共查询到20条相似文献,搜索用时 0 毫秒
1.
《Chronobiology international》2013,30(5):631-643
The 24h changes of glutamate (GLU) and aspartate (ASP) werestudied in the median eminence (ME) and hypothalamic areas. It was analyzedwhether prolactin may change their daily patterns. The hypothalamic concentrationof these amino acids was measured by high-performance liquid chromatography(HPLC) with fluorometric detection. Plasma prolactin levels increased overthe 24h light-dark cycle after pituitary grafting compared to controls, andits circadian rhythm was disrupted. In controls, aspartate and glutamate inthe hypothalamic areas studied followed a specific daily variation or showedno rhythmicity. In the median eminence, hyperprolactinemia seem to phase advancethe aspartate or glutamate peaks from 16:00 to 12:00. In the mediobasal hypothalamus,hyperprolactinemia altered daily changes of aspartate and significantly decreasedits concentration. Also, it seems to delay the nocturnal glutamate peak comparedto controls. In the posterior hypothalamus, hyperprolactinemia did not changeaspartate and glutamate concentrations and their daily changes, although itincreased the glutamine concentration. These data show the existence of 24hchanges of amino acid concentration in three of the hypothalamic regions studied.Increased plasma prolactin levels differentially affected these patterns dependingon the hypothalamic area analyzed. (ChronobiologyInternational, 17(5), 631–643, 2000) 相似文献
2.
Abstract: Hypoxia impairs brain function by incompletely defined mechanisms. Mild hypoxia, which impairs memory and judgment, decreases acetylcholine (ACh) synthesis, but not the levels of ATP or the adenylate energy charge. However, the effects of mild hypoxia on the synthesis of the glucosederived amino acids [alanine, aspartate, γ-amino butyric acid (GABA), glutamate, glutamine, and serine] have not been characterized. Thus, we examined the incorporation of [U-14C]glucose into these amino acids and ACh during anemic hypoxia (injection of NaNO2), hypoxic hypoxia (15 or 10% O2), and hypoxic hypoxia plus hypercarbia (15 or 10% O2 with 5% CO2). In general, the synthesis of the amino acids and of ACh declined in parallel with each type of hypoxia we studied. For example, anemic hypoxia (75 mg/kg of NaNO2) decreased the incorporation of [U-14C]glucose into the amino acids and into ACh similarly. [Percent inhibition: ACh (57.4), alanine (34.4), aspartate (49.2), GABA (61.9). glutamine (59.2), glutamate (51.0), and serine (36.7)]. A comparison of several levels (37.5, 75, 150, 225 mg/kg of NaNO2) of anemic hypoxia showed a parallel decrease in the flux of glucose into ACh and into the amino acids whose synthesis depends on mitochondrial oxidation: GABA (r= 0.98), glutamate (r= 0.99), aspartate (r= 0.96), and glutamine (r= 0.97). The synthesis of the amino acids not dependent on mitochondrial oxidation did not correlate as well with changes in ACh metabolism: serine (r= 0.68) and alanine (r= 0.76). The decreases in glucose incorporation into ACh and into the amino acids with hypoxic hypoxia (15% or 10% O2) or hypoxic hypoxia with 5% CO2 were very similar to those with the two lowest levels of anemic hypoxia. Thus, any explanation of the brain's sensitivity to a decrease in oxygen availability must include the alterations in the metabolism of the amino acid neurotransmitters as well as ACh. 相似文献
3.
