首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Yuasa  S.  Flory  D.  Basile  B.  Oró  J. 《Journal of molecular evolution》1984,21(1):76-80
Summary The synthesis of purines and pyrimidines using Oparin-Urey-type primitive Earth atmospheres has been demonstrated by reacting methane, ethane, and ammonia in electrical discharges. Adenine, guanine, 4-aminoimidazole-5-carboxamide (AICA), and isocytosine have been identified by UV spectrometry and paper chromatography as the products of the reaction. The total yields of the identified heterocyclic compounds are 0.0023%. It is concluded that adenine synthesis occurs at a much lower concentration of hydrogen cyanide than has been shown by earlier studies. Pathways for the synthesis of purines from hydrogen cyanide are discussed, and a comparison of the heterocyclic compounds that have been identified in meteorites and in prebiotic reactions is presented.  相似文献   

2.
Hydrogen cyanide is the starting material for a diverse array of prebiotic syntheses, including those of amino acids and purines. Hydrogen cyanide also reacts with ferrous ions to give ferrocyanide, and so it is possible that ferrocyanide was common in the early ocean. This can only be true if the hydrogen cyanide concentration was high enough and the rate of reaction of cyanide with ferrous ions was fast enough. We show experimentally that the rate of formation of ferrocyanide is rapid even at low concentrations of hydrogen cyanide in the pH range 6–8, and therefore an equilibrium calculation is valid. The equilibrium concentrations of ferrocyanide are calculated as a function of hydrogen cyanide concentration, pH and temperature. The steady state concentration of hydrogen cyanide depends on the rate of synthesis by electric discharges and ultraviolet light and the rate of hydrolysis, which depends on pH and temperature. Our conclusions show that ferrocyanide was a major species in the prebiotic ocean only at the highest production rates of hydrogen cyanide in a strongly reducing atmosphere and at temperatures of 0°C or less, although small amounts would have been present at lower hydrogen cyanide production rates. The prebiotic application of ferrocyanide as a source of hydrated electrons, as a photochemical replication process, and in semi-permeable membranes is discussed.  相似文献   

3.
The synthesis of adenine from the polymerization of concentrated ammonium cyanide solutions is well known. We show here that guanine is also produced by this reaction but at yields ranging from 10 to 40 times less than that of adenine. This synthesis is effective at both +80 and −20°C. Since high concentrations of NH4CN are obtainable only by freezing, this prebiotic synthesis would be applicable to frozen regions of the primitive Earth, the Jovian satellite Europa and other icy satellites, and the parent body of the Murchison meteorite. Received: 18 September 1998 / Accepted: 31 March 1999  相似文献   

4.
低共熔溶剂是由一定化学计量比的氢键受体和氢键供体组合而成的新型绿色溶剂,具有成本低、易制备、环境友好等特点,可以作为普通有机溶剂和离子液体的替代溶剂。酶作为生物催化剂时反应条件温和,对反应底物专一性高,并且具有极高的催化效率和反应速度。酶促反应通常发生在水溶液体系,但近年来发现在低共熔溶剂中酶促反应也能有效进行。综述酶与低共熔溶剂共同作用的机理以及低共熔溶剂在酶促反应中的应用,展望未来的研究方向,为酶促反应体系的进一步开发奠定理论基础。  相似文献   

5.
During the course of in vitro studies on cyanide exposure with SH-SY5Y human neuroblastoma cells, we found that sodium cyanide (NaCN) up to a concentration of 10 mM had no significant toxic effect under our culture conditions. Further investigation of this apparent cyanide resistance revealed that the sodium cyanide was being rapidly depleted from the cell culture medium. Cyanide was interacting with constituents of the cell culture medium and was somehow being detoxified or removed from solution. The reaction of cyanide with cell culture media in 96-well culture plates reduced cyanide concentrations rapidly (80-90% in 2 h at 37 degrees C). Running the same reaction in capped tubes significantly reduced cyanide loss from solution. Incubation of cyanide with individual constituents of the cell culture medium in solution showed that glucose, phenol red, and amino acids all acted to detoxify or remove cyanide from solution. When amino acids or buffers were incubated with sodium cyanide in aqueous solution at pH 7.4, hydrogen cyanide (HCN) was found to degas from the solutions. We compared HCN outgassing over a range of pH values. As expected, HCN remained very soluble at high pH, but as the pH was reduced to 7.0, the rate of HCN formation and outgassing increased dramatically. Acid-base reactions involving cyanide and proton donors, such as amino acids and other cell culture media constituents, at physiological pH result in rapid HCN outgassing from solution at 37 degrees C. These results indicate that previous in vitro cyanide toxicity studies done in standard culture media with prolonged incubation times using gas-exchanging culture containers might have to be reevaluated in light of the fact that the effective cyanide concentrations in the culture media were significantly lower than reported.  相似文献   

