首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 647 毫秒
1.
In 2001, Hamilton and Brown proposed a controversial hypothesis of handicap signalling to potential insect parasites as an adaptive explanation for autumn leaf colouration. In subsequent studies there has been little attention to the costs and benefits of early autumnal colour change. Yet, in an observational study by Hagen et al. (2003) it was demonstrated that birch trees [Betula pubescens ssp. czerepanovii Ehrhart (Betulaceae)] turning yellow early in autumn had less damage from insects chewing on leaves the subsequent summer. Here, two experiments are presented which test the mechanisms in this model. The first addresses the proposed defence of leaves of B. pubescens ssp. czerepanovii by letting caterpillars of Epirrita autumnata Borkhausen (Lepidoptera: Geometridae), the birches’ most common insect parasites, choose between leaves from trees that either turned yellow late or early the foregoing autumn. The second experiment addresses whether adult female E. autumnata choose between early or late senescent (i.e., yellow or green) ‘twigs’ when ovipositing in autumn. We could not find evidence of preferences in either larvae or females, suggesting that timing of colour change in B. pubescens ssp. czerepanovii is not a warning signal that elicits a response in E. autumnata.  相似文献   

2.
The evolution of plant defence in response to herbivory will depend on the fitness effects of damage, availability of genetic variation and potential ecological and genetic constraints on defence. Here, we examine the potential for evolution of tolerance to deer herbivory in Oenothera biennis while simultaneously considering resistance to natural insect herbivores. We examined (i) the effects of deer damage on fitness, (ii) the presence of genetic variation in tolerance and resistance, (iii) selection on tolerance, (iv) genetic correlations with resistance that could constrain evolution of tolerance and (v) plant traits that might predict defence. In a field experiment, we simulated deer damage occurring early and late in the season, recorded arthropod abundances, flowering phenology and measured growth rate and lifetime reproduction. Our study showed that deer herbivory has a negative effect on fitness, with effects being more pronounced for late‐season damage. Selection acted to increase tolerance to deer damage, yet there was low and nonsignificant genetic variation in this trait. In contrast, there was substantial genetic variation in resistance to insect herbivores. Resistance was genetically uncorrelated with tolerance, whereas positive genetic correlations in resistance to insect herbivores suggest there exists diffuse selection on resistance traits. In addition, growth rate and flowering time did not predict variation in tolerance, but flowering phenology was genetically correlated with resistance. Our results suggest that deer damage has the potential to exert selection because browsing reduces plant fitness, but limited standing genetic variation in tolerance is expected to constrain adaptive evolution in O. biennis.  相似文献   

3.
1. A simple, low‐cost approach to estimating population ageing was introduced based on a modified version of the captive cohort method – a technique developed earlier (Carey et al., Aging Cell, 7 , 426–437, 2008) in which information on the remaining lifespans of live‐captured medflies of unknown age is used to estimate the overall population age structure. 2. To test this approach approximately 1200 medflies near Volos, Greece were live captured from daily sampling over a 3‐month field season. 3. This simplified method reported: (i) an extraordinary post‐capture longevity of wild medflies in early season (>200 days in longest lived); (ii) a decrease of 50–75 days in the mean longevity from early‐season to late‐season flies; (iii) seasonality of frailty as indicated by the shorter‐lived flies in late autumn; (iv) cessation of fly emergence in late season as indicated by the absence of long‐lived individuals (indicating newly emerged at capture) sampled in the autumn; and (v) increase in mean age from about 20 days in early season to approximately 60 days in late season. 4. The applications of this simplified captive cohort method are discussed, including its use in the analysis of insect vector populations, Drosophila ecology and ageing in the wild, demographic toxicology, and age bias in sampling.  相似文献   

4.
We examined factors controlling temporal changes in net ecosystem production (NEP) in a high Arctic polar semi-desert ecosystem in the snow-free season. We examined the relationships between NEP and biotic and abiotic factors in a dominant plant community (Salix polaris–moss) in the Norwegian high Arctic. Just after snowmelt in early July, the ecosystem released CO2 into the atmosphere. A few days after snowmelt, however, the ecosystem became a CO2 sink as the leaves of S. polaris developed. Diurnal changes in NEP mirrored changes in light incidence (photosynthetic photon flux density, PPFD) in summer. NEP was significantly correlated with PPFD when S. polaris had fully developed leaves, i.e., high photosynthetic activity. In autumn, NEP values decreased as S. polaris underwent senescence. During this time, CO2 was sometimes released into the atmosphere. In wet conditions, moss made a larger contribution to NEP. In fact, the water content of the moss regulated NEP during autumn. Our results indicate that the main factors controlling NEP in summer are coverage and growth of S. polaris, PPFD, and precipitation. In autumn, the main factor controlling NEP is moss water content.  相似文献   

