首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Isolated brain capillaries from 2-month-old rats were incubated for 2 h in the presence of [3-14C]acetoacetate, D-3-hydroxy[3-14C]butyrate, [U-14C]glucose, [1-14C]acetate or [1-14C]butyrate. Labelled CO2 was collected as an index of oxidative metabolism and incorporation of label precursors into lipids was determined. The rate of CO2 production from glucose was slightly higher than from the other substrates. Interestingly, acetoacetate was oxidized at nearly the same rate as glucose. This shows that ketone bodies could be used as a source of energy by brain capillaries. Radiolabelled substrates were also used for the synthesis of lipids, which was suppressed by the addition of albumin. The incorporation of [U-14C]glucose in total lipids was 10-times higher than that from other precursors. However, glucose labelled almost exclusively the glycerol backbone of phospholipids, especially of phosphatidylcholine. Ketone bodies as well as glucose were incorporated mainly into phospholipids, whereas acetate and butyrate were mainly incorporated into neutral lipids. The contribution to fatty acid synthesis of various substrates was in the following order: butyrate greater than or equal to acetate greater than ketone bodies greater than or equal to glucose. All precursors except glucose were used for sterol synthesis. Glucose produced almost exclusively the glycerol backbone of phospholipids.  相似文献   

2.
Studies have been carried out on the incorporation of [U-(14)C]glucose, [2-(14)C]pyruvate, [2-(14)C]acetate, and [1-(14)C]-palmitate into the phospholipids of the isolated perfused rat lung in the presence of either 6 or 45 mm total CO(2) concentration in the perfusion medium. Incorporation of [U-(14)C]glucose into total phospholipid and into the phosphatidylcholine fraction was increased 19-53% over the 2-hr perfusion period in lungs perfused with medium containing 45 as compared with 6 mm CO(2). The incorporation of [2-(14)C]acetate, [2-(14)C]-pyruvate, and [1-(14)C]palmitate was not affected by the change in medium CO(2) concentration. Increased incorporation of [U-(14)C]glucose combined with a shift toward greater incorporation into the fatty acids of the phosphatidylcholine fraction produced a maximum increase of 90% in [U-(14)C]glucose incorporation into the fatty acids of phosphatidylcholine after 2 hr of perfusion in the presence of medium containing 45 mm CO(2) as compared with 6 mm CO(2). The increase in medium CO(2) concentration produced as much as a 150% increase in [U-(14)C]glucose incorporation into palmitate derived from the phosphatidylcholine fraction. The results provide evidence that glucose functions as an important precursor of palmitate in the phosphatidylcholine fraction of lung phospholipids and that the CO(2) concentration of the perfusion medium affects the incorporation of glucose into palmitate.  相似文献   

3.
1. The concentration of carbamylcholine, bombesin, pancreozymin, pentagastrin and secretin evoking a similar 4--5-fold maximal increase in amylase secretion from rat pancreatic fragments were 3.10(-6), 10(-7), 10(-8), 3.10(-6), and 3.10(-6) M, respectively. The maximal concentration of vasoactive intestinal peptide tested (3.10(-6) M) increased amylase secretion by 250%. The six secretagogues could be separated into two groups according to their effects on lipid metabolism and ATP levels. 2. When used at their optimal concentrations, carbamylcholine, bombesin, pancreozymin, and pentagastrin lowered pancreatic ATP levels by 18-26% and increased net release of free fatty acids by 68-105%. 3. The effects of 3.10(-6) M carbamylcholine and 10(-8) M pancreozymin on the metabolism of 3H2O, D-[U-14C]glucose and [1-14C]acetate were similar; the incorporation of radioactivity in the fatty acid moiety of glycerolipids decreased by 20--50% whereas the incorporation of 3H from 3H2O and of 14C from [U-14C]glucose increased by 20--35% in the glycerol moiety. In addition, the oxidation of [U-14C]glucose, [1-14C]acetate and [1-14C]palmitate to 14CO2 increased by 15--32% while the esterification of [1-14C]palmitate, [1-14C]-linoleate, and [1-14C]arachidonate was inhibited by 14--23%. The spectrum of fatty acids labeled with [1-14C]acetate indicated an inhibition of the malonic acid pathway whereas the elongation of polyenoic fatty acids was unaltered.  相似文献   

