首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
G Sipos  A Puoti    A Conzelmann 《The EMBO journal》1994,13(12):2789-2796
Glycosylphosphatidylinositol (GPI) anchoring of membrane proteins occurs through two distinct steps, namely the assembly of a precursor glycolipid and its subsequent transfer onto newly synthesized proteins. To analyze the structure of the yeast precursor glycolipid we made use of the pmi40 mutant that incorporates very high amounts of [3H]mannose. Two very polar [3H]mannose-labeled glycolipids named CP1 and CP2 qualified as GPI precursor lipids since their carbohydrate head group, Man alpha 1,2(X-->PO4-->6)Man alpha 1,2Man alpha 1,6Man alpha-GlcN-inositol (with X most likely being ethanolamine) comprises the core structure which is common to all GPI anchors described so far. CP1 predominates in cells grown at 24 degrees C whereas CP2 is induced by stress conditions. The apparent structural identity of the head groups suggests that CP1 and CP2 contain different lipid moieties. The lipid moieties of both CP1 and CP2 can be removed by mild alkaline hydrolysis although the protein-bound GPI anchors made by the pmi40 cells under identical labeling conditions contain mild base resistant ceramides. These findings imply that the ceramide moiety found on the majority of yeast GPI anchored proteins is added through a lipid remodeling step that occurs after the addition of the GPI precursor glycolipids to proteins.  相似文献   

2.
Numerous glycoproteins of Saccharomyces cerevisiae are anchored in the lipid bilayer by a glycophosphatidylinositol (GPI) anchor. Mild alkaline hydrolysis reveals that the lipid components of these anchors are heterogeneous in that both base-sensitive and base-resistant lipid moieties can be found on most proteins. The relative abundance of base-resistant lipid moieties is different for different proteins. Strong alkaline or acid hydrolysis of the mild base-resistant lipid component liberates C18-phytosphingosine indicating the presence of a ceramide. Two lines of evidence suggest that proteins are first attached to a base-sensitive GPI anchor, the lipid moiety of which subsequently gets exchanged for a base-resistant ceramide: (i) an early glycolipid intermediate of GPI biosynthesis only contains base-sensitive lipid moieties; (ii) after a pulse with [3H]myo-inositol the relative abundance of base-sensitive GPI anchors decreases significantly during chase. This decrease does not take place if GPI-anchored proteins are retained in the ER.  相似文献   

3.
This study identifies and partially characterizes an insulin-sensitive glycophospholipid in H35 hepatoma cells. The incorporation of [3H]glucosamine into cell lipids was investigated. A major labeled lipid was purified by sequential thin layer chromatography using first an acid followed by a basic solvent system. After hydrochloric acid hydrolysis and sugar analysis by thin layer chromatography, 80% of the radioactivity in the purified lipid was found to comigrate with glucosamine. H35 cells were prelabeled with [3H]glucosamine for either 4 or 24 h and treated with insulin causing a dose-dependent stimulation of turnover of the glycophospholipid which was detected within 1 min. The purified glycolipid was cleaved by nitrous acid deamination indicating that the glucosamine C-1 was linked to the lipid moiety through a glycosidic bond. [14C]Ethanolamine, [3H]inositol, and [3H]sorbitol were not incorporated into the purified glycolipid. The incorporation of various fatty acids into this glycolipid was also studied. [3H]Palmitate was found to be preferentially incorporated while myristic acid, stearic acid, oleic acid, linoleic acid, linolenic acid, and arachidonic acid were either not incorporated or incorporated less than 10% of palmitate. The purified glycolipid labeled with [3H]palmitate was cleaved by treatment with phospholipase A2 but was resistant to mild alkali hydrolysis suggesting the presence of a 1-hexadecyl,2-palmitoyl-glyceryl moiety in the purified lipid. Treatment of labeled glycophospholipid with phosphatidylinositol-specific phospholipase C from Staphylococcus aureus generated a compound migrating as 1-alkyl,2-acyl-glycerol and a polar head group with a size in the range from 800 to 3500. These findings coupled with the nitrous acid deamination demonstrate that glucosamine was covalently linked through a phosphodiester bond to the glyceryl moiety of the purified glycolipid. These findings suggest that insulin acts on this glycophospholipid by stimulating an insulin-sensitive phospholipase C. This unique glycophospholipid may play an important role in insulin action by serving as precursor of insulin-generated mediators.  相似文献   