Microdialysis of excitatory amino acids in the periaqueductal gray of the rat after unilateral peripheral inflammation 总被引:1,自引:0,他引:1
Dr. W. M. Renno 《Amino acids》1998,14(4):319-331
Summary This study measured the release of glutamate (Glu) and aspartate (Asp) amino acid transmitters in the ventrocaudal compartment of the rat periaqueductal gray (PAG) following exposure to unilateral peripheral inflammation. The release of endogenous Glu and Asp from the rat ventrocaudal PAG was monitored with the microdialysis technique in unanesthetized, unrestrained rats. There was significant increase (1,300%) in the basal concentrations of Glu release in the 7 days Complete Freund's Adjuvant (CFA) treated group compared to 24h mineral oil control group. Amino acid release was induced by infusing veratridine (75M, a sodium channel activator) directly through the 1 mm long dialysis probe. Perfusion of veratridine into the ventrocaudal PAG resulted in significant elevation of Glu and Asp amino acids. In the 24h and 7 days CFA treated rats, veratridine-evoked release of Glu was significantly decreased in the lateral ventrocaudal PAG compared to control rats injected with mineral oil (CFA vehicle). The peak minus baseline concentrations of Glu in 24h and 7 days CFA treated groups decreased 55.7% and 43.9%, respectively. In contrast, The basal and the peak minus baseline concentrations of Asp showed no significant change between control group and 24h and 7 days CFA treated animals. The results provide direct evidence that Glu excitatory amino acid may be involved in nociception/nociception modulation pathway in the ventrocaudal PAG. 相似文献
4.
Helene Benveniste Jørgen Drejer Arne Schousboe Nils H. Diemer 《Journal of neurochemistry》1984,43(5):1369-1374
Rats were implanted with 0.3-mm-diameter dialysis tubing through the hippocampus and subsequently perfused with Ringer's solution at a flow rate of 2 microliter/min. Samples of the perfusate representing the extracellular fluid were collected over 5-min periods and subsequently analyzed for contents of the amino acids glutamate, aspartate, glutamine, taurine, alanine, and serine. Samples were collected before, during, and after a 10-min period of transient complete cerebral ischemia. The extracellular contents of glutamate and aspartate were increased, respectively, eight- and threefold during the ischemic period; the taurine concentration also was increased 2.6-fold. During the same period the extracellular content of glutamine was significantly decreased (to 68% of the control value), whereas the concentrations of alanine and serine did not change significantly during the ischemic period. The concentrations of gamma-aminobutyric acid (GABA) were too low to be measured reliably. It is suggested that the large increase in the content of extracellular glutamate and aspartate in the hippocampus induced by the ischemia may be one of the causal factors in the damage to certain neurons observed after ischemia. 相似文献
5.
Summary Extracellular levels of cholecystokinin (CCK), dopamine (DA), glutamate (Glu) and aspartate (Asp) were simultaneously monitored in the frontoparietal cortex and the striatum of halothane-anaesthetized rats using in vivo microdialysis. Under basal conditions, cortical and striatal CCK levels were 3.11 ± 0.39 pM and 2.76 ± 0.15 pM, respectively. Local KCl (10–1 M) and bicuculline (10–4 M) co-application in cortex or striatum increased the CCK levels 18-fold and 26-fold, respectively. The DA level in striatum was 3.78 ± 0.28 nM and the local perfusion with KCl + bicuculline led to a 45-fold increase. The cortical and striatal outputs of Glu were of the order of 2 · 10–6 M and Asp levels were around 6 · 10–7 M. Local stimulation with KCl (10–1 M) and bicuculline (10–4 M) caused a small increase (2 fold) in cortical and striatal levels of Glu and Asp. The addition of KCl (10–1 M) and bicuculline (10–4 M) to the cortical perfusion medium did not modify CCK, DA or Glu concentrations in striatum. These results demonstrate that CCK, DA, Glu and Asp may be simultaneously monitored in vivo and support the idea that their extracellular levels recovered in the microdialysis perfusates could be derived from neuronal pools. 相似文献
6.
Abstract: Excessive generation of free radicals has been implicated in several pathological conditions. We demonstrated previously that peroxide-generated free radicals decrease calcium-dependent high K+-evoked l -[3H]-glutamate release from synaptosomes while increasing calcium-independent basal release. The present study evaluates the nonyesicular release of excitatory amino acid neurotransmitters, using d -[3H]aspartate as an exogenous label of the cytoplasmic pool of l -glutamate and l -aspartate. Isolated presynaptic nerve terminals from the guinea pig cerebral cortex were used to examine the actions and interactions of peroxide, iron, and desferrioxamine. Pretreatment with peroxide, iron alone, or peroxide with iron significantly increased the calcium-independent basal release of d -[3H]aspartate. Pretreatment with desferrioxamine had little effect on its own but significantly limited the enhancement by peroxide. High K+-evoked release in the presence of Ca2+ was enhanced by peroxide but not by iron. These data suggest that peroxide increases nonvesicular basal release of excitatory amino acids through Fenton-generated hydroxyl radicals. This release could cause accumulation of extracellular excitatory amino acids and contribute to the excitotoxicity associated with some pathologies. 相似文献
7.