4.
1. The rate of appearance of (14)CO(2) from [6-(14)C]glucose and [3-(14)C]pyruvate was measured. Pyruvate is oxidized to carbon dioxide twice as fast as glucose, although the oxygen uptake is almost the same with each substrate. 2. The presence of 30mum-2,4-dinitrophenol increases the output of (14)CO(2) from [6-(14)C]glucose sixfold whereas the oxygen uptake is not quite doubled. Similar results are obtained with 0.1m-potassium chloride. The stimulating action of these two agents on the output of (14)CO(2) from [3-(14)C]pyruvate is much less than on that from [6-(14)C]glucose. 3. The effects of oligomycin, ouabain and triethyltin on the respiration of control and stimulated brain-cortex slices were studied. Triethyltin (1.3mum) inhibited the oxidation of [6-(14)C]glucose more than 70%, but did not inhibit the oxidation of[3-(14)C]pyruvate. [3-(14)C]pyruvate. 4. The production of lactic acid by brain-cortex slices incubated with glucose is twice as great as that with pyruvate. Lactic acid increases two and a half times in the presence of either triethyltin or oligomycin when the substrate is glucose, but is no different from the control when the substrate is pyruvate. 5. With kidney slices the production of lactic acid from glucose is very low. It is increased by oligomycin but not by triethyltin. 6. The results are discussed in terms of the oxidation of the extramitochondrial NADH(2) produced during glycolysis.  相似文献   

5.
Isolated alveolar epithelial type II cells were exposed to paraquat and to hyperoxia by gas diffusion through the thin Teflon bottom of culture dishes. After exposure, type II cells were further incubated in the presence of labelled substrates to assess their capacity to synthesize lipids. Hyperoxia alone (90% O2; 5 h) had minor effects on lipid metabolism in the type II cells. At low paraquat concentrations (5 and 10 microM), hyperoxia enhanced the paraquat-induced decrease of [Me-14C]choline incorporation into phosphatidylcholines. The incorporation rates of [Me-14C]choline, [1-14C]palmitate, [1-14C]glucose and [1,3-3H]glycerol into various phospholipid classes and neutral lipids were decreased by paraquat, depending on the concentration and duration of the exposure. The incorporation of [1-14C]acetate into phosphatidylcholines, phosphatidylglycerols and neutral lipids appeared to be very sensitive to inactivation by paraquat. At 5 microM-paraquat the rate of [1-14C]acetate incorporation was decreased to 50% of the control values. The rate of [1-14C]palmitate incorporation into lipids was much less sensitive; it even increased at low paraquat concentrations. At 10 microM-paraquat both NADPH and ATP were significantly decreased. It is concluded that lipid synthesis in isolated alveolar type II cells is extremely sensitive to paraquat. At low concentrations of this herbicide, lipid synthesis, and particularly fatty acid synthesis, is decreased. The effects on lipid metabolism may be partly related to altered NADPH and ATP concentrations.  相似文献   

6.
Abstract— The oxidation of l -[U-14C]leucine and l -[l-14C]leucine at varying concentrations from 0.1 to 5mM to CO2 and the incorporation into cerebral lipids and proteins by brain slices from 1-week old rats were markedly stimulated by glucose. Although the addition of S mM-dl -3-hydroxybutyrate had no effect on the metabolism of [U-14C]leucine by brain slices from suckling rats, the stimulatory effects of glucose on the metabolism of l -[U-14C]leucine were markedly reduced in the presence of dl -3-hydroxybutyrate. The stimulatory effect of glucose on leucine oxidation was, however, not observed in adult rat brain. Furthermore, the incorporation of leucine-carbon into cerebral lipids and proteins was also very low in the adult brain. The incorporation of l -[U-14C]leucine into cerebral lipids by cortex slices was higher during the first 2 postnatal weeks, which then declined to the adult level. During this time span, the oxidation of l -[U-14C]leucine to CO2 remained relatively unchanged. The incorporation in vivo of D-3-hydroxy[3-14C]butyrate into cerebral lipids was markedly decreased by acute hyperleucinemia induced by injecting leucine into 9-day old rats. In in vitro experiments, 5 mM-leucine had no effect on the oxidation of [U-14C]glucose to CO2 or its incorporation into lipids by brain slices from 1-week old rats. However, 5 mM-leucine inhibited the oxidation of d -3-hydroxy-[3-14C]butyrate, [3-14C]acetoacetate and [1-14C]acetate to CO2 by brain slices, but their incorporation into cerebral lipids was not affected by leucine. In contrast 2-oxo-4-methylvalerate, a deaminated metabolite of leucine, markedly inhibited both the oxidation to CO2 and the incorporation into lipids of labelled glucose, ketone bodies and acetate by cortex slices from 1-week old rats. These findings suggest that the reduction in the incorporation in vivo of d -3-hydroxy[3-14C]butyrate into cerebral lipids in rats injected with leucine is most likely caused by 2-oxo-4-methylvalerate formed from leucine. Since the concentrations of leucine and 2-oxo-4-methylvalerate in plasma of untreated patients with maple-syrup urine disease are markedly elevated, our findings are compatible with the possibility that an alteration in the metabolism of glucose and ketone bodies in the brain may contribute to the pathophysiology of this disease.  相似文献   