6.
Evidence from laboratory and extraterrestrial chemistry is presented consistent with the hypothesis that the original heteropolypeptides on Earth were synthesized spontaneously from hydrogen cyanide and water without the intervening formation of α-amino acids, a key step being the direct polymerization of atmospheric hydrogen cyanide to polyaminomalononitrile (IV) via dimeric HCN. Molecular orbital calculations (INDO) show that the most probable structure for (HCN)2 is azacyclopropenylidenimine. Successive reactions of hydrogen cyanide with the reactive nitrile side chains of IV then yield heteropolyamidines which are converted by water to heteropolypeptides. To study this postulated modification of a homopolymer to a heteropolymer, poly-α-cyanoglycine (IX) was prepared from the N-carboxyanhydride of α-cyanoglycine. Hydrolysis of IX, a polyamide analog of the polyamidine IV, yielded glycine. However, when IX was hydrolysed after being treated with hydrogen cyanide, other α-amino acids were also obtained including alanine, serine, aspartic acid and glutamic acid, suggesting that the nitrile groups of IX (and therefore of IV) are indeed readily attacked by hydrogen cyanide as predicted. Further theoretical and experimental studies support the view that hydrogen cyanide polymerization along these lines is a universal process that accounts not only for the past formation of primitive proteins on Earth, but also for the yellow-brown-orange colors of Jupiter today and for the presence of water-soluble compounds hydrolyzable to α-amino acids in materials obtained from environments as diverse as the moon, carbonaceous chondrites and the reaction chambers used to simulate organic synthesis in planetary atmospheres.  相似文献   

7.
The thermodynamic potential for the abiotic synthesis of the five common nucleobases (adenine, cytosine, guanine, thymine, and uracil) and two monosaccharides (ribose and deoxyribose) from formaldehyde and hydrogen cyanide has been quantified under temperature, pressure, and bulk composition conditions that are representative of hydrothermal systems. The activities of the precursor molecules (formaldehyde and hydrogen cyanide) required to evaluate the thermodynamics of biomolecule synthesis were computed using the concentrations of aqueous N2, CO, CO2 and H2 reported in the modern Rainbow hydrothermal system. The concentrations of precursor molecules that can be synthesized are strongly dependent on temperature with larger concentrations prevailing at lower temperatures. Similarly, the thermodynamic drive to synthesize nucleobases, ribose and deoxyribose varies considerably as a function of temperature: all of the biomolecules considered in this study are thermodynamically favored to be synthesized throughout the temperature range from 0°C to between 150°C and 250°C, depending on the biomolecule. Furthermore, activity diagrams have been generated to illustrate that activities in the range of 10−2– 10−6 for nucleobases, ribose and deoxyribose can be in equilibrium with a range of precursor molecule activities at 150°C and 500 bars. The results presented here support the notion that hydrothermal systems could have played a fundamental role in the origin of life, and can be used to plan and constrain experimental investigation of the abiotic synthesis of nucleic-acid related biomolecules.  相似文献   

8.
Methyleneaminoacetonitrile (MAAN) when reacted with other amino acids, gives rise to the formation of peptides in addition to the usual hydrolytic products. It acts as a precursor of glycine and also as a dehydration condensing agent. It has been shown that MAAN is easily formed by the reaction of hydrogen cyanide, ammonia and formaldehyde as well as by the reaction of formaldehyde with aminoacetonitrile, in dilute ammoniacal solution.  相似文献   

9.
The 3' end of brome mosaic virus RNA contains a tRNA-like sequence that directs its RNA synthesis. A stem loop structure in this sequence, stem loop C (SLC), was investigated using NMR, and correlated with its ability to direct RNA synthesis by its replicase. SLC consists of two discrete domains, a flexible stem with an internal loop and a rigid stem containing a 5'-AUA-3' triloop. Efficient RNA synthesis requires the sequence on only one side of the flexible stem and a specific compact conformation of the triloop. A high resolution structure of the triloop places the 5' adenine out in solution, and the 3' adenine within the triloop, held tightly through stacking and unusual hydrogen bonds. This high resolution structure of an RNA promoter from a (+)-strand RNA virus provides new insights into how the RNA-dependent RNA polymerase binds to the RNA to initiate synthesis.  相似文献   

10.
A modified Polyethylenimine has been prepared that has riboflavin attached to it, as well as hydrophobic groups. The catalytic efficiency toward oxidation of6 dihydronicotinamide adenine dinucleotide (NADH) by this flavopolymer is more than 100-fold greater than observed with small-molecular riboflavin. The products of the reaction in aerobic solution have been established to be the oxidized nicotinamide NAD+ and hydrogen peroxide. The kinetics fit a Michaelis-Menten mechanism. Thus, the versatility of modified polyethylenimines as catalysts has been extended from hydrolyses and decarboxylations to oxidation-reduction reactions also.  相似文献   

