首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Complex and defined media have been previously proposed for production of oospores of Pythium oligandrum , a fungal mycoparasite of several disease-causing fungi. However, oospore production in synthetic media requires long periods of incubation and yields lower oospore numbers than in complex media. Moreover, although complex media produce high oospore yields, these yields are not reproducible because of the variability in the composition of complex nutrient sources. In the present study, the average composition of molasses reported in the literature was utilized as a base to develop a new defined medium for P. oligandrum oospore production. Forty-two substrates defined in nine stock solutions: carbohydrates, vitamins, sterols, non nitrogenous acids, amino acids, minerals, nucleic acid bases, CaCl 2 and MgSO 4 were tested at two levels (present or absent) in two fractional factorial designs. Each of these nine variables had a significant main effect on oospore production. Furthermore, the effect of each variable, except for vitamins, depended on the level of each other variable, expressed by two-variable interactions. The maximal predicted oospore production was calculated from the polynomial regressions associated with the two fractional factorial designs. Oospore productions were 1.3 and 2 ×10 6 oospores mL -1 from the first and second designs. In order to optimize the oospore production, the two levels of each variable were modified and all variables were experimented in a selection of a complete factorial design (Plackett and Burman design). A fitted first-order polynomial regression equation provided the combination of levels of variables for optimal oospore production. A defined medium, based on this combination of levels, was used for P. oligandrum growth. The optimized oospore production after 7 days growth was 4 ×106 oospores mL -1 as predicted by the polynomial regression. Oospore yields, biomass produced from oospores and oospore freeze-drying tolerance were similar when P. oligandrum was previously grown in molasses or in the new defined medium.  相似文献   

3.
Flooding freshly harvested oospores in sterile distilled water (SDW) for several days enhanced germination in 3 out of 4 isolates of Phythium oligandrum. Treatment of SDW-flooded oospores with myo-inositol increased germinability during the first 20 days of storage at 15°C. Seed dressing with oospores of P. oligandrum controlled pre- and post-emergence damping-off of sugar-beet caused by soil-borne P. ultimum and seed-borne Phoma betae. For some isolates, flooded oospores in SDW and treatment with myo-inositol increased efficacy of the seed dressing. However, no significant control of damping-off caused by Rhizoctonia solani was observed. On corn-meal agar, P. oligandrum coiled around and penetrated hyphae of P. ultimum and R. solani, but did not interfere with Ph. betae.  相似文献   

4.
A method was developed for applying strains of Actinoplanes spp. that are hyper-parasites of oospores of Pythium ultimum to soil for reducing Pythium damping-off of plants. The method is based on the augmentation of soil with sporangia of a strain of Actinoplanes spp. borne on clay granules. In vitro sporulation of strains K30, W57, W257 and 25844 was: (1) greater for most strains on dilute Czapek-Dox agar than on four other agar media; (2) inhibited by continuous exposure to fluorescent light of intensity 4-150 μEm-2s-1, but not by exposure to 1 μEm-2s-1 or darkness; (3) greater at 20-307deg;C than at 10°C;and (4) greater at pH 6-7 than at pH 5 or 8. On solid carriers treated with dilute Czapek-Dox broth (pH 7) and incubated in the dark at 30°C for 3 weeks, strains sporulated poorly or not at all on vermiculite, perlite and rice hulls, but sporulated abundantly (107-109 colony-forming units (CFU) g-1 of granules) on montmorillonite clay granules. When strains 25844, W57 and W257 were applied as granules (4 107 - 4 × 108 CFU g-1) at 5% (w/w) to field plots infested with 750-1000 oospores of P. ultimum g-1 of soil, only strain 25844 consistently increased emergence and reduced root rot of table beets 8- 1 at 24-28 days after planting compared with controls. Strain 25844 (108 CFU g-1 of granules) at 1% (w/w) also increased the emergence of bush beans at 28 days after planting in P. ultimum-infested plots, but lower rates were ineffective. The inoculum viability of strain 25844 on clay granules declined 100-fold during 2 months of storage at 5-35°C, but thereafter remained stable for another 4 months. Strain 25844 on 6-month-old granules retained a high degree of hyper-parasitic activity toward oospores of P. ultimum. Augmentation of field soil with sporangia of Actinoplanes spp. is a valid approach to the biological control of pythium damping-off.  相似文献   