M. Herrera-Marschitz J. J. Meana W. T. O'Connor M. Goiny M. S. Reid U. Ungerstedt 《Amino acids》1992,2(1-2):157-179
Summary The neuronal origin of extracellular levels of dopamine (DA), acetylcholine (ACh), glutamate (Glu), aspartate (Asp) and gamma-aminobutyric acid (GABA) simultaneously collected from the neostriatum of halothane anaesthetized rats with in vivo microdialysis was studied. The following criteria were applied (1) sensitivity to K+-depolarization; (2) sensitivity to inhibition of synaptic inactivation mechanisms; (3) sensitivity to extracellular Ca2+; (4) neuroanatomical regionality; sensitivity to selective lesions and (5) sensitivity to chemical stimulation of the characterized pathways.It was found that: (1) Extracellular DA levels found in perfusates collected from the neostriatum fulfills all the above criteria and therefore the changes in extracellular DA levels measured with microdialysis reflect actual release from functionally active nerve terminals, and so reflect ongoing synaptic transmission. (2) Changes in neostriatal ACh levels reflect neuronal activity, provided that a ACh-esterase inhibitor is present in the perfusion medium. (3) Extracellular Glu, Asp and GABA could be measured in different perfusion media in the rat neostriatum and probably reflect metabolic as well as synaptic release. However, (4) the majority of the extracellular GABA levels found in perfusates collected from the neostriatum may reflect neuronal release, since GABA levels were increased, in a Ca2+-dependent manner, by K+-depolarization, and could be selectively decreased by an intrinsic neostriatal lesion. (5) It was not possible to clearly distinguish between the neuronal and the metabolic pools of Glu and Asp, since neostriatal Glu and Asp levels were only slightly increased by K+-depolarization, and no changes were seen after decortication. A blocker of Glu re-uptake, DHKA, had to be included in the perfusion medium in order to monitor the effect of K+-depolarization on Glu and Asp levels. Under this condition, it was found (6) that neostriatal Glu and Asp levels were significantly increased by K+-depolarization, although only increases in the Glu levels were sensitive to Ca2+ in the perfusion medium, suggesting that Glu but not Asp is released from vesicular pools. (7) Evidence is provided that selective stimulations of nigral DA cell bodies may lead to changes in release patterns from DA terminals in the ipsilateral neostriatum, which are in turn followed by discrete changes in extracellular levels of GABA and Glu in the same region. Finally, some methodological considerations are presented to clarify the contribution of neuronal release to extracellular levels of amino acid neurotransmitters in the rat neostriatum. 相似文献
8.
L.A. Dawson J.M. Stow A.M Palmer 《Journal of chromatography. B, Analytical technologies in the biomedical and life sciences》1997,694(2):2357
We have previously published data on the analysis of glutamate in microdialysis samples using a commercially availble CE apparatus. Here we demonstrate further improvements in the analysis of both glutamate and aspartate from very small volume microdialysates. The limit of detection of our system has been increased to 10−9 M for both glutamate and aspartate. This permits microdialysis sampling time to be reduced to 2 min, thus improving the temporal resolution of microdialysis sampling. Concurrently, migration time has also been reduced such that resolution of both amino acids can be achieved inside 2 min. This new analytical method has been applied to the measurement of the EAA from microdialysis samples from the dentate gyrus of the hippocampus. Extracellular concentrations of both glutamate and aspartate increased to a maximum of 5- and 4.5-fold of preinfusion values, respectively, during infusion of 100 mM K+ through the microdialysis probe. This is consistent with the depolarization-evoked release of both amino acids from this brain region. 相似文献
9.