5.
The relationship between active oxygen species (AOS) and membrane damage, and between antioxidant enzyme activity and chilling tolerance has been documented, but the mechanisms responsible for perennial forage grass to survive winter with temperatures at ?30°C in temperate alpine regions is not well understood. In this study, the seasonal pattern of enzymatic antioxidant systems superoxide dismutase (EC 1.15.1.1), catalase (EC 1.11.1.6), peroxidase (EC 1.11.1.7), ascorbate peroxidase (EC 1.11.1.11) and lipid peroxidation in roots and leaves of alpine perennial grasses grown in their natural environment were investigated to understand the role of the enzymatic antioxidant system in freezing tolerance of perennial grasses. Four grasses, Poa sphyondylodes Trine., Bromus inermis Leyss., Bromus sinensis Keng. and Elymus nutans Griseb., were established in alpine conditions in 1993. The grasses were sampled at approximately semi‐monthly intervals in the autumn of 1995 and spring of 1996. The results showed that leaves were dead in the autumn and membrane damage seems to play a key role in the decline of this organ. Antioxidant enzyme activities of the roots strongly changed with declining temperature in the autumn and winter or increasing temperature in the spring. With the decrease in temperature in the autumn the antioxidant enzyme activities increased rapidly, reaching maximum values in early November and then slowly declining during the following winter period, although they were still higher than in September In the spring, antioxidant enzymes activities increased again in the roots with the rise of temperature from mid April to early May when the shoots began re‐growth. In contrast, thiobarbituric acid‐reactive substances content in the roots increased markedly in the autumn, reaching maximum values in early October and remaining constant with little fluctuation during the following winter. In the autumn when the roots experienced winter acclimation, the formation of freezing tolerance in the roots was correlated with the activities of the antioxidant enzyme, indicating that antioxidant activity systems in the roots played an important role in limiting the production of free radicals to protect membrane integrity. Freezing tolerance in alpine grasses correlated with an increased capacity to scavenge or detoxify activated AOS by the antioxidant enzymatic system. AOS accumulated with decreasing temperature in early cold acclimation may be an inducer in activating the antioxidant enzyme defence system for the formation of freezing tolerance in roots.  相似文献   

6.
In the montane localities of subtropical regions, winter is the dry season and ectothermic drosophilids are expected to evolve desiccation resistance to cope with drier climatic conditions. An analysis of six montane populations (600–2226 m) of D. melanogaster showed variations for body melanisation (i.e. pigmentation) and desiccation resistance across seasons as well as along altitude. During winter season, plastic changes for melanisation of three posterior abdominal segments (5th + 6th + 7th) correspond with higher desiccation resistance. Thus, we analyzed genetic and plastic effects for these ecophysiological traits by comparing wild-caught and laboratory reared individuals of D. melanogaster for autumn as well as winter season. A ratio of slope values in wild vs. laboratory populations has shown a 1.64-fold plastic effect during autumn; and a two-fold effect during winter. For body melanisation and desiccation resistance, evolutionary response to altitudinal environmental gradient is similar to the phenotypic response across seasons. Thus, our observations are in agreement with the co-gradient hypothesis. Further, we tested the hypothesis whether a thicker cuticle (either due to melanisation or cuticular lipids) leads to lesser cuticular water loss and higher desiccation resistance across seasons as well as according to altitude. Based on within and between population analyses, body melanisation was found to be positively correlated with desiccation resistance but negatively with cuticular water loss. Interestingly, there were no changes in the amount of cuticular lipids per fly across seasons as well as along altitude; and therefore cuticular lipids did not account for desiccation resistance. Cuticular water loss exhibited negative correlation with body melanisation but not with cuticular lipids as well as with changes in body size across seasons. Thus, our data suggest that seasonal changes in body melanisation confer desiccation resistance in montane populations of D. melanogaster.  相似文献   