5.
The addition of cholesterol, b-sitosterol, stigmasterol and compost infusion to corn meal agar induced marked increases (four-fold) in oospore production, with only a small stimulation of growth rate. Progesterone stimulated oospore production, but inhibited growth. Estrone had no effect on reproduction, but inhibited growth. Testosterone greatly inhibited both growth and reproduction. The optimum concentration of cholesterol for maximum oospore production was 20–100 mg per liter. Growth and oospore production occurred over the initial pH range of 4.5–8.5, and over the temperature range of 12–38°C. Growth occurred at 9°, but no oospores formed. Cholesterol increased the temperature tolerance of the mycelium. Nystatin had no effect on growth or reproduction at 15 mg per liter; filipin and fungichromin completely prevented, and amphotericin B strongly inhibited oospore production at this concentration. Fungichromin was the most inhibitory to growth, filipin was intermediate and amphotericin B only slightly inhibitory. Cholesterol (15 mg/liter) annulled the growth inhibition, but not the inhibition of reproduction. Fluorodeoxyuridine and bromodeoxyuridine inhibited growth and oospore production. Deoxyadenosine had no effect. These experiments indicate that the metabolic processes involved in mycelium synthesis are markedly different from the processes involved in sexual reproduction since they were affected differently by the sterols, antibiotics, and the thymidine analogues.
Zusammenfassung Der Zusatz von Cholesterol, beta Sitosterol, Stigmasterol und Kompost Infusion zu Maismehlagar verursachte eine vierfache Zunahme der Oosporenbildung, mit nur einer geringen Stimulierung des Wachstumanteiles. Progesterone stimulierte die Oosporenbildung, verhinderte jedoch das Wachstum. Estrone hat keine Wirkung an Reproduktion, aber verhinderte das Wachstum. Testosterone verhinderte wesentlich sowohl das Wachstum als auch die Reproduktion. Die optimale Konzentration von Cholesterol war für die höchste Oosporenbildung 20–100 mg pro Liter. Wachstum und Oosporenbildung erfolgte über die ursprüngliche pH-Weite von 4.5–8.5, und über die Temperaturweite von 12°–38°C. Wachstum erfolgte bei 9°C, aber keine Oosporenbildung. Cholesterol vergrößerte die Temperaturtoleranz des Myceliums. Nystatin hat keinen Einfluß an Wachstum oder Reproduktion bei 15 mg pro Liter: Filipin und Fungichromin verhinderte völlig und Amphotericin B sehr stark die Produktion bei dieser Konzentration. Fungichromin B Zeigte nur eine geringe Wachstum, Filipin war in der Mitte und Amphotericin B zeigte nur eine geringe Verhinderung. Cholesterol (15 mg/liter) vernichtete die Wachstumverhinderung jedoch nicht die Reproduktion. Fluorodeoxyuridine und Bromodeoxyuridine verhinderten Wachstum und Oosporenbildung. Deoxyadenosine hatte keine Wirkung. Diese Versuche zeigen, daß die metabolischen Prozesse, die in der Synthese des Myzeliums mitwirken, wesentlich verschieden von den Prozessen sind, die in Sexual-reproduktion mitwirken, da sie verschiedentlich von Sterols, Antibiotiks und von den Thymidine-analogen beeinflußt worden sind.