William H. Church C. Shawn Lee Katherine M. Dranchak 《Journal of chromatography. B, Analytical technologies in the biomedical and life sciences》1997,700(1-2):67-75
Addition of cyclodextrins (CDs) to the electrolyte buffer in the capillary zone electrophoresis (CZE) separation of derivatized amino acids was evaluated in terms of fluorescence signal enhancement, resolution, and migration time effects. Maximum fluorescence signal enhancement was observed with separation buffers containing 4M β-cyclodextrin or 10 mM hydroxypropyl β-cyclodextrin. Resolution values decreased as the CD concentrations increased. Migration times were dependent on CD concentration. Inclusion complex formation constants calculated using changes in migration time showed slight agreement with those calculated by the steady-state fluorescence enhancement technique. Analysis of 20 μl of rat brain microdialysate by CZE using 4 mM β-cyclodextrin in borate buffer resulted in baseline resolution of glutamate and aspartate in 3.6 min. The results of this work indicate that, when used as separation buffer additives, cyclodextrins are capable of increasing the fluorescence signal and decreasing the migration times of NDA-derivatized acidic amino acids. 相似文献
10.
Abstract: Glutamine is a primary precursor for the biosynthesis of the neurotransmitters glutamate and γ-aminobutyric acid. It is proposed that glutamine, synthesized and released by astrocytes, is transported into the neuron for subsequent conversion to neurotransmitters. To provide a more complete characterization of this process, we have delineated the transport systems for glutamine uptake in primary cultures of brain neuronal cells from 1-day-old rats. The Na+ -dependent glutamine entry is mediated by system A, system ASC, and a third, previously unidentified, activity that has been tentatively designated as system Nb . System Nb activity can be monitored by assaying Na+ -dependent [3 H]glutamine uptake in the presence of 2 m M concentrations of both 2-(methylamino)isobutyric acid and threonine to block uptake by systems A and ASC, respectively. The newly identified transport activity exhibits an apparent substrate specificity that is unique compared with the hepatic system N, because it is inhibited by glutamine and asparagine, but not by histidine. Also, the affinity of system Nb for glutamine, as estimated from K m values, is significantly greater than that observed for the hepatic and muscle Na+ -dependent glutamine transporters, systems N and Nm . In sharp contrast to the hepatic system N transporter, system Nb exhibits a relative insensitivity to pH and does not permit Li+ substitution for Na+ as the cosubstrate. The substrate specificity, kinetic analysis, pH sensitivity, and cation dependence of this transport activity indicate that it represents a glutamine transport system not previously identified. 相似文献
11.
J. -F. Juranville B. Pöschl G. Oesterhelt H. -J. Schönfeld M. Fountoulakis 《Amino acids》1998,15(3):253-262
Summary Glycerol is widely used in protein isolation pathways to improve folding and solubility of the proteins of interest. Amino acid composition analysis of protein samples hydrolyzed in the presence of glycerol resulted in underestimation of aspartate and glutamate, when compared to hydrolysis in the absence of glycerol. Quantification of free asparagine, aspartic acid, glutamine and glutamic acid hydrolyzed with hydrochloric acid or methanesulfonic acid in the presence of glycerol resulted in poor recoveries of aspartate and glutamate (between 6 and 66%). Gas chromatography-mass spectrometry analysis of the hydrolyzates revealed, as expected, the presence of esterification products. The esters were formed between the primary and secondary hydroxyl groups of the glycerol and both carboxyl groups of the amino acids. Protein samples intended for compositional analysis should be free of glycerol.Abbreviations EI electron impact - GC-MS gas chromatography-mass spectrometry - MS mass spectrum - MSA methanesulfonic acid - BSTFA bis(trimethylsilyl)trifluoroacetamide - TMS trimethylsilyl 相似文献
12.
