首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
High-throughput genomic technologies enable researchers to identify genes that are co-regulated with respect to specific experimental conditions. Numerous statistical approaches have been developed to identify differentially expressed genes. Because each approach can produce distinct gene sets, it is difficult for biologists to determine which statistical approach yields biologically relevant gene sets and is appropriate for their study. To address this issue, we implemented Latent Semantic Indexing (LSI) to determine the functional coherence of gene sets. An LSI model was built using over 1 million Medline abstracts for over 20,000 mouse and human genes annotated in Entrez Gene. The gene-to-gene LSI-derived similarities were used to calculate a literature cohesion p-value (LPv) for a given gene set using a Fisher's exact test. We tested this method against genes in more than 6,000 functional pathways annotated in Gene Ontology (GO) and found that approximately 75% of gene sets in GO biological process category and 90% of the gene sets in GO molecular function and cellular component categories were functionally cohesive (LPv<0.05). These results indicate that the LPv methodology is both robust and accurate. Application of this method to previously published microarray datasets demonstrated that LPv can be helpful in selecting the appropriate feature extraction methods. To enable real-time calculation of LPv for mouse or human gene sets, we developed a web tool called Gene-set Cohesion Analysis Tool (GCAT). GCAT can complement other gene set enrichment approaches by determining the overall functional cohesion of data sets, taking into account both explicit and implicit gene interactions reported in the biomedical literature. Availability: GCAT is freely available at http://binf1.memphis.edu/gcat.  相似文献   

2.
MOTIVATION: Microarray technology allows the monitoring of expression levels for thousands of genes simultaneously. In time-course experiments in which gene expression is monitored over time, we are interested in testing gene expression profiles for different experimental groups. However, no sophisticated analytic methods have yet been proposed to handle time-course experiment data. RESULTS: We propose a statistical test procedure based on the ANOVA model to identify genes that have different gene expression profiles among experimental groups in time-course experiments. Especially, we propose a permutation test which does not require the normality assumption. For this test, we use residuals from the ANOVA model only with time-effects. Using this test, we detect genes that have different gene expression profiles among experimental groups. The proposed model is illustrated using cDNA microarrays of 3840 genes obtained in an experiment to search for changes in gene expression profiles during neuronal differentiation of cortical stem cells.  相似文献   

3.
MOTIVATION: Association pattern discovery (APD) methods have been successfully applied to gene expression data. They find groups of co-regulated genes in which the genes are either up- or down-regulated throughout the identified conditions. These methods, however, fail to identify similarly expressed genes whose expressions change between up- and down-regulation from one condition to another. In order to discover these hidden patterns, we propose the concept of mining co-regulated gene profiles. Co-regulated gene profiles contain two gene sets such that genes within the same set behave identically (up or down) while genes from different sets display contrary behavior. To reduce and group the large number of similar resulting patterns, we propose a new similarity measure that can be applied together with hierarchical clustering methods. RESULTS: We tested our proposed method on two well-known yeast microarray data sets. Our implementation mined the data effectively and discovered patterns of co-regulated genes that are hidden to traditional APD methods. The high content of biologically relevant information in these patterns is demonstrated by the significant enrichment of co-regulated genes with similar functions. Our experimental results show that the Mining Attribute Profile (MAP) method is an efficient tool for the analysis of gene expression data and competitive with bi-clustering techniques.  相似文献   

4.
MOTIVATION: Clustering algorithms are widely used in the analysis of microarray data. In clinical studies, they are often applied to find groups of co-regulated genes. Clustering, however, can also stratify patients by similarity of their gene expression profiles, thereby defining novel disease entities based on molecular characteristics. Several distance-based cluster algorithms have been suggested, but little attention has been given to the distance measure between patients. Even with the Euclidean metric, including and excluding genes from the analysis leads to different distances between the same objects, and consequently different clustering results. RESULTS: We describe a new clustering algorithm, in which gene selection is used to derive biologically meaningful clusterings of samples by combining expression profiles and functional annotation data. According to gene annotations, candidate gene sets with specific functional characterizations are generated. Each set defines a different distance measure between patients, leading to different clusterings. These clusterings are filtered using a resampling-based significance measure. Significant clusterings are reported together with the underlying gene sets and their functional definition. CONCLUSIONS: Our method reports clusterings defined by biologically focused sets of genes. In annotation-driven clusterings, we have recovered clinically relevant patient subgroups through biologically plausible sets of genes as well as new subgroupings. We conjecture that our method has the potential to reveal so far unknown, clinically relevant classes of patients in an unsupervised manner. AVAILABILITY: We provide the R package adSplit as part of Bioconductor release 1.9 and on http://compdiag.molgen.mpg.de/software.  相似文献   