Contribution No. 26 from the Botany Section, The Department of Biology.  相似文献   

6.
The antagonist strains Gliocladium virens G2 and Trichoderma harzianum T3 originally isolated from Pythium suppressive peat, and two benomyl-resistant strains of T. harzianum, T12B and T95, were evaluated as biological control agents of damping-off and root rot of cucumbers in sphagnum peat caused by Pythium ultimum. All strains were equally effective when applied as 1 % peat-bran preparations, whereas the effectiveness of disease control was reduced at higher concentrations of the antagonists. The two wild-type strains were also found to be effective when applied as conidial suspensions, and in this case no reduction in disease control was seen at higher concentrations. G. virens G2 and T. harzianum T12B showed antibiotic activity against P. ultimum in in vitro tests; however there were no signs of mycoparasitism of P. ultimum by any of the antagonist strains.  相似文献   

7.
8.
Interactions of Pythium oligandrum and four plant‐pathogenic Pythium spp. (P. ultimum, P. vexans, P. graminicola and P. aphanidermatum,) were studied in vitro by (i) video microscopy of hyphal interactions on water agar films, (ii) counting of host and mycoparasite propagules in different regions of opposing colonies on sunflower‐seed extract agar films and (Hi) ability of P. oligandrum to overgrow plates of potato‐dextrose agar previously colonized by Pythium spp. Pythium oligandrum typically coiled round the hyphae of Pythium hosts and penetrated the host hyphae after approximately 50 min from the hyphal coils, causing disruption of host hyphal tips up to 1.2 mm ahead of contact points. The relative growth rates of mycoparasite and host hyphae, timing of penetration and distance (sub‐apical) at which penetration led to host tip disruption were used to assess the potential of mycoparasitism by P. oligandrum to prevent the growth of Pythium hosts. P. aphanidermatum was unique among the ‘host’ Pythium spp. in being largely unaffected by P. oligandrum and in antagonizing the mycoparasite by coiling and penetrating the mycoparasite hyphae. Other host Pythium spp. apparently differed in susceptibility, the most susceptible being P. vexans and P. ultimum, whereas P. graminicola was more resistant. The results are discussed in relation to the role of P. oligandrum as a biocontrol agent, especially for limiting the ability of other Pythium spp. to increase their propagule populations in crop residues.  相似文献   

9.
生防真菌寡雄腐霉原生质体的制备及再生   总被引:1,自引:0,他引:1  
《菌物学报》2017,(6):679-690
寡雄腐霉Pythium oligandrum是一种对动、植物和环境无害,兼具杀菌和增产效果的生防真菌。本研究以0.8mol/L甘露醇与25mmol/L CaCl_2和10mmol/L Tris-HCl作为渗透压稳定剂,使寡雄腐霉菌丝体在含有裂解酶、纤维素酶、破壁酶的复合酶系中酶解得到其原生质体。此原生质体通过液体振荡培养的途径恢复再生1d后涂于平板上可生长为成熟菌体。本研究所述方法制备得到的寡雄腐霉原生质体数量超过1×10~9CFU/m L,活性超过80%;通过液体培养再生途径使得寡雄腐霉原生质体再生率达32.9%。此方法操作简便,稳定性好,获得的寡雄腐霉原生质体品质高、数量多,完全能够满足后期基因遗传转化、细胞融合培养等研究应用。  相似文献   

10.
寡雄腐霉施用时期对设施黄瓜霜霉病的防治试验   总被引:1,自引:0,他引:1  
寡雄腐霉是一种对多种植物病害有很好防治效果的新型生物农药。本文通过田间试验明确了寡雄腐霉在黄瓜霜霉病不同发病时期使用时的防治效果。结果表明,寡雄腐霉对黄瓜霜霉病预防效果达到68.9%,发病初期防治效果达到61.9%,发病后期防治效果只有23.5%。因此,在使用寡雄腐霉防治黄瓜霜霉病时一定要在未发病或发病早期使用才能达到理想的防病效果。  相似文献   

11.
12.
In paired cultures on corn-meal agar, Rhizoctonia solani, R. cerealis and R. fragariae caused vacuolation, disappearance of cytoplasm, and apparent lysis of hyphae of Pythium oligandrum, P. ultimum, and Aphanomyces cochlioides. Hyphae of Phoma betae were not injured by the Rhizoctonia spp. When sugar-beet seeds dressed with mycelium of R. cerealis, R. fragariae, or an isolate of R. solani nonpathogenic to sugar-beet were planted in soil naturally infested with P. ul-timum, the level of biological control of damping-off was similar to that obtained with captan dressing. In soil artificially infested with P. ultimum, biological dressings were slightly less efficacious than the chemical dressing.  相似文献   