7.
To examine the fate of the carbons of acetate and to evaluate the usefulness of labeled acetate in assessing intrahepatic metabolic processes during gluconeogenesis, [2-14C]acetate, [2-14C]ethanol, and [1-14C]ethanol were infused into normal subjects fasted 60 h and given phenyl acetate. Distributions of 14C in the carbons of blood glucose and glutamate from urinary phenylacetylglutamine were determined. With [2-14C]acetate and [2-14C]ethanol, carbon 1 of glucose had about twice as much 14C as carbon 3. Carbon 2 of glutamate had about twice as much 14C as carbon 1 and one-half to one-third as much as carbon 4. There was only a small amount in carbon 5. These distributions are incompatible with the metabolism of [2-14C]acetate being primarily in liver. Therefore, [2-14C]acetate cannot be used to study Krebs cycle metabolism in liver and in relationship to gluconeogenesis, as has been done. The distributions can be explained by: (a) fixation of 14CO2 from [2-14C]acetate in the formation of the 14C-labeled glucose and glutamate in liver and (b) the formation of 14C-labeled glutamate in a second site, proposed to be muscle. [1,3-14C]Acetone formation from the [2-14C]acetate does not contribute to the distributions, as evidenced by the absence of 14C in carbons 2-4 of glutamate after [1-14C]ethanol administration.  相似文献   

8.
Changes in sterol metabolism in the skin of chick embryo during its development were studied with embryonal chick skin and with the cultured skin tissues. Changes in sterol metabolism of the skin of chick embryo began to appear at day 17, as observed by the accumulation of dihydrolanosterol, and the ratio of dihydrolanostrol:cholesterol increased thereafter until hatching. A similar change in sterol metabolism was also observed with the cultured skin tissue of chick embryo, although the stages of development seem to have been delayed by 3 days. The active sterol metabolism of the cultured skin tissue was also confirmed by studies of incorporation of [2-14C]acetate into sterols. 20,25-Diazacholesterol almost completely inhibited the incorporation of [2-14C]acetate into C27 sterols, whereas a chemical carcinogen, 4-hydroxyaminoquinoline 1-oxide, inhibited the incorporation of [2-14C]acetate into lathosterol but not that into cholesterol.  相似文献   

9.
The metabolism of acetoacetate via a proposed cytosolic pathway in brain of 1-week-old rats was investigated. (-)-Hydroxycitrate, an inhibitor of ATP citrate lyase, markedly inhibited the incorporation of carbon from labelled glucose and 3-hydroxybutyrate into cerebral lipids, but had no effect on the incorporation of labelled acetate and acetoacetate into brain lipids. Similarly, n-butylmalonate and benzene-1,2,3-tricarboxylate inhibited the incorporation of labelled 3-hydroxybutyrate but not of acetoacetate into cerebral lipids. These inhibitors had no effect on the oxidation to 14CO2 of the labelled substrates used. (-)-Hydroxycitrate decreased the incorporation of 3H from 3H2O into cerebral lipids by slices metabolizing either glucose or 3-hydroxybutyrate, but not in the presence of acetoacetate. (-)-Hydroxycitrate also differentially inhibited the incorporation of [2-14C]-leucine and [U-14C]leucine into cerebral lipids. The data show that, although the acetyl moiety of acetyl-CoA generated in brain mitochondria is largely translocated as citrate from these organelles to the cytosol, a cytosolic pathway exists by which acetoacetate is converted directly into acetyl-COA in this cellular compartment.  相似文献   