7.
Giffard B  Corcket E  Barbaro L  Jactel H 《Oecologia》2012,168(2):415-424
According to the associational resistance hypothesis, neighbouring plants are expected to influence both the insect herbivore communities and their natural enemies. However, this has rarely been tested for the effects of canopy trees on herbivory of seedlings. One possible mechanism responsible for associational resistance is the indirect impact of natural enemies on insect herbivory, such as insectivorous birds. But it remains unclear to what extent such trophic cascades are influenced by the composition of plant associations (i.e. identity of ‘associated’ plants). Here, we compared the effect of bird exclusion on insect leaf damage for seedlings of three broadleaved tree species in three different forest habitats. Exclusion of insectivorous birds affected insect herbivory in a species-specific manner: leaf damage increased on Betula pendula seedlings whereas bird exclusion had no effect for two oaks (Quercus robur and Q. ilex). Forest habitat influenced both the extent of insect herbivory and the effect of bird exclusion. Broadleaved seedlings had lower overall leaf damage within pine plantations than within broadleaved stands, consistent with the resource concentration hypothesis. The indirect effect of bird exclusion on leaf damage was only significant in pine plantations, but not in exotic and native broadleaved woodlands. Our results support the enemies hypothesis, which predicts that the effects of insectivorous birds on insect herbivory on seedlings are greater beneath non-congeneric canopy trees. Although bird species richness and abundance were greater in broadleaved woodlands, birds were unable to regulate insect herbivory on seedlings in forests of more closely related tree species.  相似文献   

8.
The clonal plant Schoenoplectus americanus shows variable belowground clonal architecture as a result of producing two types of ramets: those with very long rhizomes (long rhizome ramet, LRR) and those with very short ones (short rhizome ramet, SRR). In a previous study we demonstrated that the two types of ramets are functionally specialised. The production of SRRs results in the formation of consolidated clonal patches with densely packed shoots, while the production of LRRs results in a more diffuse network of connected rhizomes with widely spaced shoots. We hypothesised that the two types of ramets would be produced at different times during the growing season because of their functional differences. The production of LRRs throughout the growing season would enable the species to continuously explore new habitats while the production of SRRs early in the growing season would enable the species to occupy and consolidate resources in available open patches. We evaluated this hypothesis through field observations in different communities with S. americanus and indeed found that SRRs were produced early in the growing season while LRRs tended to be produced over an extended period of time. Plants in high-quality environments (i.e. higher light conditions) produced more SRRs, and these were formed early in the growing season. In contrast, plants in low-quality environments produced more LRRs, and these were formed continuously over the growing season. We also observed that the shoot longevity was greater for SRR. In high-quality patches, the production of the lower cost SRRs results in a more rapid occupancy of open spaces; in lower quality patches, the production of LRRs throughout the growing season enables plants to explore the immediate environment for higher quality patches.  相似文献   

9.
Species with fire stimulated reproduction (fsr) are common in Mediterranean climate ecosystems. We investigated how season of, and time since, fire affects seed production in Podocarpus drouynianus F. Muell., a dioecious resprouting coniferous shrub endemic to the jarrah (Eucalyptus marginata Sm.) forests of southwestern Australia, and if the now largely managed fire regime in these forests poses a risk to its persistence. We hypothesised that, like other species showing fsr, seed production in P. drouynianus would be limited to the first few years following fire and seed set would be lower after spring burns. Mature plants regenerated rapidly from buried stem tissue (lignotuber) after fire, producing abundant sporophylls in autumn 12–18 months later. Stands burnt in autumn showed peak seed production 1 year later, while for those burned in spring, peak seed production was delayed until the second autumn after fire. Limited seed production occurred for up to 3 years following fire, but no seed production was observed in longer unburnt (>10 years since fire) stands. While we did not observe a significant impact of fire season on seed production, seed weight and viability were lower for spring-burnt plants. Population-level effects associated with plant density may also have negative impacts on P. drouynianus demography, with females within a small population burnt in autumn producing very few seeds 12 months following fire. Interactions between climate change, fire regimes and fire management practices need to be considered in order to best safeguard the long-term persistence of this conifer species.  相似文献   