13.
14.
The ubiquitous oomycete Pythium oligandrum is a potential biocontrol agent for use against a wide range of pathogenic fungi and an inducer of plant disease resistance. The ability of P. oligandrum to compete with root pathogens for saprophytic colonization of substrates may be critical for pathogen increase in soil, but other mechanisms, including antibiosis and enzyme production, also may play a role in the antagonistic process. We used transmission electron microscopy and gold cytochemistry to analyze the intercellular interaction between P. oligandrum and Phytophthora parasitica. Growth of P. oligandrum towards Phytophthora cells correlated with changes in the host, including retraction of the plasma membrane and cytoplasmic disorganization. These changes were associated with the deposition onto the inner host cell surface of a cellulose-enriched material. P. oligandrum hyphae could penetrate the thickened host cell wall and the cellulose-enriched material, suggesting that large amounts of cellulolytic enzymes were produced. Labeling of cellulose with gold-complexed exoglucanase showed that the integrity of the cellulose was greatly affected both along the channel of fungal penetration and also at a distance from it. We measured cellulolytic activity of P. oligandrum in substrate-free liquid medium. The enzymes present were almost as effective as those from Trichoderma viride in degrading both carboxymethyl cellulose and Phytophthora wall-bound cellulose. P. oligandrum and its cellulolytic enzymes may be useful for biological control of oomycete pathogens, including Phytophthora and Pythium spp., which are frequently encountered in field and greenhouse production.  相似文献   

15.
The ubiquitous oomycete Pythium oligandrum is a potential biocontrol agent for use against a wide range of pathogenic fungi and an inducer of plant disease resistance. The ability of P. oligandrum to compete with root pathogens for saprophytic colonization of substrates may be critical for pathogen increase in soil, but other mechanisms, including antibiosis and enzyme production, also may play a role in the antagonistic process. We used transmission electron microscopy and gold cytochemistry to analyze the intercellular interaction between P. oligandrum and Phytophthora parasitica. Growth of P. oligandrum towards Phytophthora cells correlated with changes in the host, including retraction of the plasma membrane and cytoplasmic disorganization. These changes were associated with the deposition onto the inner host cell surface of a cellulose-enriched material. P. oligandrum hyphae could penetrate the thickened host cell wall and the cellulose-enriched material, suggesting that large amounts of cellulolytic enzymes were produced. Labeling of cellulose with gold-complexed exoglucanase showed that the integrity of the cellulose was greatly affected both along the channel of fungal penetration and also at a distance from it. We measured cellulolytic activity of P. oligandrum in substrate-free liquid medium. The enzymes present were almost as effective as those from Trichoderma viride in degrading both carboxymethyl cellulose and Phytophthora wall-bound cellulose. P. oligandrum and its cellulolytic enzymes may be useful for biological control of oomycete pathogens, including Phytophthora and Pythium spp., which are frequently encountered in field and greenhouse production.  相似文献   