10.
1. The incorporation of 5mm-[U-(14)C]glucose into glyceride fatty acids by fat cells from normal rats incubated in the presence of 20munits of insulin/ml was increased by acetate, pyruvate, palmitate, NNN'N'-tetramethyl-p-phenylenediamine, phenazine methosulphate, dinitrophenol, tetrachlorotrifluoromethyl benzimidazole and oligomycin. Lactate did not stimulate glucose incorporation into fatty acids. The effects of these agents were concentration-dependent. 2. In the presence of 5mm-glucose+insulin, [U-(14)C]acetate, [U-(14)C]pyruvate and [U-(14)C]lactate were incorporated into fatty acids in a concentration-dependent manner, thereby further increasing the total rate of fatty acid synthesis. 3. NNN'N'-tetramethyl-p-phenylenediamine decreased the incorporation of [U-(14)C]pyruvate into fatty acids in normal cells and increased the incorporation of [U-(14)C]lactate into fatty acids. 4. In fact cells from 72h-starved rats the stimulatory effects of NNN'N'-tetramethyl-p-phenylenediamine upon glucose and lactate incorporation into fatty acids were totally and partially abolished respectively whereas the stimulatory effects of acetate upon glucose incorporation were retained. 5. Combinations of the optimum concentrations of the substances that stimulate glucose incorporation into fatty acids were tested and compared. The effects of acetate+NNN'N'-tetramethyl-p-phenylenediamine and acetate+palmitate upon normal cells were additive. The effects of NNN'N'-tetramethyl-p-phenylenediamine+palmitate were not additive. It was found that total fatty acid synthesis in the presence of glucose was most effectively increased by raising the concentration of pyruvate in the incubation system. 6. The significance of these results in supporting the proposal that fatty acid synthesis from glucose in adipose tissue is a ;self-limiting process' is discussed.  相似文献   

11.
Use of the isolated perfused rat lung in studies on lung lipid metabolism   总被引:1,自引:0,他引:1  
A procedure for the use of the isolated perfused rat lung in studies on metabolic regulation has been developed. The procedure, reasonably uncomplicated, yet physiological, maintains the lung so that edema is not observed. The phospholipid content remains normal, and incorporation of [1-(14)C]-palmitate, [2-(14)C]acetate, and [U-(14)C]glucose is linear with time for a minimum of 2 hr. The incorporation of [1-(14)C]-palmitate and [2-(14)C]acetate into the total lung phospholipid fraction and into the phosphatidylcholine and phospatidylethanolamine fractions has been studied. Increasing the concentration of palmitate in the medium from 0.14 to 0.51 mm increased by 60% the incorporation of [1-(14)C]palmitate into the total lung phospholipid fraction at 2 hr. When the palmitate concentration of the medium was 0.14 mm, addition of 0.11 and 0.79 mm oleate to the medium decreased [1-(14)C]palmitate incorporation into the total lung phospholipid fraction at 2 hr by 37 and 49%, respectively. The results suggest that the incorporation of exogenous fatty acids, present in the medium perfusing the lung, into lung phospholipids may depend upon the fatty acid composition of the medium. Known specific acyltransferase activities may be responsible for the ordered incorporation of available fatty acids into lung phospholipids.  相似文献   