11.
It is shown, by quantum chemical calculations, that an Na+ located in the neighborhood of the adenine thymine base-pair can dissociate the hydrogen bonds in it. However, a water molecule placed between Na+ and the base-pair would provide perfect protection for the hydrogen bonds. The suggestion is put forward that a hydrophobic carcinogen (for example) could perturb sufficiently the water structure around DNA to allow Na+ to penetrate to molecular distance from the base-pair. This could result in the 'breaking' of hydrogen bonds and, eventually, irregular cell division.  相似文献   

12.
Studies are reported on the interrelationships in liver mitochondria of copper status, cytochrome oxidase activity, adenine nucleotide binding capacity and phospholipid synthesis. Direct exposure of mitochondria to cyanide or diethyldithiocarbamate depressed cytochrome oxidase activity; ADP-binding and phospholipid synthesis. Fractionation of mitochondria to increase the specific activity of cytochrome oxidase about 10-fold did not increase the affinity to bind ADP. Ageing of mitochondria or dialysis of mitochondria or mitochondrial membrane preparations against water or diethyldithiocarbamate at 0--2 degrees for 18 h did not decrease cytochrome oxidase activity or copper content of reisolated and resuspended mitochondria or mitochondrial membrane preparations, but considerably reduced the affinity to bind ADP. The respiratory inhibitors, fluoride and azide, at concentrations inhibitory to cytochrome oxidase did not reduce ADP-binding or phospholipid synthesis. Atractyloside did not inhibit cytochrome oxidase activity but did inhibit ADP-binding and phospholipid synthesis. Pre-incubation of mitochondrial membrane preparations with Cu++ increased the copper content and ADP-binding affinity. The results indicate that cytochrome oxidase is not the ADP-binding site of the mitochondrial membrane system and that reduced cytochrome oxidase activity per se does not depress binding affinity. Copper appears to be a component of the adenine nucleotide binding sites of mitochondrial membranes because the copper-complexing agents, cyanide and diethyldithiocarbamate, depressed ADP-binding, while increased mitochondrial membrane copper content increased ADP-binding.  相似文献   

13.
Application of deep eutectic solvents in synthesis of different heterocyclic compounds was proven very efficient. These solvents are a new generation of green solvents showing excellent potential for different purposes, where they are used as environmentally acceptable substitute for toxic and volatile organic solvents. This research describes their application in the synthesis of series of quinazolinone Schiff bases in combination with microwave, ultrasound-assisted and mechanochemical methods. First, a model reaction was performed in 20 different deep eutectic solvents to find the best solvent and then reaction conditions (solvent, temperature and reaction time) were optimized for each method. Afterwards, 40 different quinazolinone derivatives were synthesized in choline chloride/malonic acid (1 : 1) DES by each method and compared by their yields. Here we show that deep eutectic solvents can be very efficient in the synthesis of quinazolinone derivatives as an excellent substitution for volatile organic solvents. With green chemistry approach in mind, we have also performed a calculation on compounds’ toxicity and solubility, showing that most of them possess toxic and mutagenic properties with low water solubility.  相似文献   

14.
《Inorganica chimica acta》1986,113(2):161-162
A new procedure for the synthesis of K4Ru(CN)6 is detailed. The synthesis involves bromine oxidation of an aqueous solution of ruthenium chloride, conversion of the perruthenate to ruthenate with base, and reaction of ruthenate with cyanide ion. Good yields (77%) of pure compound are obtained.  相似文献   

15.
Adenine and hypoxanthine can be utilised by cardiac muscle cells as substrates for the synthesis of ATP. A possible therapeutic advantage of these compounds as high-energy precursors is their lack of vasoactive properties. Myocytes isolated from mature rat heart have been used to establish in kinetic detail the capacity of the heart to incorporate adenine, hypoxanthine and ribose into cellular nucleotides. Maximum rates of catalysis by enzymes on the salvage pathways have been established. Whilst the rate of incorporation of adenine into the ATP pool appears to depend upon intracellular concentrations of adenine and phosphoribosylpyrophosphate, for hypoxanthine the pattern is more complex. Hypoxanthine is salvaged at a slow rate compared with adenine, and is incorporated into GTP and IMP as well as into adenine nucleotides. The rate of incorporation of hypoxanthine into both IMP and ATP is accelerated in myocytes incubated with ribose. However, the rate-limiting reaction appears to be that catalysed by adenylosuccinate synthetase, for the rate of ATP synthesis is not accelerated when hypoxanthine concentration is increased from 10 to 50 microM, while the rate of IMP synthesis is more than doubled. Adenine and hypoxanthine phosphoribosyl transferases are present in equal catalytic amounts, but rat cardiac myocytes have very little adenylosuccinate synthetase activity. Exogenous ribose is incorporated into adenine nucleotides in amounts equimolar with adenine or hypoxanthine.  相似文献   