16.
Isolates of Pythium oligandrum Drechsler and P. acanthicum Drechsler behaved similarly in a range of experiments and in a manner consistent with mycoparasitism. They grew on cellulose in association with some fungi - notably Botryotrichum pilulferum Sacc. & March. and Phialophora radicicola Cain var. radicicola (IMI 187786) - and markedly reduced cellulolysis by these species; however, they had little effect on cellulolysis by Gaeumannomyces graminis (Sacc.) Arx & Olivier var. graminis and made little growth on cellulose in the presence or absence of this fungus. Pythium oligandrum and P. acanthicum also grew rapidly across plates of potato-dextrose agar precolonised by Phialophora radicicola var. radicicola, whereas isolates of P. echinulatum Matthews, P. mamillatum Meurs, P. megalacanthum de Bary, P. spinosum Sawada and P. ultimum Trow did not grow under these conditions. Precolonised agar plates were therefore used as a selective medium to isolate Pythium oligandrum and similar fungi from soils. For this, small pieces of soil organic matter were transferred to precolonised agar plates and incubated for 4–6 (-12) days, when the presence of P. oligandrum or similar fungi was assessed by their production of spiny oogonia across the host colony. The technique proved successful in isolating these fungi from a wide range of cultivated soils, even if the soils had been stored air-dry. However, boiled hemp seeds buried in soil and subsequently transferred to precolonised agar plates usually gave rise to phytopathogenic rather than mycoparasitic pythia. Pieces of wheat straw precolonised by P. oligandrum decomposed at the same rate as virgin straws or straws precolonised by P. ultimum or Mucor hiemalis Wehmer, when all were buried in nitrogen-supplemented soil. However, different cellulolytic fungi appeared to colonise straws in these respective treatments, Fusarium spp. being less common and Stachybotrys atra Corda more common in the presence of P. oligandrum than in its absence. When subsequently opposed to P. oligandrum on agar plates, Fusarium spp. appeared to be parasitised by this fungus and made very little growth across the agar, whereas S. atra grew through the colony of P. oligandrum and was clearly unaffected by the presence of this fungus. Our results demonstrate the widespread occurrence of P. oligandrum in cultivated soils in Britain and also suggest that this species might influence the activities of other soil fungi.  相似文献   

17.
Fungal and oomycete populations and their dynamics were investigated following the introduction of the biocontrol agent Pythium oligandrum into the rhizosphere of tomato plants grown in soilless culture. Three strains of P. oligandrum were selected on the basis of their ability to form oospores (resting structures) and to produce tryptamine (an auxin-like compound) and oligandrin (a glycoprotein elicitor). Real-time PCR and plate counting demonstrated the persistence of large amounts of the antagonistic oomycete in the rhizosphere throughout the cropping season (April to September). Inter-simple-sequence-repeat analysis of the P. oligandrum strains collected from root samples at the end of the cropping season showed that among the three strains used for inoculation, the one producing the smallest amount of oospores was detected at 90%. Single-strand conformational polymorphism analysis revealed increases in the number of members and the complexity of the fungal community over time. There were no significant differences between the microbial ecosystems inoculated with P. oligandrum and those that were not treated, except for a reduction of Pythium dissotocum (ubiquitous tomato root minor pathogen) populations in inoculated systems during the last 3 months of culture. These findings raise interesting issues concerning the use of P. oligandrum strains producing elicitor and auxin molecules for plant protection and the development of biocontrol.In soilless cultures, the recycling of drainage water within a system is the consequence of new laws concerning water saving and limitation of pollution. Such closed systems minimize costs by conserving water and reducing fertilizer input; however, they may favor the dissemination of pathogens (13). When pathogens manage to enter recirculation systems, they are rapidly disseminated and may cause disease epidemics, particularly during periods of stress, e.g., stress due to high temperatures and/or to low levels of dissolved oxygen in the nutrient solution. Thus, numerous facultative pathogens commonly found in conventional cultures may become economically significant (53). Several of them, e.g., Pythium spp. and Phytophthora spp., are well adapted to the aquatic environment of hydroponic systems: they produce flagellate zoospores which enable them to swim in the nutrient solution, facilitating the spread of infection (18, 21, 36, 54, 61).Various methods are used to reduce the risks to plant health. Over recent years, the disinfection of nutrient solutions by physical or chemical treatments, e.g., ozonization, UV irradiation, chlorination, and thermo-disinfection, has been developed (13, 38). These methods effectively destroy pathogenic microorganisms but are harmful to species liable to benefit the plant, to be used as biocontrol agents, or both. Indeed, recirculation of nutrient solutions in closed hydroponic systems favors the establishment of a potentially suppressive microflora besides the pathogenic microflora (16, 28, 39, 41). The development of a beneficial microflora may thus be impeded by treatments used to destroy pathogenic microorganisms. Consequently, interest has been focused on the management of microorganisms in soilless cultures (12). Postma and coworkers (40) found that the extent of root disease is increased by the use of autoclaved rock wool. Tu and coworkers (59) observed that root rot disease was less severe in closed hydroponic systems than in open cultures and suggested that the difference was due to a higher density of bacteria in the closed systems. According to Paulitz (34), the diversity of microorganisms in soilless cultures is more limited than that in conventional soil cultures, such that conditions are more suitable for beneficial microorganisms, and consequently for effective biological control, in soilless than in conventional soil cultures.Biocontrol strategies are promising (7, 35). However, both biotic and abiotic factors may affect the performance of biocontrol methods. Relevant biotic factors include interactions with nontarget microorganisms (6), poor implantation of the biocontrol agent due to nonadaptation to the hydroponic system or resistance from the native microflora, shelf life and formulation, and host plant species and cultivar effects. Abiotic factors include climatic, chemical, and physical conditions of the soil or rhizosphere.Despite the limitations, various studies report evidence of the suppression of disease following the inoculation of hydroponic systems with antagonistic microorganisms. In particular, Pythium oligandrum is an effective biocontrol agent (2, 14, 49, 64). This oomycete colonizes roots without damaging the host plant cells (24, 45) and survives in the rhizosphere, where it exerts its biocontrol (57). P. oligandrum acts through both direct effects (mycoparasitism, antibiosis, and competition for nutrients and space) and indirect effects (stimulation of plant defense reactions and plant growth promotion) (49). The operating effects seem to depend on the type of pathogenic fungi being controlled (3, 48, 49). Le Floch and coworkers suggested that mycoparasitism is not the main mode of action (23). Root colonization by P. oligandrum may induce systemic resistance associated with the synthesis of elicitors protecting the plant from its aggressors (4, 17, 31, 37, 56). Several studies have investigated formulations of P. oligandrum oospores applied to soil or seeds, and their production and use, to optimize the efficacy of biocontrol (9, 30).Effective biocontrol by P. oligandrum may be limited by its heterogeneous implantation in the rhizosphere (46). Therefore, enhanced implantation and persistence of P. oligandrum in the rhizosphere should improve plant protection. We report an investigation of the persistence of P. oligandrum and its impact on the native fungal microflora of the roots. Three strains with characteristic traits were selected to constitute an inoculum applied to tomato plant roots. The characteristics of the strains were the production of oospores to allow root colonization and favor persistence, the synthesis of tryptamine, a plant growth enhancer (22), and the production of oligandrin, a plant-protective elicitor (37). The inoculated rhizospheres were monitored to evaluate the persistence of the strains and their effects on the microflora. The populations of the common tomato root pathogen P. dissotocum (endemic in the studied systems) and of P. oligandrum were both assessed by plate counting and real-time PCR. The strain(s) of P. oligandrum responsible for the colonization of the rhizosphere was identified by inter-simple-sequence-repeat (ISSR) methodology. Single-strand conformational polymorphism (SSCP) investigations were used to study the effects of P. oligandrum on the fungal populations colonizing the rhizosphere and the fungal dynamics throughout the cropping season.  相似文献   