5.
6.
A mixture model-based approach to the clustering of microarray expression data   总被引:13,自引:0,他引:13  
MOTIVATION: This paper introduces the software EMMIX-GENE that has been developed for the specific purpose of a model-based approach to the clustering of microarray expression data, in particular, of tissue samples on a very large number of genes. The latter is a nonstandard problem in parametric cluster analysis because the dimension of the feature space (the number of genes) is typically much greater than the number of tissues. A feasible approach is provided by first selecting a subset of the genes relevant for the clustering of the tissue samples by fitting mixtures of t distributions to rank the genes in order of increasing size of the likelihood ratio statistic for the test of one versus two components in the mixture model. The imposition of a threshold on the likelihood ratio statistic used in conjunction with a threshold on the size of a cluster allows the selection of a relevant set of genes. However, even this reduced set of genes will usually be too large for a normal mixture model to be fitted directly to the tissues, and so the use of mixtures of factor analyzers is exploited to reduce effectively the dimension of the feature space of genes. RESULTS: The usefulness of the EMMIX-GENE approach for the clustering of tissue samples is demonstrated on two well-known data sets on colon and leukaemia tissues. For both data sets, relevant subsets of the genes are able to be selected that reveal interesting clusterings of the tissues that are either consistent with the external classification of the tissues or with background and biological knowledge of these sets. AVAILABILITY: EMMIX-GENE is available at http://www.maths.uq.edu.au/~gjm/emmix-gene/  相似文献   

7.
MOTIVATION: Modern machine learning methods based on matrix decomposition techniques, like independent component analysis (ICA) or non-negative matrix factorization (NMF), provide new and efficient analysis tools which are currently explored to analyze gene expression profiles. These exploratory feature extraction techniques yield expression modes (ICA) or metagenes (NMF). These extracted features are considered indicative of underlying regulatory processes. They can as well be applied to the classification of gene expression datasets by grouping samples into different categories for diagnostic purposes or group genes into functional categories for further investigation of related metabolic pathways and regulatory networks. RESULTS: In this study we focus on unsupervised matrix factorization techniques and apply ICA and sparse NMF to microarray datasets. The latter monitor the gene expression levels of human peripheral blood cells during differentiation from monocytes to macrophages. We show that these tools are able to identify relevant signatures in the deduced component matrices and extract informative sets of marker genes from these gene expression profiles. The methods rely on the joint discriminative power of a set of marker genes rather than on single marker genes. With these sets of marker genes, corroborated by leave-one-out or random forest cross-validation, the datasets could easily be classified into related diagnostic categories. The latter correspond to either monocytes versus macrophages or healthy vs Niemann Pick C disease patients.  相似文献   

8.
9.
MOTIVATION: Gene expression experiments provide a fast and systematic way to identify disease markers relevant to clinical care. In this study, we address the problem of robust identification of differentially expressed genes from microarray data. Differentially expressed genes, or discriminator genes, are genes with significantly different expression in two user-defined groups of microarray experiments. We compare three model-free approaches: (1). nonparametric t-test, (2). Wilcoxon (or Mann-Whitney) rank sum test, and (3). a heuristic method based on high Pearson correlation to a perfectly differentiating gene ('ideal discriminator method'). We systematically assess the performance of each method based on simulated and biological data under varying noise levels and p-value cutoffs. RESULTS: All methods exhibit very low false positive rates and identify a large fraction of the differentially expressed genes in simulated data sets with noise level similar to that of actual data. Overall, the rank sum test appears most conservative, which may be advantageous when the computationally identified genes need to be tested biologically. However, if a more inclusive list of markers is desired, a higher p-value cutoff or the nonparametric t-test may be appropriate. When applied to data from lung tumor and lymphoma data sets, the methods identify biologically relevant differentially expressed genes that allow clear separation of groups in question. Thus the methods described and evaluated here provide a convenient and robust way to identify differentially expressed genes for further biological and clinical analysis.  相似文献   

10.
11.
12.
13.
Petri net modelling of gene regulation of the Duchenne muscular dystrophy   总被引:1,自引:0,他引:1  
  相似文献   

14.
In this work, the application of a multivariate curve resolution procedure based on alternating least squares optimization (MCR-ALS) for the analysis of data from DNA microarrays is proposed. For this purpose, simulated and publicly available experimental data sets have been analyzed. Application of MCR-ALS, a method that operates without the use of any training set, has enabled the resolution of the relevant information about different cancer lines classification using a set of few components; each of these defined by a sample and a pure gene expression profile. From resolved sample profiles, a classification of samples according to their origin is proposed. From the resolved pure gene expression profiles, a set of over- or underexpressed genes that could be related to the development of cancer diseases has been selected. Advantages of the MCR-ALS procedure in relation to other previously proposed procedures such as principal component analysis are discussed.  相似文献   

15.
16.
MOTIVATION: Selection of genes most relevant and informative for certain phenotypes is an important aspect in gene expression analysis. Most current methods select genes based on known phenotype information. However, certain set of genes may correspond to new phenotypes which are yet unknown, and it is important to develop novel effective selection methods for their discovery without using any prior phenotype information. RESULTS: We propose and study a new method to select relevant genes based on their similarity information only. The method relies on a mechanism for discarding irrelevant genes. A two-way ordering of gene expression data can force irrelevant genes towards the middle in the ordering and thus can be discarded. Mechanisms based on variance and principal component analysis are also studied. When applied to expression profiles of colon cancer and leukemia, the unsupervised method outperforms the baseline algorithm that simply uses all genes, and it also selects relevant genes close to those selected using supervised methods. SUPPLEMENT: More results and software are online: http://www.nersc.gov/~cding/2way.  相似文献   