4.
Biosynthesis of glycophosphatidylinositol-anchored membrane glycoproteins proceeds through the attachment of a preformed glycolipid onto a C-terminal amino acid rapidly after translation. Here we describe the structural analysis of two very polar glycolipids which can be observed after metabolic labeling of lymphoma cell lines S1A and EL-4 with either tritiated myo-inositol, mannose, or ethanolamine. These lipids are not made by mutant cells deficient in the biosynthesis of glycophosphatidylinositol anchors. The lipids were isolated, and their carbohydrate moiety was characterized using hydrofluoric acid dephosphorylation, nitrous acid deamination, acetolysis, exoglycosidase treatments, and combinations thereof to produce labeled fragments which could be analyzed by paper chromatography. Results are compatible with the structure (X-->)Man alpha 1,2 Man alpha 1,6(Y-->)Man alpha-GlcN-acylinositol, X and Y being hydrofluoric acid-sensitive substituents (most likely phosphoethanolamine). The anchor oligosaccharide of the glycophosphatidylinositol protein anchors of S1A cells was isolated, similarly characterized, and found to contain the identical carbohydrate structure. Pulse-chase experiments indicate that the very polar glycolipids have half-lives which are much longer than the one of phosphatidylinositol. The results suggest that these very polar glycolipids represent supernumerary precursor glycolipids which did not get transferred onto proteins or represent processed forms of such precursors.  相似文献   

5.
Incubation of SV40-transformed human lung fibroblasts with [3H]glucosamine for 1 h. followed by chloroform:methanol extraction and thin layer chromatographic analysis, revealed the presence of a major radioactive lipid that was isolated and characterized as GIcUA-(1 leads to 4)-GlcNAc-P-P-dolichol. An identical lipid was formed in smaller quantities under similar incubation conditions in several fibroblastic lines, HeLa cells, and in mouse L cells. Rat lung microsomal preparations catalyze the synthesis of the disaccharide lipid in the following sequence of reactions: UDP-[3H]GlcNAc + dolichol-P leads to [3H]GlcNAc-P-P-dolichol (1) [3H]GlcNAc-P-P-dolichol + UDP-[14C]GlcUA leads to [14C]GlcUA-[3H]GlcNAc-P-P-dolichol (2) The double-labeled lipid was identical to the lipid isolated from SV40-transformed fibroblasts with regard to its behavior on thin layer and silicic acid chromatography. Further, the double-labeled disaccharide released from the lipid by mild acid hydrolysis was identical to GlcUA-(1 leads to 4)-GlcNAc in its chromatographic and electrophoretic behavior and in its composition. The occurrence of a polyprenol derivative of GlcUA-(1 leads to 4)-GlcNAc suggests a possible role for this lipid in the biosynthesis of the repeating disaccharide units of proteoglycans, such as heparin.  相似文献   

6.
Two glucuronic acid-containing glycosphingolipids were purified from larvae of the green-bottle fly, Lucilia caesar by DEAE-Sephadex and Iatrobeads column chromatography. Structures of these acidic glycolipids, glycolipids X and Y, were elucidated by means of sugar analysis, permethylation, enzymatic hydrolysis, negative-ion fast atom bombardment mass spectrometry, and NMR studies. Glycolipid X was determined to have the following structure: GlcA beta 1-3Gal beta 1-3GalNAc alpha 1-4 GalNAc beta 1-4 GlcNAc beta 1-3Man beta 1-4Glc beta 1-1 ceramide. The other acidic glycolipid, glycolipid Y contains a phosphoethanolamine residue linked through the 6-hydroxy group of the N-acetyl-glucosamine unit of glycolipid X. The ceramide moieties were composed of saturated fatty acids (16:0-22:0) and tetradeca- and hexadeca-4-sphingenines. Based on the structural similarity of the ceramide moieties it appears likely that glycolipid X is an intermediate from which glycolipid Y is synthesized by addition of a phosphoethanolamine residue.  相似文献   