18.
Induced resistance has been evidenced as one of mechanisms of Trichoderma to control plant diseases, however, no study showed the change of host proteomics in Trichoderma-induced resistance of maize against damping-off caused by Pythium ultimum Trow. The mechanism of Trichoderma harzianum Rifai for controlling maize seedling disease caused by Pythium ultimum Trow was investigated firstly by proteome technique and the result suggested that T. harzianum strain T22 was not only able to promote seedling growth but also protein accumulation. One-dimensional electrophoresis assay showed that more bands appeared on the gel with T22 or T22 combined with P. ultimum (T22 + P. ultimum) treatment than with other treatments. Enzyme assay showed that two chitinases of the root sample were more activated in the treatments with T22 than in the other treatments without T22. Proteins in the seedling roots from the various treatments were separated through protein extraction and 2-D electrophoresis technique. In the seedlings produced from the T22-treated seeds, there were 104 up-regulated proteins and 164 down-regulated proteins relative to the control, and 97 and 150, respectively, aftel treatment with T22 + P. ultimum; however, with P. ultimum alone the values were much lower than with the other two treatments. The correlation coefficient values were 0.72, 0.51 and 0.49 for the comparison of protein spot distribution on gel among control with T22, P. ultimum and T22 + P. ultimum, respectively. So it seemed that P. ultimum infection was more effective than T22 in interfering with the host proteome profile. Furthermore, analysis with MALDITOF-MAS showed that some important proteins associated with defensive reactions were identified in T22 or T22 + P. ultimum treatments, including endochitinase, pathogenesis-related protein PRMS (pathogenesis-related maize seed), GTP-binding protein, isoflavone reductase and other proteins related to respiration. All those proteins are probably part of the network of resistance or development-related proteins. Interestingly, P. ultimum treatment resulted in elimination of pathogenesis-related protein PRMS on gel, and therefore damping-off could be in part attributed to inhibition of the expression of this protein by P. ultimum infection. Some unknown proteins are also related to the defensive reaction of the host.  相似文献   