Summary Initial suggestions on the involvement of glutamate in memory came from electrophysiological studies on LTP that is blocked by NMDA-antagonists. Then Morris and colleagues (1986) provided the first evidence that icv infusion of the competitive NMDA antagonist 2-amino-5-phosphonovaleric acid (APV) to rats, inhibits both LTP in vivo and spatial learning in a Morris water maze. This was followed by a great amount of evidence confirming the initial finding in various learning tasks. The present paper is devoted to critical review of the literature focusing on the following problems: which glutamate receptors are involved?, in which tests NMDA antagonists inhibit learning?; which types of memory are affected?; which brain structures are involved?; do NMDA receptor antagonists invariably impair learning?; is the effect of NMDA receptors antagonists on learning specific?; does the stimulation of NMDA receptors result in cognitive enhancement?. 相似文献
13.
Mueller AL Artman LD Balandrin MF Brady E Chien Y DelMar EG Kierstead A Marriott TB Moe ST Raszkiewicz JL VanWagenen B Wells D 《Amino acids》2000,19(1):177-179
Summary. NPS Pharmaceuticals, Inc. (NPS) has synthesized a series of open-channel blockers with varying potencies at the NMDA receptor.
NPS 1506 (Fig. 1) is a moderate affinity antagonist that inhibits NMDA/glycine-induced increases in cytosolic calcium in cultured
rat cerebellar granule cells (IC50 = 476 nM) and displaces the binding of [3H]MK-801 to rat cortical membranes (IC50 = 664 nM).
Received August 31, 1999 Accepted September 20, 1999 相似文献
14.
Summary The removal of the outer mitochondrial membrane and hence of constituents of the intermembrane space in rat-liver mitochondria using digitonin showed that phosphate-dependent glutaminase, alanine and aspartate aminotransferase were localized in the mitoplasts. Further fractionation of mitoplasts following their sonication resulted in 90% of glutaminase, 98% of alanine aminotransferase and 48% of aspartate aminotransferase being recovered in the soluble fraction while the remainder of each enzyme was recovered in the sonicated vesicles fraction. These results indicated that glutaminase and alanine aminotransferase were soluble matrix enzymes, the little of each enzyme recovered in the sonicated vesicles fraction being probably due to entrapment in the vesicles. Aspartate aminotransferase had dual localization, in the inner membrane and matrix with the high specific activity in sonicated vesicles confirming its association with the membrane. Activation experiments suggested that the membrane-bound enzyme was localized on the inner side of the inner mitochondrial membrane. 相似文献
15.
Madelon T. Price John W. Olney Oliver H. Lowry Susan Buchsbaum 《Journal of neurochemistry》1981,36(5):1774-1780
Abstract: Glutamate (Glu) and aspartate (Asp) concentrations in blood and selected regions of brain were measured at sequential intervals over a 3-h period following subcutaneous administration of Glu, Asp, or Glu plus Asp (2 mg/g body wt) to 4-day-old mouse or rat pups. Marked serum elevations of the administered amino acids (peak values exceeding 200 times control levels) were detected within 1 h. In circumventricular organ (CVO) regions of brain, which are thought to have no blood-brain barriers, a sharp and steady increase in tissue concentrations of the administered amino acids (peak values 4–10 times higher than control levels) occurred during a 15–120 min interval, whereas no appreciable increases were detected in other brain regions. When 2 mg/g Glu plus 2 mg/g Asp were administered, CVO tissue concentrations of each amino acid rose to approximately the same level obtained when the individual amino acids were given. It is concluded that blood-brain barriers preventing net entry of Glu or Asp into brain proper are relatively well established by the 4th postnatal day in rodents, but that CVO brain regions lack such barriers; selective access of blood-borne Glu or Asp to CVO neurons explains why these neurons are selectively destroyed by systemic administration of these neurotoxic amino acids. 相似文献
16.
Summary Glutamate (Glu) the major amino acid in mammalian brain and most dietary proteins possesses neurotransmitter as well as neurotoxic properties. We administered monosodium glutamate (MSG) 4 mg/g bwt, sc on postnatal day (PND) 1 through 10 to rats on alternate days or daily and sacrificed them on PND 45 or PND 90 respectively. The activities of glutamate dehydrogenase and aminotransferases were evaluated in the circumventricular organs of brain. Results show that neonatal MSG produces alterations in glutamate metabolism in blood-brain-barrier deficient regions. 相似文献
17.