7.
The lipopolysaccharide (LPS) core domain of Gram-negative bacteria plays an important role in outer membrane stability and host interactions. Little is known about the biochemical properties of the glycosyltransferases that assemble the LPS core. We now report the purification and characterization of the Rhizobium leguminosarum mannosyl transferase LpcC, which adds a mannose unit to the inner 3-deoxy-d-manno-octulosonic acid (Kdo) moiety of the LPS precursor, Kdo(2)-lipid IV(A). LpcC containing an N-terminal His(6) tag was assayed using GDP-mannose as the donor and Kdo(2)-[4'-(32)P]lipid IV(A) as the acceptor and was purified to near homogeneity. Sequencing of the N terminus confirmed that the purified enzyme is the lpcC gene product. Mild acid hydrolysis of the glycolipid generated in vitro by pure LpcC showed that the mannosylation occurs on the inner Kdo residue of Kdo(2)-[4'-(32)P]lipid IV(A). A lipid acceptor substrate containing two Kdo moieties is required by LpcC, since no activity is seen with lipid IV(A) or Kdo-lipid IV(A). The purified enzyme can use GDP-mannose or, to a lesser extent, ADP-mannose (both of which have the alpha-anomeric configuration) for the glycosylation of Kdo(2)-[4'-(32)P]lipid IV(A). Little or no activity is seen with ADP-glucose, UDP-glucose, UDP-GlcNAc, or UDP-galactose. A Salmonella typhimurium waaC mutant, which lacks the enzyme for incorporating the inner l-glycero-d-manno-heptose moiety of LPS, regains LPS with O-antigen when complemented with lpcC. An Escherichia coli heptose-less waaC-waaF deletion mutant expressing the R. leguminosarum lpcC gene likewise generates a hybrid LPS species consisting of Kdo(2)-lipid A plus a single mannose residue. Our results demonstrate that heterologous lpcC expression can be used to modify the structure of the Salmonella and E. coli LPS cores in living cells.  相似文献   

8.
In order to evaluate the possibility in a pig thyroid rough microsomal system of a transfer of pre-assembled sugar cores from sugar-lipids to protein, we have examined after incubation with GDP-[14C]Man the compounds bearing labeled saccharides and have determined some properties of their released saccharide moieties. The [14C]Man material specifically soluble in CHCl3/CH3OH/H2O, 10 : 10 : 3, behaved on DEAE-cellulose and when treated with hot alkali and alkaline phosphatase as a lipid pyrophosphate (sometimes accompanied by some dolichol-P-[14C]Man). Its saccharide moiety, released by mild acid, exhibited properties (molecular size, sensitivity to α-mannosidase, affinity for concanavalin A and charge modification introduced by a strong reductive alkaline treatment) pointing to a polymannosylated N,N′-diacetylchitobiose containing an average of nine monosaccharide units (from six to twelve). The [14C]mannosylated glycoproteins have represented all the polymeric label remaining after lipid extraction. From the susceptibility of their pronase glycopeptides to a differential reductive alkaline hydrolysis, it was concluded that their label belonged mainly to N-glycosidically linked units. Released saccharides exhibited the same properties as those from lipids, a result substantiating the possibility raised from previous studies of a transfer of pre-assembled moieties.  相似文献   