19.
The biological control activity of Pythium oligandrum against black scurf of potato caused by Rhizoctonia solani AG-3 was evaluated in field experiments after treatment of potato seed tubers with P. oligandrum. Seed tubers infected with black scurf sclerotia were dipped for a few seconds in a suspension of 103, 104 or 105 mL?1 P. oligandrum oospores and were then air-dried. Each level of P. oligandrum-treatment significantly reduced the disease rates of stolon at a level similar to that achieved by chemical control. When P. oligandrum populations adherent to the surface of seed tubers were determined, oospore counts on tubers treated with 104 or 105 oospores mL?1 were about 540/cm2 or about 22,000/cm2 just after dipping and decreased to about 170/cm2 or 2900/cm2 after a 3-week incubation, respectively. Confocal laser scanning microscopic observation with an immuno-enzymatic staining procedure showed that P. oligandrum hyphae had colonized the sclerotia and established close contact by coiling around the R. solani hyphae present on the surface of seed tubers, in a manner similar to that observed in the dual-culture test. Quantification of R. solani DNA by PCR indicated that the R. solani population was reduced on the seed tubers treated with P. oligandrum compared to untreated tubers. Furthermore, the ability of P. oligandrum to induce resistance against black scurf was determined using a potato tuber disk assay. Treatment of tuber disks with the cell wall protein fraction of P. oligandrum enhanced the expression of defense-related genes such as 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase, lipoxygenase and basic PR-6 genes, and reduced disease severity upon challenge with R. solani compared with untreated controls. These results suggest that biocontrol mechanisms employed by P. oligandrum against black scurf involve both mycoparasitism and induced resistance.  相似文献   

20.
Le Floch  Gaétan  Rey  Patrice  Benizri  Emile  Benhamou  Nicole  Tirilly  Yves 《Plant and Soil》2003,257(2):459-470
Plant growth promotion induced by the antagonistic fungus, Pythium oligandrum, is the result of a complex interaction which includes an indirect effect through control of pathogens in the rhizosphere and/or a direct one mediated by plant-induced resistance. The present study shows an increased plant growth associated with direct interaction between P. oligandrum and roots, which is mediated by a fungus-produced auxin compound, tryptamine (TNH2). In vitro experiments provided evidence that P. oligandrum metabolised specifically indole derivatives, such as tryptophan and indole-3-acetaldehyde, to produce THN2 through the tryptamine pathway. When P. oligandrum grew in sterile root exudates, it also produced an auxin-like compound. Additional experiments on P. oligandrum–root interaction showed that, in amended nutrient solution of plants, the antagonist metabolised Trp into TNH2 and that root absorption of this newly formed auxin-compound in appropriate concentrations was associated with enhancement of plant growth. This phenomenon was observed only when nutrient solution was amended with low tryptophan (Trp) concentrations, i.e. 0.05 and 0.1 mM; higher concentration (0.5 and 1 mM Trp) induced abnormal root development. Similar experiments were performed with Pythium group F, a minor pathogen known for its ability to produce auxin-compounds through the tryptamine pathway. In this case, irregular root development was always noticed with all Trp concentrations added to the nutrient solution of plants. Moreover, Pythium group F colonization of roots was associated with leakage of auxin-compounds in the nutrient solution. Our results, therefore, highlight that the production of similar auxin-compounds by two Pythium species has contrary effects on plant development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号