16.
Prebiotic adenine synthesis via HCN oligomerization in ice   总被引:1,自引:0,他引:1  
Adenine is produced (after hydrolysis) when 0.01 M solutions of HCN are adjusted to pH 9.2 with NH4OH and are frozen at -2 degrees C for 60-100 days. The addition of glycolonitrile (the cyanohydrin of formaldehyde) increases the yield of adenine under these conditions by about five-fold. These results confirm and extend an earlier suggestion that purine synthesis on the prebiotic Earth might have occurred in frozen, dilute solutions of HCN.  相似文献   

17.
The influence of culture medium Fe2+ content on the resistance of Escherichia coli to hydroxyl radicals formed in the presence of Fe2+ and hydrogen peroxide in Fenton reaction was investigated. It was founded that a lack of Fe2+ in a culture medium increased resistance of bacteria to hydroxyl radicals but not to hydrogen peroxide. The suggestion was made that the lack of Fe2+ starts up synthesis of metabolites which inactivate hydroxyl radical or block Fe2+ ions participating in Fenton reaction. The phenomenon under study is considered to be a possible mechanism for survival of bacteria in oxidative stress and iron ions deficiency.  相似文献   

18.
In this report we describe experiments to investigate a simple virulence model in which Pseudomonas aeruginosa PAO1 rapidly paralyzes and kills the nematode Caenorhabditis elegans. Our results imply that hydrogen cyanide is the sole or primary toxic factor produced by P. aeruginosa that is responsible for killing of the nematode. Four lines of evidence support this conclusion. First, a transposon insertion mutation in a gene encoding a subunit of hydrogen cyanide synthase (hcnC) eliminated nematode killing. Second, the 17 avirulent mutants examined all exhibited reduced cyanide synthesis, and the residual production levels correlated with killing efficiency. Third, exposure to exogenous cyanide alone at levels comparable to the level produced by PAO1 killed nematodes with kinetics similar to those observed with bacteria. The killing was not enhanced if hcnC mutant bacteria were present during cyanide exposure. And fourth, a nematode mutant (egl-9) resistant to P. aeruginosa was also resistant to killing by exogenous cyanide in the absence of bacteria. A model for nematode killing based on inhibition of mitochondrial cytochrome oxidase is presented. The action of cyanide helps account for the unusually broad host range of virulence of P. aeruginosa and may contribute to the pathogenesis in opportunistic human infections due to the bacterium.  相似文献   

19.
The sources and speciation of reduced carbon and nitrogen inferred for the early Archean are reviewed in terms of current observations and models, and known chemical reactions. Within this framework hydrogen cyanide and cyanide ion in significant concentration would have been eliminated by reaction with excess formaldehyde to form cyanohydrin (glycolonitrile), and with ferrous ion to form ferrocyanide. Natural reactions of these molecules would under such conditions deserve special consideration in modeling of primordial organochemical processes.As a step in this direction, transformation reactions have been investigated involving glycolonitrile in the presence of water. We find that glycolonitrile, formed from formaldehyde and hydrogen cyanide or cyanide ion, spontaneously cyclodimerizes to 4-amino-2-hydroxymethyloxazole. The crystalline dimer is the major product at low temperature (0 °C); the yield diminishes with increasing temperature at the expense of polymerization and hydrolysis products. Hydrolysis of glycolonitrile and of oxazole yields a number of simpler organic molecules, including ammonia and glycolamide. The spontaneous polymerization of glycolonitrile and its dimer gives rise to soluble, cationic oligomers of as yet unknown structure, and, unless arrested, to a viscous liquid, insoluble in water.A loss of cyanide by reaction with formaldehyde, inferred for the early terrestrial hydrosphere and cryosphere would present a dilemma for hypotheses invoking cyanide and related compounds as concentrated reactants capable of forming biomolecular precursor species. Attempts to escape from its horns may take advantage of the efficient concentration and separation of cyanide as solid ferriferrocyanide, and most directly of reactions of glycolonitrile and its derivatives.  相似文献   

20.
A major drawback in the performance of the streptococcal anti-nicotinamide adenine dinucleotidase test on a large scale has been the hazard involved in the use of cyanide in assaying nicotinamide adenine dinucleotide. The use of bisulfite instead of cyanide in the performance of this test was investigated. The assays obtained with bisulfite parallel closely those obtained with cyanide, and justify the replacement of cyanide by the safer bisulfite reagent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号