9.
A glycosylphosphatidylinositol (GPI) glycolipid antigen recognized by sera from patients with visceral leishmaniasis was isolated from Leishmania donovani promastigotes. The carbohydrate moiety was cleaved from the lipid part by digestion with specific phosphatidylinositol phospholipase C. After separation, structural analysis was carried out on the phosphorylated inositol oligosaccharide and the alkylacyl glycerol. The following major structures were found: [formula: see text] The presence of the conserved sequence Man alpha 1-2Man alpha 1-6Man alpha 1-4GlcN-PI of glycosyl phosphatidylinositol protein anchors in this antigen may be consistent with a precursor role of Leishmania glycosyl phosphatidylinositol anchored proteins for this glycolipid.  相似文献   

10.
Lipophosphoglycan (LPG) is the major surface glycoconjugate of Leishmania donovani promastigotes and is composed of a capped polymer of repeating PO4-6Gal(beta 1,4)Man alpha 1 disaccharide units linked via a phosphosaccharide core to a lyso-1-O-alkylphosphatidylinositol anchor. An exogenous acceptor composed of the glycolipid anchor portion of LPG was shown to stimulate the enzymatic synthesis of the repeating phosphorylated disaccharide units of LPG in a cell-free system. Using the exogenous acceptor, GDP-[3H]Man, [beta-32P]GDP-Man, and unlabeled UDP-Gal as substrates, membrane preparations from an LPG-defective mutant of L. donovani that lacks endogenous acceptors catalyzed the incorporation of the doubly labeled mannosylphosphate unit into a product that exhibited the chemical and chromatographic characteristics of LPG. Analysis of fragments generated by mild acid hydrolysis of the radiolabeled product indicated that [3H]mannose-1-[32P]PO4 had been transferred from the dual-labeled sugar nucleotide. These results are consistent with the proposal that the repeating units of the L. donovani LPG are synthesized by the alternating transfer of mannose 1-phosphate and galactose from their respective nucleotide donors.  相似文献   

11.
Concanavalin A (ConA) kills the procyclic (insect) form of Trypanosoma brucei by binding to its major surface glycoprotein, procyclin. We previously isolated a mutant cell line, ConA 1-1, that is less agglutinated and more resistant to ConA killing than are wild-type (WT) cells. Subsequently we found that the ConA resistance phenotype in this mutant is due to the fact that the procyclin either has no N-glycan or has an N-glycan with an altered structure. Here we demonstrate that the alteration in procyclin N-glycosylation correlates with two defects in the N-linked oligosaccharide biosynthetic pathway. First, ConA 1-1 has a defect in activity of polyprenol reductase, an enzyme involved in synthesis of dolichol. Metabolic incorporation of [3H]mevalonate showed that ConA 1-1 synthesizes equal amounts of dolichol and polyprenol, whereas WT cells make predominantly dolichol. Second, we found that ConA 1-1 synthesizes and accumulates an oligosaccharide lipid (OSL) precursor that is smaller in size than that from WT cells. The glycan of OSL in WT cells is apparently Man9GlcNAc2, whereas that from ConA 1-1 is Man7GlcNAc2. The smaller OSL glycan in the ConA 1-1 explains how some procyclin polypeptides bear a Man4GlcNAc2 modified with a terminal N-acetyllactosamine group, which is poorly recognized by ConA.  相似文献   