10.
Summary A study was conducted to test the hypothesis that different portions of the annual photoperiodic cycle play different roles in timing the breeding season of the ewe, Ovis aries, an animal in which an endogenous rhythm generates the seasonal reproductive transitions. Adult female sheep were pinealectomized to disrupt transduction of photoperiodic cues at 4 times of the year (summer and winter solstices, vernal and autumnal equinoxes), and the effects on seasonal reproductive neuroendocrine activity were evaluated. Time of pinealectomy greatly influenced the subsequent seasonal reproductive cycle such that the following inferences are possible. Lengthening days between the winter and summer solstices synchronize reproductive onset to the appropriate time of year. The relatively long days around the summer solstice act to suppress reproductive activity and forestall the start of the breeding season until late summer/early autumn. The shortening days between the summer solstice and autumnal equinox maintain a normal intensity and duration of reproductive neuroendocrine induction during the impending breeding season. However, the shortening days between the autumnal equinox and winter solstice (i.e., after breeding season onset) do not appear to play a critical role in maintaining the breeding season of that year, but may provide important cues for timing the breeding season of the following year.Abbreviations LH luteinizing hormone Presented in preliminary form at the 21st Annual Meeting of the Society for the Study of Reproduction, 1988, Biol Reprod 38 (Suppl. 1): 184 (Abstract 408). This work was performed in partial fulfillment of the requirements for the degree of Ph.D. at The University of Michigan (to N.L.W.), and was funded by NIH-HD-18337 and NIH-HD-18258, T-32-HD-07048, the Institut National de la Recherche Agronomique (France) and the Office of the Vice President for Research of The University of Michigan.  相似文献   

11.
John A. Barone 《Biotropica》2000,32(2):307-317
The Janzen–Connell model of tropical forest tree diversity predicts that seedlings and young trees growing close to conspecific adults should experience higher levels of damage and mortality from herbivorous insects, with the adult trees acting as either an attractant or source of the herbivores. Previous research in a seasonal forest showed that this pattern of distance‐dependent herbivory occurred in the early wet season during the peak of new leaf production. I hypothesized that distance‐dependent herbivory may occur at this time because the new foliage in the canopy attracts high numbers of herbivores that are limited to feeding on young leaves. As a consequence, seedlings and saplings growing close to these adults are more likely to be discovered and damaged by these herbivores. In the late wet season, when there is little leaf production in the canopy, leaf damage is spread more evenly throughout the forest and distance dependence disappears. I tested three predictions based on this hypothesis: (1) the same species of insect herbivores attack young and adult trees of a given plant species; (2) herbivore densities increase on adult trees during leaf production; and (3) herbivore densities in the understory rise during the course of the wet season. Censuses were conducted on adults and saplings of two tree species, raribea asterolepis and Alseis blackiana. Adults and saplings of both species had largely the same suite of chewing herbivore species. On adults of Q. asterolepis, the density of chewing herbivores increased 6–10 times during leaf production, but there was no increase in herbivore density on adults of A. blackiana. Herbivore densities increased 4.5 times on A. blackiana saplings and 8.9 times on Q. asterolepis saplings during the wet season, but there were no clear trends on the adults of either species. These results suggest that the potential of adult trees as a source of herbivores on saplings depends on the value of new leaves to a tree species' herbivores, which may differ across tree species.  相似文献   

12.
Fourteen samples of sago pondweed (Potamogeton pectinatus L.) and associated invertebrates were collected every two weeks over a single season of plant growth in a large monospecific pondweed-bed located in Coyote Hills Marsh (Alameda Co., California, USA), using pull-up samplers that collect plants, epiphytic macroinvertebrates, and microcrustaceans throughout the water column. The macro-invertebrate fauna was dominated by insects, primarily chironomids. Semi-aquatic neustonic taxa, including an aphid and a springtail, were common; this is in contrast with most aquatic plant-invertebrate studies, in which neustonic insects are seldom collected because of sampling bias. Over the entire season, P. pectinatus biomass and the densities of four insect taxa (Anopheles spp. mosquitoes, Hydrellia sp. brineflies, Ademon sp. parasitic wasps, and coenagrionid damselflies) were significantly correlated. These correlations resulted from both similar overall phenologies of the plant and each of the insect taxa, and ecological relationships in which P. pectinatus provides either a specialized habitat or food source. macroinvertebrate numbers were highest in mid-summer, when P. pectinatus forms a dense floating canopy; microcrustaceans were more common during plant senescence in early autumn. Individuals of some taxa may be distributed in proportion to plant biomass; this occurred commonly in damselflies, perhaps as a result of territoriality in these nymphs.  相似文献   

13.
Summary The effect of leaf damage simulating the feeding of early season insect herbivore species, e.g. Epirrita autumnata, to mountain birch, Betula pubescens ssp. tortuosa, on the performance of insect larvae was studied with eleven leaf-chewing sawfly species. I found variation in the results that was due to short- and long-term inducible responses and to the phenology of herbivore species. In general, early and mid-season species were more strongly affected by induced reactions than late-season species. This finding is in accordance with earlier results but I could show that the persistance of induced reactions rather than the influence of timing of damage is responsible for the result. The growth of the larvae of mid-season sawfly species was affected by both short- and long-term induced reactions. This result shows that early season species may escape short-term induced reactions of mountain birch in current year but may not avoid long-term effects. It is supposed that seasonal deterioration of leaf quality either masks the effects of induced defences or late-season species are better adapted to low-quality leaves. Some species show variation in their response to induced defence in different years. This may be due to yearly differences in induced reactions as well as to species-specific responses. Induced defence reactions may play a role in competitive interactions between herbivore species in leaf-chewing guild of mountain birch.  相似文献   