12.
1. The overall metabolic changes in lactating mammary gland in alloxan-diabetic and anti-insulin-serum-treated rats were assessed by measurement of the incorporation of (14)C from specifically labelled glucose, pyruvate and acetate into carbon dioxide and lipid, together with measurements of enzymes concerned with the pentose phosphate pathway and with citrate metabolism. 2. Alloxan-diabetes depressed the rate of formation of (14)CO(2) from [1-(14)C]glucose and [2-(14)C]glucose to approx. 10% of the control rate; this was partially reversed by addition of insulin in vitro. The quotient Oxidation of [1-(14)C]glucose/Oxidation of [6-(14)C]glucose fell from a value of 17.6 in the control group to 3.9 in the diabetic group and was restored to 14.3 in the presence of insulin in vitro. In keeping with these results it was shown that glucose 6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase activities were significantly decreased in alloxan-diabetic rats. 3. Alloxan-diabetes depressed the decarboxylation and the oxidation of labelled pyruvate, but not the oxidation of labelled acetate. 4. The synthesis of lipid from specifically labelled glucose was greatly decreased, that from [2-(14)C]pyruvate was almost unchanged and that from [1-(14)C]acetate alone was increased in alloxandiabetic rats. However, the stimulation of lipid synthesis from acetate by glucose was small in the alloxan-diabetic rats compared with the controls. Insulin in vitro partially reversed all these effects. Both citrate-cleavage enzyme and acetate thiokinase activities were decreased in alloxan-diabetic rats. 5. Treatment of rats with anti-insulin serum depressed the formation of (14)CO(2) from [1-(14)C]glucose and [2-(14)C]glucose, but increased that from [6-(14)C]glucose. This was completely restored by the presence of insulin in vitro. The quotient Oxidation of [1-(14)C]glucose/Oxidation of [6-(14)C]glucose fell from a value of 17.6 in the control group to 3.8 in the anti-insulin-serum-treated group. There were no changes in the activity of glucose 6-phosphate dehydrogenase or 6-phosphogluconate dehydrogenase, but the hexokinase distribution changed and the content of the soluble fraction increased significantly. 6. The synthesis of lipid from specifically labelled glucose was depressed in anti-insulin-serum-treated rats; this effect was completely reversed by addition of insulin in vitro to the tissue slices.  相似文献   

13.
Mixed rumen microorganisms (MRM) or suspensions of rumen Holotrich protozoa obtained from a sheep were incubated anaerobically with [1-(14)C]linoleic acid, [U-(14)C]glucose, or [1-(14)C]acetate. With MRM, the total amount of fatty acids present did not change after incubation. An increase in fatty acids esterified into sterolesters (SE) and polar lipids at the expense of free fatty acids was observed. This effect was intensified by the addition of fermentable carbohydrate to the incubations. Radioactivity from [1-(14)C]linoleic acid was incorporated into SE and polar lipids with both MRM and Holotrich protozoa. With MRM the order of incorporation of radioactivity was as follows: SE > phosphatidylethanolamine > phosphatidylcholine. With Holotrich protozoa, the order of incorporation was phosphatidylcholine > phosphatidylethanolamine > SE. With MRM the radioactivity remaining in the free fatty acids and that incorporated into SE was mainly associated with saturated fatty acids, but a considerable part of the radioactivity in the polar lipids was associated with dienoic fatty acids. This effect of hydrogenation prior to incorporation was also noted with Holotrich protozoa but to a much lesser extent. Small amounts of radioactivity from [U-(14)C]glucose and [1-(14)C]acetate were incorporated into rumen microbial lipids. With protozoa incubated with [U-(14)C]glucose, the major part of incorporated radioactivity was present in the glycerol moiety of the lipids. From the amounts of lipid classes present, their radioactivity, and fatty acid composition, estimates were made of the amounts of higher fatty acids directly incorporated into microbial lipids and the amounts synthesized de novo from glucose or acetate. It is concluded that the amounts directly incorporated may be greater than the amounts synthesized de novo.  相似文献   

14.
1. The formation of phosphatidylcholine from radioactive precursors was studied in adult rat lung alveolar type II epithelial cells in primary culture. 2. The incorporation of [Me-14C]choline into total lipids and phosphatidylcholine was stimulated by addition of palmitate, whereas the incorporation of [U-14C]glucose into phosphatidylcholine and disaturated phosphatidylcholine was stimulated by addition of choline. Addition of glucose decreased the absolute rate of incorporation of [1(3)-3H]glycerol into total lipids, phosphatidylcholine and disaturated phosphatidylcholine, decreased the percentage [1(3)-3H]glycerol recovered in phosphatidylcholine, but increased the percentage phosphatidylcholine label in the disaturated species. 3. At saturating substrate concentrations, the percentages of phosphatidylcholine radioactivity found in disaturated phosphatidylcholine after incubation with [1-(14)C]acetate (in the presence of glucose) [1-(14)C]palmitate (in the presence of glucose), [Me-14C]choline (in the presence of glucose and palmitate) and [U-14C]glucose (in the presence of choline and palmitate) were 78, 75, 74 and 90%, respectively. 4. Fatty acids stimulated the incorporation of [U-14C]glucose into the glycerol moiety of phosphatidylcholine. The degree of unsaturation of the added fatty acids was reflected in the distribution of [U-14C]glucose label among the different molecular species of phosphatidylcholine. It is suggested that the glucose concentration in the blood as related to the amount of available fatty acids and their degree of unsaturation may be factors governing the synthesis of surfactant lipids.  相似文献   

