besides the primary ion-pairing interaction, stereoselective hydrogen bonding stabilizes the more stable complex via the amide hydrogen of the SO. X-ray diffraction analysis of 9-O-(tert-butylcarbamoyl)quinine and (S)-MalphaNP acid complex further revealed the occurrence of a bidentate H-bond-mediated ionic interaction between SO and SA as well as the lack of pi-pi interaction in the 1:1 complex, and corroborated the conclusions derived from spectroscopic and chromatographic studies.  相似文献   

16.
Syntheses of trans-(1R,2R) and cis-(1S,2R)-1-amino-2-indanol (AI) were accomplished by a series of enantioselective enzymatic reactions using lipase and transaminase (TA). Lipase catalysed enantioselective hydrolysis of 2-acetoxyindanone was employed to prepare (R)-2-hydroxy indanone (HI). trans-AI (5 mM) (de > 98%) was produced from 20 mM (R)-2- HI using omega-TA and 50 mM (S)-1-aminoindan as an amino donor in water-saturated ethyl acetate. For the production of cis-AI, the diastereomeric (2R)-AI was synthesized from (R)-2-HI using reductive amination, and the kinetic resolution was performed with omega-TA. The enantioselectivity of omega-TA for (2R)-AI was increased to 22.1 in the presence of 5% gamma-cyclodextrin. cis-AI (15.4 mM) (96% de) was obtained from 40 mM (2R)-AI using 30 mM pyruvate and omega-TA (25 mg) in 10 mL of 100 mM phosphate buffer (pH 7.0).  相似文献   

17.
L ‐Cysteine was condensed with glyoxylic acid monohydrate in acetic acid at 30°C to give (4R)‐2,4‐thiazolidinedicarboxylic acid [(4R)‐TDA] as a mixture of two diastereoisomers, (2R,4R)‐ and (2S,4R)‐TDA. An attempt was made to separate (2S,4R)‐TDA from the diastereoisomeric salts of (4R)‐TDA with 1‐propylamine, 2‐methyl‐2‐propylamine, benzylamine, and (R)‐ and (S)‐1‐phenylethylamines [(R)‐ and (S)‐PEA]. The salts of (2S,4R)‐TDA were preferentially crystallized as less soluble diastereoisomeric salts. When the salt with (R)‐PEA was employed, the separation was successfully achieved to afford optically pure (2S,4R)‐TDA in a yield of 41%, based on the starting amount of the diastereoisomeric mixture of (4R)‐TDA. Chirality 11:326–329, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

18.
The absolute configuration of (+)-cis-2,3-dihydro-2[(methylamino)methyl]-1-[4-(trifluoromethyl)pheno<y]-1H-indene hydrochloride, the more active enantiomer of a new serotonin inhibitor, was established as 1S,2S. This assignment was based on the application of the benzene sector and chirality rules to the interpretation of the inhibitor's circular dichroism spectrum and the spectra of other related chiral 1-substituted 2,3-dihydro-1H-indenes. © 1993 Wiley-Liss, Inc.  相似文献   

19.
Three novel chiral packing materials for high-performance liquid chromatography were prepared by covalently binding of (2S)-N-(3,5-dimethylphenyl)-2-[(4-chloro-3,5-dinitrophenyl)carbonylamino]propan-amide (7), (2S)-N-(3,5-dimethylphenyl)-2-[(4-chloro-3,5-dinitrophenyl)carbonylamino]-4-methylpentanamide (8), and (2S)-N-(3,5-dimethylphenyl)-2-[(4-chloro-3,5-dinitrophenyl)carbonyl-amino]-2-phenylacetamide (9) to aminopropyl silica. The resulting chiral stationary phases (CSPs 1-3) proved effective for the resolution of racemic 4-aryl-3,4-dihydro-2(1H)-pyrimidone derivatives (TR 1-14). The mechanism of their enantioselection, supported by the elution order of (S)-TR 13 and (R)-TR 13 and molecular modeling of the complex of the slower running (S)-TR 13 with CSP 1 is discussed.  相似文献   

20.
β-methylaspartate ammonia-lyase, EC 4.3.1.2, (β-methylaspartase) from Clostridium tetanomorphum was used to produce a 40/60 molar ratio of (2S,3R) and (2S,3S)-3-methylaspartic acids, 2a and 2b , respectively, from mesaconic acid 1 as substrate, on a large scale. To prepare (3R,4R)-3-methyl-4-(benzyloxycarbonyl)-2-oxetanone (benzyl 3-methylmalolactonate) 6, 2a and 2b were transformed, in the first step, into 2-bromo-3-methylsuccinic acids 3a and 3b and separated. After three further steps, (2S,3S)- 3a yielded the α,β-substituted β-lactone (3R,4R) 6 with a very high diastereoisomeric excess (>95% by chiral gas chromatography). The corresponding crystalline polymer, poly[benzyl β-(2R,3S)-3-methylmalate] 8 , prepared by an anionic ring opening polymerization, was highly isotactic as determined by 13C NMR. Catalytic hydrogenolysis of lactone 6 yielded (3R,4R)-3-methyl-4-carboxy-2-oxetanone (3-methylmalolactonic acid) 7 , to which reactive, chiral, or bioactive molecules can be attached through ester bonds leading to polymers with possible therapeutic applications. Because of the ability of β-methylaspartase to catalyse both syn- and anti-elimination of ammonia from (2S,3RS)-3-methylaspartic acid 2ab at different rates, the (2S,3R)-stereoisomer 2a was retained and isolated for further reactions. These results permit the use of the chemoenzymatic route for the preparation of both optically active and racemic polymers of 3-methylmalic acid with well-defined enantiomeric and diastereoisomeric compositions. Chirality 10:727–733, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号