12.
Recent evidence shows that the mature Thy-1 surface glycoprotein lacks the C-terminal amino acids 113 to 143 predicted from the cDNA sequence and is anchored in the plasma membrane by a complex, phosphatidylinositol-containing glycolipid attached to the alpha-carboxyl group of amino acid 112. Here we studied the biosynthesis of Thy-1 in two previously described and two newly isolated Thy-1-deficient mutant cell lines. Somatic cell hybridization indicated that their mutations affected some processing step rather than the Thy-1 structural gene. The Thy-1 made by mutants of classes C, F, and H bound detergent but, in contrast to wild-type Thy-1, their detergent-binding moieties could not be removed by phospholipase C. In addition, tryptophan, which only occurs in position 124, was incorporated into Thy-1 of these mutants but not of wild-type cells. Last, the Thy-1 of wild-type but not mutant cells could be radiolabeled with [3H]palmitic acid. Together, these findings strongly suggest that mutants of classes C, F, and H accumulate a biosynthetic intermediate of Thy-1 which retains at least part of the hydrophobic C-terminal peptide. The Thy-1 of these mutants remained endoglycosidase H sensitive, suggesting that it accumulated in the rough endoplasmic reticulum or the Cis-Golgi. A different Thy-1 intermediate was found in a class B mutant cell line: the Thy-1 of this mutant was 2 kilodaltons smaller than the Thy-1 of other cell lines, did not bind detergent, and was rapidly secreted via a normal secretory pathway.  相似文献   

13.
Incubation of a membrane preparation from the lactating bovine mammary gland with UDP-[3H]GlcNAc, GDP-[14C]Man, and UDP-[3H]Glc results in the biosynthesis of 15 lipid-linked saccharides that differ from one another by a monosaccharide unit. Pulse and chase kinetics indicate that these glycolipids are related to one another as precursor products for the biosynthesis of asparagine-linked glycoproteins of this tissue. [Man-14C]- and [Man-14C, GlcNAc-3H]saccharides were prepared from corresponding glycolipids by mild acid hydrolysis. Following extensive purification by paper and gel filtration chromatography, structural characterization was conducted on tri-, tetra-, penta-, and undecasaccharides via size determination on calibrated columns of Bio-Gel P-2 and P-4, compositional analysis, exo- and endoglycosidase digestions, methylation, Smith degradation, and acetolysis. These structures were identified as: Man beta 1 leads to 4(3)GlcNAc beta 1 leads to 4(3)Glc-NAc, Man alpha 1 leads to 3Man beta 1 leads to 4(3)GlcNAc beta 1 leads to 4(3)GlcNAc, Man alpha 1 leads to 3(Man alpha 1 leads to 6)Man beta 1 leads to 4(3)Glc NAc beta 1 leads to 4(3)Glc-NAc, and Man alpha 1 leads to 2 Man alpha 1 leads to 2Man alpha 1 leads to 3(Man alpha 1 leads to 2Man alpha 1 leads to 6[Man alpha 1 leads to 2Man alpha 1 leads to 3]Man alpha 1 leads to 6)Man beta 1 leads to 4(3)GlcNAc beta 1 leads to 4(3)GlcNAc.  相似文献   

14.
We recently described a 125 kd membrane glycoprotein in Saccharomyces cerevisiae which is anchored in the lipid bilayer by an inositol-containing phospholipid. We now find that when S. cerevisiae cells are metabolically labeled with [3H]myoinositol, many glycoproteins become labeled more strongly than the 125 kd protein. Myoinositol is attached to these glycoproteins as part of a phospholipid moiety which resembles glycophospholipid anchors of other organisms. Labeling of proteins with [3H]myoinositol for short times and in secretion mutants blocked at various stages of the secretory pathway shows that these phospholipid moieties can be added to proteins in the endoplasmic reticulum and that these proteins are transported to the Golgi by the regular secretory pathway. sec53, a mutant which cannot produce GDP-mannose at 37 degrees C, does not incorporate myoinositol or palmitic acid into membrane glycoproteins at this temperature, suggesting that GDP-mannose is required for the biosynthesis of these phospholipid moieties. All other secretion and glycosylation mutants tested add phospholipid moieties to proteins normally.  相似文献   