17.
MOTIVATION: Biological assays are often carried out on tissues that contain many cell lineages and active pathways. Microarray data produced using such material therefore reflect superimpositions of biological processes. Analysing such data for shared gene function by means of well-matched assays may help to provide a better focus on specific cell types and processes. The identification of genes that behave similarly in different biological systems also has the potential to reveal new insights into preserved biological mechanisms. RESULTS: In this article, we propose a hierarchical Bayesian model allowing integrated analysis of several microarray data sets for shared gene function. Each gene is associated with an indicator variable that selects whether binary class labels are predicted from expression values or by a classifier which is common to all genes. Each indicator selects the component models for all involved data sets simultaneously. A quantitative measure of shared gene function is obtained by inferring a probability measure over these indicators. Through experiments on synthetic data, we illustrate potential advantages of this Bayesian approach over a standard method. A shared analysis of matched microarray experiments covering (a) a cycle of mouse mammary gland development and (b) the process of in vitro endothelial cell apoptosis is proposed as a biological gold standard. Several useful sanity checks are introduced during data analysis, and we confirm the prior biological belief that shared apoptosis events occur in both systems. We conclude that a Bayesian analysis for shared gene function has the potential to reveal new biological insights, unobtainable by other means. AVAILABILITY: An online supplement and MatLab code are available at http://www.sykacek.net/research.html#mcabf  相似文献   

18.
Prophages are encoded in most genomes of sequenced Clostridium difficile strains. They are key components of the mobile genetic elements and, as such, are likely to influence the biology of their host strains. The majority of these phages are not amenable to propagation, and therefore the development of a molecular marker is a useful tool with which to establish the extent and diversity of C. difficile prophage carriage within clinical strains. To design markers, several candidate genes were analyzed including structural and holin genes. The holin gene is the only gene present in all sequenced phage genomes, conserved at both terminals, with a variable mid-section. This allowed us to design two sets of degenerate PCR primers specific to C. difficile myoviruses and siphoviruses. Subsequent PCR analysis of 16 clinical C. difficile ribotypes showed that 15 of them are myovirus positive, and 2 of them are also siphovirus positive. Antibiotic induction and transmission electron microscope analysis confirmed the molecular prediction of myoviruses and/or siphovirus presence. Phylogenetic analysis of the holin sequences identified three groups of C. difficile phages, two within the myoviruses and a divergent siphovirus group. The marker also produced tight groups within temperate phages that infect other taxa, including Clostridium perfringens, Clostridium botulinum, and Bacillus spp., which suggests the potential application of the holin gene to study prophage carriage in other bacteria. This study reveals the high incidence of prophage carriage in clinically relevant strains of C. difficile and correlates the molecular data to the morphological observation.  相似文献   

19.
The model plant Arabidopsis has been well-studied using high-throughput genomics technologies, which usually generate lists of differentially expressed genes under various conditions. Our group recently collected 1065 gene lists from 397 gene expression studies as a knowledgebase for pathway analysis. Here we systematically analyzed these gene lists by computing overlaps in all-vs.-all comparisons. We identified 16,261 statistically significant overlaps, represented by an undirected network in which nodes correspond to gene lists and edges indicate significant overlaps. The network highlights the correlation across the gene expression signatures of the diverse biological processes. We also partitioned the main network into 20 sub-networks, representing groups of highly similar expression signatures. These are common sets of genes that were co-regulated under different treatments or conditions and are often related to specific biological themes. Overall, our result suggests that diverse gene expression signatures are highly interconnected in a modular fashion.  相似文献   

20.
MOTIVATION: Gene expression profiling experiments in cell lines and animal models characterized by specific genetic or molecular perturbations have yielded sets of genes annotated by the perturbation. These gene sets can serve as a reference base for interrogating other expression datasets. For example, a new dataset in which a specific pathway gene set appears to be enriched, in terms of multiple genes in that set evidencing expression changes, can then be annotated by that reference pathway. We introduce in this paper a formal statistical method to measure the enrichment of each sample in an expression dataset. This allows us to assay the natural variation of pathway activity in observed gene expression data sets from clinical cancer and other studies. RESULTS: Validation of the method and illustrations of biological insights gleaned are demonstrated on cell line data, mouse models, and cancer-related datasets. Using oncogenic pathway signatures, we show that gene sets built from a model system are indeed enriched in the model system. We employ ASSESS for the use of molecular classification by pathways. This provides an accurate classifier that can be interpreted at the level of pathways instead of individual genes. Finally, ASSESS can be used for cross-platform expression models where data on the same type of cancer are integrated over different platforms into a space of enrichment scores. AVAILABILITY: Versions are available in Octave and Java (with a graphical user interface). Software can be downloaded at http://people.genome.duke.edu/assess.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号