14.
Frost damage can decrease nitrogen uptake by grasses over winter, and it can also decrease biomass production over the following growing season. However, it is not clear to what extent reduced nitrogen uptake over winter decreases grass production, or whether is it merely a symptom of root damage. We examined the growth response of the grass Poa pratensis L. (Kentucky bluegrass) to variation in the timing of freezing and nitrogen availability over winter in London, Ontario, Canada. All tillers were transplanted into untreated soil in early spring, and at peak seed maturation, root, shoot, and reproductive biomass were measured. There was an interaction between freezing and increased winter nitrogen availability, whereby nitrogen addition increased tiller biomass under ambient temperatures, but decreased tiller biomass in combination with a late winter freeze. The nitrogen response of ambient temperature tillers occurred primarily via increased seed production, whereas for frozen tillers seed production was generally absent. Our results support the hypothesis that nitrogen uptake over winter can increase growing season productivity in P. pratensis, but also demonstrate that increased nitrogen availability increases tiller vulnerability to frost. These results have important implications for grass responses to the alteration of soil freezing dynamics with climate change.  相似文献   

15.
Summary We tested the hypothesis that generally higher levels of herbivory on bittercress in sun vs in shade, especially by leaf miners, were related to the earlier phenological development of plants in the sun. Naturally-occurring plants in the sun were taller and had longer leaves than did those in the shade during the first three weeks of the growing season, which corresponded with the timing of adult fly oviposition. We divided individual bittercress plants from the sun into three parts: one part was transplanted into willow shade immediately after snow melt; the other two parts were replanted in the sun and one of these was sprayed with insecticide. The transplant experiment had two primary results. First, bittercress transplanted into the shade suffered significantly higher levels of insect damage than either treatment in the sun. Leaf-mining in the shade also increased and equalled that observed in the sun. These results strongly support the phenology hypothesis; higher damage in the sun is due, at least in part, to the earlier development of plants in sun vs in shade early in the season. Second, the ramets with the greatest damage, e.g. the shade treatment, initiated significantly fewer rosettes than did ramets in the other two treatments. The decrease in vegetative reproduction may have been due to the direct effects of increased insect herbivory on these shade plants. This result is particularly interesting because so little information is available on below-ground, vegetative reproductive response to chronic, above-ground foliage loss to native herbs caused by insect herbivores.  相似文献   

16.
Naoto Shinohara  Takehito Yoshida 《Oikos》2021,130(10):1626-1635
Herbivorous insect communities are structured by multiple processes operating locally (e.g. bottom–up effects of plants) and regionally (e.g. dispersal limitation). Although the relative strength of these processes has been well documented, how it varies in time is less understood, especially in relation with the temporal dynamics of plant communities. If temporal turnover of local plant species composition is too rapid for insect community assembly to keep up with, bottom–up effects are expected to be weak. Here, in plant and herbivorous insect communities in Japanese grasslands, we studied how the relative importance of local (bottom–up effects of plants, structures of plant communities and top–down effects of predators) and regional (dispersal limitation) processes varies over the growing season. In addition, we tested the hypothesis that larger temporal turnover of plant species composition is related to the weaker bottom–up effects, that is, the lower explanation power of plant communities for insect communities. We found that, throughout the growing season, the insect species composition was mainly explained by local variables (plant species composition, vegetation height and predator abundance), and their explanation power was higher during later phases of the season (late summer). Furthermore, the variation not explained by plant species composition was correlated with the degree of temporal turnover of plants, suggesting that insect communities failed to track the temporal turnover of plant species. These results were pronounced when we focused on leaf sucker insects, whose host plant range is presumably more limited. We conclude that herbivorous insect communities are mainly regulated by local processes, especially bottom–up effects from plants, while stochasticity may have played a role in early phases of the season. Furthermore, we underscore the importance of considering relative time scale of community assembly and environmental shifts, especially in systems characterized by dynamic changes.  相似文献   