Summary Perinatal asphyxia was induced by keeping pups-containing uterus horns, removed by hysterectomy, in a 37°C or a 30°C water bath. Asphyxia for a period of 21–22 min at 37°C led to a 97% mortality within the first 20 min period following delivery. When the asphyctic period was extended to more than 22 min all the pups died following delivery. When the asphyxia was induced at 30°C, 100% of the delivered pups survived and were accepted by surrogate mothers. The protective effect of hypothermia could be observed even when the pups-containing uterus horns were exposed to a 45–46 min asphyctic period. Pretreatment with dizocilpine (0.2 mg/kg s.c.), or 2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo(f)quinoxaline (NBQX) (3–30 mg/kg s.c.), administered to the mothers one hour before hysterectomy, reduced slightly the mortality induced by a 21–22 min asphyctic period at 37°C. An increase in survival following a 22–23 min asphyctic period could only be observed after the highest dose of NBQX. 相似文献
18.
S. Troupel G. Le Moel A. Bouten H. Fessi Z. Boukhalfa G. Stamatakis V. Lecon JP. Mery J. Agneray C. Jacobs 《Amino acids》1992,2(1-2):127-132
Summary A well preserved nutritional status is beneficial in chronically uremic patients for slowing the pace of deterioration of renal function, and delaying the need for dialysis therapy. The purpose of this study was to assess the nutritional profile of 10 patients in a steady state of advanced CRF, and of 15 patients with terminal renal failure immediately prior to their first hemodialysis session (J0), and 7, 14, 45, 60, days post start of dialysis. Patients were 18 to 65 years old with total plasma proteins 60g/1. Plasma concentrations of amino acids, nutrition proteins, apolipoproteins A1, and B were evaluated. Non inflammatory reaction was evaluated by determination of alpha-1-acid glycoprotein, and C reactive protein. The data (mean ± 1 SD) were compared with mean values of 15 healthy individuals. 相似文献
19.
Unilateral frontal cortex ablations were performed in rats so that the glutamate terminals in the ipsilateral rostral neostriatum were removed. At 1 or 7 days later, intraperitoneal injections of ammonium acetate induced different changes in amino acid concentrations in the intact and deafferentated neostriatum. After 1 day, the level of glutamate decreased only in the intact side, whereas that of glutamine increased and that of aspartate decreased to the same extent on both sides following ammonia injection. After 7 days, the glutamate level decreased more in the intact than the decorticated side in both nonconvulsing and convulsing rats. The concentration of alanine increased most in the intact neostriatum, whereas glutamine levels increased and aspartate levels decreased to the same extent on both sides in nonconvulsing and convulsing rats. The results indicate that ammonia has a more pronounced effect on neuronal than glial glutamate pools. 相似文献
20.
Extracellular Amino Acid Concentrations in the Dorsal Spinal Cord of Freely Moving Rats Following Veratridine and Nociceptive Stimulation 总被引:13,自引:4,他引:13
Stephen R. Skilling David H. Smullin Alvin J. Beitz Alice A. Larson 《Journal of neurochemistry》1988,51(1):127-132
In vivo microdialysis was used to sample extracellular concentrations of amino acids in the dorsal lumbar spinal cord of freely moving rats. Changes in the extracellular concentrations of amino acids were measured in response to infusion of veratridine (180 microM), a sodium channel activator, as well as during acute noxious stimulation by an injection of 5% formalin into the metatarsal region of the hindleg. Veratridine produced a tetrodotoxin (TTX)-sensitive increase in the extracellular concentration of Glu. Concentrations of Asp, taurine, Ala, Asn, and Gly were not significantly elevated following veratridine stimulation. Intradermal injection of formalin produced a TTX-sensitive increase in Asp concentration and a non-TTX-sensitive increase in Glu concentration. These data support the hypothesis that Glu and Asp are dorsal horn neurotransmitters involved in nociception. 相似文献