15.
L-thyroxine action on GPI and phosphatidylinositol (PI) metabolism in the liver have been investigated in 3- and 24-month-old Wistar rats. PI and GPI were labeled by [14C]acetate Na in vivo and [14C]glucose in vitro. Aging caused a significant decrease in basal PI and GPI levels and reduced [14C]glucose incorporation into GPI of liver. The addition of exogenous PI stimulated the [14C]GPI formation (about 2-3 fold) in 24-month-old rat liver. Thyroxine injection (200 micrograms/100 g weight) to young rats induced triphasic alteration in GPI content in the liver. We observed the marked violation in the thyroxine-mediated GPI-metabolism in the old rats liver. These results indicate that thyroid hormones regulate GPI metabolism in rat liver.  相似文献   

16.
The pattern of incorporation of radioactivity from [1-14C]acetate and [2-14C]acetate into the polyprenyl side-chain of ubiquinones in bacteria (Azotobacter vinelandii, Pseudomonas sesami, Escherichia coli and Rhodopseudomonas capsulata) was studied. For this purpose, a new degradation method involving a modified Barbier-Wieland reaction of laevulinic acid was developed, and used along with the iodoform reaction. Both C-1 and C-2 of acetate were incorporated exclusively into C-2 of laevulinic acid suggesting that the well-known pathway through acetoacetyl-CoA ('acetoacetate pathway') was not operative in these bacteria. An alternative pathway ('acetolactate pathway'), starting with pyruvate and acetaldehyde as the distal precursors, and utilizing the reactions of leucine and valine metabolism, was postulated. It was also postulated that C-1 of acetate is incorporated not directly, but after oxidation to CO2. The pattern of incorporation of radioactivity from [U-14C]valine, [U-14C]alanine and NaH14CO3 into the side-chain of ubiquinone of R. capsulata was in agreement with the operation of the 'acetolactate pathway'.  相似文献   

17.
The precursors of the xylene ring in riboflavine   总被引:2,自引:0,他引:2  
1. The nature of the precursors of the xylene ring in riboflavine was reinvestigated with growing as well as resting cells of Eremothecium ashbyii. 2. The incorporation of acetoin into riboflavine was very low; further, [2-(14)C]pyruvate and [1-(14)C]acetate were equally effective as precursors of lumichrome, and pyruvate was much more active as a precursor of acetoin. These results exclude acetoin as a direct precursor of riboflavine. 3. Addition of unlabelled glucose decreased the incorporation of [(14)C]acetate into riboflavine more than it decreased the conversion of acetate into carbon dioxide, indicating that acetate is not a direct riboflavine precursor. 4. The incorporation of various sugars and dilution experiments suggest that a derivative of the intermediates of the pentose phosphate cycle is the precursor of the xylene ring in riboflavine.  相似文献   