15.
Two complementing mutations in lipid-linked oligosaccharide biosynthesis have been isolated following a [3H]mannose suicide enrichment. Rather than making the wild type precursor oligosaccharide, Glc3man9Glc-NA2-P-P-dolichol, the mutants, alg5-1 and alg6-1, accumulate Man9GlcNAc2-P-P-dolichol as their largest lipid-linked oligosaccharide in vivo and in vitro. When UDP-[3H]Glc was added to microsomal membranes of each mutant, neither could elongate Man9GlcNAc2-P-P-dolichol and only alg6-1 could synthesize dolichol-phosphoglucose. When dolicholphospho[3H]glucose was added to microsomes from alg5-1, alg6-1, or the parental strain, only alg5-1 and the parental strain made glucosylated lipid-linked oligosaccharides. These results indicate that alg5-1 cells are unable to synthesize dolichol phosphoglucose while alg6-1 cells are unable to transfer glucose from dolichol phosphoglucose to the unglucosylated lipid-linked oligosaccharide. We also present evidence that both mutants transfer Man9GlcNAc2 to protein.  相似文献   

16.
Based on recent analytical and enzymological studies, a topological model for the role of alpha-D-mannosyl-(1-->3)-alpha-D-mannosyl-(1-->3)-diacylglycerol (Man(2)-DAG) as a lipid anchor precursor and mannosylphosphorylundecaprenol (Man-P-Und) as a mannosyl donor in the assembly of a membrane-associated lipomannan (LM) in Micrococcus luteus has been proposed. In this study, a [(3)H]mannose-suicide selection procedure has been used to identify temperature-sensitive (ts) mutants defective in LM assembly. Two micrococcal mutants with abnormal levels of Man(2)-DAG and LM at the nonpermissive temperature (37 degrees C), mms1 and mms2, have been isolated and characterized. In vivo and in vitro biochemical assays indicate that mms1 cells have a defect in the mannosyltransferase catalyzing the conversion of Man-DAG to Man(2)-DAG, and mms2 has a temperature-sensitive defect in the synthesis of Man-P-Und. Because mms1 cells are depleted of endogenous Man(2)-DAG, membranes from this mutant efficiently converted purified, exogenous [(3)H]Man(2)-DAG to [(3)H]LM by a Man-P-Und-dependent process. An obligatory role for Man-P-Und as a mannosyl donor in the elongation process was also demonstrated by showing that the conversion of exogenous [(3)H]Man(2)-DAG to [(3)H]LM by membranes from mms1 cells in the presence of GDP-Man was inhibited by amphomycin. In addition, consistent with Man(2)-DAG serving as a lipid anchor precursor for LM assembly, endogenous, prelabeled [(3)H]Man(2)-DAG was converted to [(3)H]LM when membranes from mms2 cells were incubated with purified, exogenous Man-P-Und. These studies provide the first direct proof for the role of Man(2)-DAG as the lipid anchor precursor for LM, and suggest that Man(2)-DAG may be essential for the normal growth of M. luteus cells.  相似文献   

17.
The glycosyl phosphatidylinositol (PI) membrane anchors of several proteins contain 1-alkyl-2-acyl-glycerophosphoinositol. Although this PI analog has never been found free in cells, the presence of "alkyl-PI" as a component of some membrane anchors suggests its existence. The resistance of ether linkages to cleavage by mild alkali treatment was used to detect possible alkyl chains in the [3H]inositol-labeled phospholipids of several murine lymphoma cell lines which normally express the glycosyl PI-anchored protein Thy-1. One lipid, which arose from alkaline hydrolysis of PI and had mobility on thin layer chromatography similar to lyso-PI, was detected in all wild-type cell lines. Analysis of the base-stable inositol lipids of several lymphoma lines that are deficient in Thy-1 surface expression because of defective biosynthesis of the glycosyl PI membrane anchor revealed that the putative alkyl-PI was missing in the class F mutant. The levels of both the ethanolamine- and choline-containing plasmalogens were also decreased 10-fold in these cells, suggesting a general defect in the production of ether lipids. The activity of the peroxisomal form of dihydroxyacetonephosphate acyltransferase, which catalyzes the first step of ether lipid biosynthesis, was found to be 10-fold decreased relative to the wild-type level. Unlike previously described Chinese hamster ovary cell mutants deficient in ether lipids (Zoeller, R. A., and Raetz, C. R. H. (1986) Proc. Natl. Acad. Sci. U. S. A. 83, 5170-5174), the class F Thy-1- cells contain intact functional peroxisomes. Attempts to restore the putative alkyl-PI to the class F mutants by alkylglycerol supplementation were unsuccessful, despite concomitant restoration of the much larger plasmenylethanolamine pool, suggesting that there are some differences in the biosynthesis of this PI analog and plasmalogens that are presently not understood. Although the deficiencies in ether lipids and surface expression of Thy-1 in the class F mutants could also be due to separate mutations, our findings raise the possibility that alkyl-PI exists in animal cells and may be an obligate precursor for the biosynthesis of the glycosyl-PI membrane anchor of Thy-1.  相似文献   