17.
Social insect colonies display a remarkable ability to adjust investment in reproduction (i.e., production of sexuals) in accordance with environmental conditions such as season and food availability. How this feat is accomplished by the colony’s queen(s) and workers remains a puzzle. Here, I review what we have learned about this subject in the European honeybee (Apis mellifera), specifically with regard to a colony’s production of males (drones). I identify five environmental conditions that influence colony-level patterns of drone production and then define five stages of drone rearing that are accomplished by the queen and workers. Using this framework, I detail our current understanding of how the queen or workers adjust their actions at each stage of drone rearing in response to each of the environmental conditions. Future investigations of this topic in honeybees and other social insect societies will lead to a better understanding of how colonies manage to flexibly and efficiently allocate their resources under changing environmental conditions.  相似文献   

18.
Defoliation‐induced changes in plant foliage are ubiquitous, though factors mediating induction and the extent of their influence on ecosystem processes such as leaf litter decomposition are poorly understood. Soil nitrogen (N) availability, which can be affected by insect herbivore frass (feces), influences phytochemical induction. We conducted experiments to test the hypotheses that insect frass deposition would (1) reduce phytochemical induction following herbivory and (2) increase the decomposition and nutrient release of the subsequent leaf litter. During the 2002 growing season, 80 Quercus rubra saplings were subjected to a factorial experiment with herbivore and frass manipulations. Leaf samples were collected throughout the growing season to measure the effects of frass deposition on phytochemical induction. In live foliage, herbivore damage increased tannin concentrations early, reduced foliar N concentrations throughout the growing season, and lowered lignin concentrations in the late season. Frass deposition apparently reduced leaf lignin concentrations, but otherwise did not influence leaf chemistry. Following natural senescence, litter samples from the treatment groups were decomposed in replicated litterbags for 18 months at the Coweeta Hydrologic Laboratory, NC. In the dead litter samples, initial tannin concentrations were lower in the herbivore damage group and higher in the frass addition group relative to their respective controls. Tannin and N release rates in the first nine months of decomposition were also affected by both damage and frass. However, decomposition rates did not differ among treatment groups. Thus, nutrient dynamics important for some ecosystem processes may be independent from the physical loss of litter mass. Overall, while lingering effects of damage and even frass deposition can therefore carry over and affect ecosystem processes during decomposition, their effects appear short lived relative to abiotic forces that tend to homogenize the decomposition process.  相似文献   

19.
This study evaluated a technique to allow the long‐term monitoring of individual fishes of known sex in the wild using sex confirmation in close proximity to the reproductive period combined with individual tagging. Hundreds of partially migratory roach Rutilus rutilus were tagged with passive integrated transponders (PIT) following sex determination in spring and various performance measures were compared with fish tagged outside the reproductive period in autumn. Short‐term survival was >95% for R. rutilus sexed and tagged under natural field conditions. Total length (LT) did not affect the probability of survival within the size range tagged (119–280 mm), nor were there differences in timing of migration the following season between individuals sexed and tagged in spring and individuals tagged in autumn (i.e. outside the reproductive period). Also, a similar per cent of R. rutilus sexed and tagged in spring and tagged in autumn migrated the following season (34·5 and 34·7%). Moreover, long‐term recapture data revealed no significant differences in body condition between R. rutilus individuals sexed and tagged in spring, individuals tagged in autumn and unmanipulated individuals. The observed sex ratio of recaptured fish did not differ from the expected values of equal recapture rates between males and females. Hence, there is no observable evidence for an adverse effect of tagging close to the reproductive period and therefore this method is suitable for studying intersexual differences and other phenotypic traits temporarily expressed during reproduction at the individual level in fishes.  相似文献   

20.
Autumn tree colours as a handicap signal.   总被引:19,自引:0,他引:19  
Many species of deciduous trees display striking colour changes in autumn. Here, we present a functional hypothesis: bright autumn coloration serves as an honest signal of defensive commitment against autumn colonizing insect pests. According to this hypothesis, individuals within a signalling species show variation in the expression of autumn coloration, with defensively committed trees producing a more intense display. Insects are expected to be averse to the brightest tree individuals and, hence, preferentially colonize the least defensive hosts. We predicted that tree species suffering greater insect damage would, on average, invest more in autumn-colour signalling than less troubled species. Here, we show that autumn coloration is stronger in species facing a high diversity of damaging specialist aphids. Aphids are likely to be an important group of signal receivers because they are choosy, damaging and use colour cues in host selection. In the light of further aspects of insect and tree biology, these results support the notion that bright autumn colours are expensive handicap signals revealing the defensive commitment of individual trees to autumn colonizing insect pests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号