18.
[2-14C]Acetone was infused into rats that were fed or fasted. Each was infused with either a trace quantity of acetone or a large quantity that resulted in a blood concentration of acetone of at least 4 mM. The distribution of 14C in the carbons of glucose from each rat was determined. Two of the rats were given acetone in their drinking water and one was diabetic. Whether a rat was chronically exposed to acetone, fed or fasted, normal or diabetic, if given the trace dose, over 80% of the 14C in the glucose it formed was in carbons 1, 2, 5, and 6 of the glucose. If a rat was given the large dose, about 50% was in carbons 3 and 4. Thus, the major determinant of the pathways followed by acetone when it is metabolized is its concentration and not the prior dietary state of the animal or its previous exposure to acetone. Incorporation into carbons 1, 2, 5, and 6 occurs in the conversion of the carbons of [2-14C]lactate into glucose, whereas incorporation into carbons 3 and 4 occurs in the conversion of the carbons of [1-14C]acetate into glucose. Therefore, at high acetone concentration, the pathway that has been proposed for acetone's metabolism via acetate predominates, and via acetate there can be no net synthesis of glucose from acetone. When rats were given cyanamide and then the large dose of acetone, 74% of the 14C in the glucose they formed was in carbons 3 and 4 of the glucoses. Thus, the relative contribution of the pathway to lactate, or its metabolic equivalent, that has been proposed appears to be lessened by the administration of an aldehyde dehydrogenase inhibitor.  相似文献   

19.
A comparison of the occurrence, fatty acid composition, and metabolism of phosphatidyglycerol and phosphatidylcholine in the surfactant and residual fraction of rat lung has been carried out. The surfactant and residual fractions were separated by discontinuous sucrose density gradient centrifugation. The surfactant fraction was found to contain 69 percent phosphatidylcholine and 7 percent phosphatidylglycerol. The residual fraction contained 46 percent phosphatidylcholine and 3 percent phosphatidylglycerol. Phosphatidylcholine and phosphatidylglycerol were found to contain 85 and 79 percent palmitate in the surfactant fraction and 67 and 68 percent in the residual fraction, respectively. Isolated rat lungs were perfused with medium containing [U-14C]glucose, [9,10-3H]palmitate, and [1-14C]acetate and the incorporation into palmitate isolated from the alpha and beta position of phosphatidylcholine and phosphatidylglycerol was determined. Each radioactive substrate was found to be incorporated into palmitate of phosphatidylcholine equally at the alpha and beta position of the surfactant fraction. In the residual fraction the specific activity of the beta position palmitate was found to be twice that of the alpha position. The incorporation of [9,10-3H]palmitate and [1-14C]acetate into palmitate at the alpha and beta positions of phosphatidylglycerol was similar in both the surfactant and residual fractions. In each case palmitate at the alpha position had approximately twice the specific activity of that at the beta position. The incorporation of [U-14C]glucose into phosphatidylglycerol of the surfactant fraction was, however, greater in palmitate at the beta position than at the alpha. The results show that phosphatidylglycerol is associated with the lung surfactant fraction and suggest that palmitate esterified to the alpha and beta positions of phosphatidylglycerol and phosphatidylcholine occurs at different rates and is dependent upon the precursor source of palmitate.  相似文献   

20.
Koo SJ  Neal JC  DiTomaso JM 《Plant physiology》1996,112(3):1383-1389
The mode of action of the herbicide 3,7-dichloroquinolinecar-boxylic acid (quinclorac) was examined by measuring incorporation of [14C]glucose, [14C]acetate, [3H]thymidine, and [3H]uridine into maize (Zea mays) root cell walls, fatty acids, DNA, and RNA, respectively. Among the precursors examined, 10 [mu]M quinclorac inhibited [14C]glucose incorporation into the cell wall within 3 h. Fatty acid and DNA biosynthesis were subsequently inhibited, whereas RNA biosynthesis was unaffected. In contrast to the cellulose synthesis inhibitor 2,6-dichlorobenzonitrile, quinclorac strongly inhibited cellulose and a hemicellulose fraction presumed to be glucuronoarabinoxylan. However, the synthesis of (1->3),(1->4)-[beta]-D-glucans was only slightly inhibited. The degree of inhibition was time- and dose-dependent. By 4 h after treatment, the concentration that inhibited [14C]glucose incorporation into the cell wall, cellulose, and the sensitive hemicellulose fraction by 50% was about 15, 5, and 20 [mu]M, respectively. Concomitant with an inhibition of [14C]glucose incorporation into the cell wall, quinclorac treatment led to a marked accumulation of radioactivity in the cytosol. The increased radioactivity was found mostly in glucose and fructose. However, total levels of glucose, fructose, and uridine diphosphate-glucose were not changed greatly by quinclorac. These data suggest that quinclorac acts primarily as a cell-wall biosynthesis inhibitor in a susceptible grass by a mechanism that is different from that of 2,6-dichlorobenzonitrile.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号