18.
The variant surface glycoprotein (VSG) of the ILTat 1.3 variant of Trypanosoma brucei has two asparagine-linked glycan moieties, as well as a phosphatidylinositol glycan membrane anchor. We have investigated the structure and processing of each of these oligosaccharides through analysis of the intact protein and of glycopeptides. Processing has been examined by comparing glycan structures purified from an immature intracellular form (58 kDa) of VSG with those of the mature form (59 kDa) found on the parasite surface. We find exclusively high mannose oligosaccharides (Man4-7-GlcNAc2) at Asn-432 in both the immature 58-kDa and mature 59-kDa forms. In contrast, the "core" oligosaccharide of Asn-419 (Man3-GlcNAc2) appears to be nearly quantitatively processed to a complex biantennary structure [Gal-GlcNAc-Man)2-Man-GlcNAc2) during VSG maturation. The asparagine-linked structures at Asn-419, but not those at Asn-432, are resistant to endo-beta-N-acetylglucosaminidase H within 30 s of biosynthesis. This suggests possible novel and selective mechanisms for glycosylation in African trypanosomes. Finally, we show that the carboxyl-terminal glycolipid is galactosylated (3-4 residues) relatively late in VSG biosynthesis. Phosphatidylinositol glycans have been identified on a growing number of eukaryotic membrane proteins. This report provides a direct demonstration of the processing of such a glycolipid anchor following its attachment to protein.  相似文献   

19.
A novel screening procedure was developed for isolating Chinese hamster ovary cell mutants altered in the early steps of the biosynthesis of asparagine-linked glycoproteins. This procedure identifies cells with low intracellular levels of two lysosomal hydrolases, beta-glucuronidase and alpha-iduronidase. One mutant cell line isolated in this way, CHB 11-1-3, has low intracellular levels of seven lysosomal enzymes as compared to wild-type cells. Although CHB 11-1-3 synthesizes mannosylphosphoryldolichol and [Man]5[NAcG1cNH2]2-P-P-lipid, it fails to utilize these lipid intermediates to make normal amounts of [Glc]3[Man]9[NAcG1cNH2]2P-P-lipid. As a consequence of this glycosylation defect, this mutant transfers oligosaccharides of a different structure than wild type to the lysosomal enzyme beta-hexosaminidase. In addition, it underglycosylates its proteins.  相似文献   

20.
Inhibitory effects of the endotoxic glycolipid from Salmonella minnesota R595 on hepatic drug-metabolizing enzyme activities in mice were investigated, and the depressor activity of the glycolipid in the enzyme systems was confirmed. Among degradation products of lipopolysaccharides tested, lipid A preparations derived from the mild acetic acid hydrolysates of lipopolysaccharides were the most active, but the lipid A fractions prepared from the hydrolysates with 1 N-HCl were almost inactive. A degraded polysaccharide fraction from E. coli lipopolysaccharide was inactive. The activities of the glycolipid and the lipid A preparation were markedly reduced by treatment with alkaline-hydroxylamine, mild alkali or hydrazine. The data showed that the lipid A moiety of the glycolipid may be responsible for the inhibitory activity on the hepatic drug-metabolizing enzyme systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号