首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The goal of this study was to examine how introduced trout influence the distributions and abundances of a sub‐alpine amphibian assemblage whose members display a variety of different life‐history and defence strategies. Our study was conducted in the sub‐alpine lentic habitats of three wilderness areas that form the core of the Klamath‐Siskiyou Bioregion of northern California, a biodiversity ‘hotspot’ that supports the highest diversity of sub‐alpine, lentic‐breeding amphibians in the western USA. These wilderness areas contain no native fishes, but all have been populated with non‐native trout for recreational fishing. Five of the eight amphibian species that occur in this region were sufficiently common to use in our study; these included one that breeds in both temporary and permanent waters and is palatable to fish (Pacific treefrog, Pseudacris regilla), two that breed primarily in permanent waters and are unpalatable to fish (western toad, Bufo boreas, and rough‐skinned newt, Taricha granulosa), and two that breed primarily in permanent waters and are palatable to fish (Cascades frog, Rana cascadae, and long‐toed salamander, Ambystoma macrodactylum). Based on life histories and predator defence strategies (i.e. palatable or not), we predicted that the three palatable species would likely be negatively correlated with introduced trout, but with P. regilla less impacted because of its use of both temporary and permanent waters. We predicted that B. boreas and T. granulosa would not be significantly correlated with introduced trout due to the lack of any predator/prey interactions between them. We surveyed 728 pond, lake, or wet meadow sites during the summers of 1999–2002, using timed gill‐net sets to measure trout occurrence and relative density, and visual encounter surveys to determine amphibian presence and abundance. We used semiparametric logistic regression models to quantify the effect of trout presence/absence and density on the probability of finding amphibian species in a water body while accounting for variation within and among the various lentic habitats sampled. The distributions of P. regilla, A. macrodactylum and R. cascadae were strongly negatively correlated with trout presence across all three wilderness areas. Ambystoma macrodactylum was 44 times more likely to be found in lakes without fish than in lakes with fish. Rana cascadae and P. regilla were 3.7 and 3.0 times more likely, respectively, to be found in fishless than fish‐containing waters. In contrast, the two unpalatable species were either uncorrelated (T. granulosa) or positively correlated (B. boreas) with fish presence. We found that the relative density of fish (catch per unit effort) was negatively correlated with the combined abundances of the three palatable amphibians, and also with both the length and the condition of the fish themselves. Our results are consistent with a compelling body of evidence that introduced fishes greatly alter the aquatic community structure of mountain lakes, ponds, and wet meadows.  相似文献   

2.
Studies have demonstrated negative effects of non-native, predatory fishes on native amphibians, yet it is still unclear why some amphibian populations persist, while others are extirpated, following fish invasion. We examined this question by developing habitat-based occupancy models for the long-toed salamander (Ambystoma macrodactylum) and non-native fish using survey data from 1,749 water bodies across 470 catchments in the Northern Rocky Mountains, USA. We first modeled the habitat associations of salamanders at 468 fishless water bodies in 154 catchments where non-native fish were historically, and are currently, absent from the entire catchment. We then applied this habitat model to the complete data set to predict the probability of salamander occupancy in each water body, removing any effect of fish presence. Finally, we compared field-observed occurrences of salamanders and fish to modeled probability of salamander occupancy. Suitability models indicated that fish and salamanders had similar habitat preferences, possibly resulting in extirpations of salamander populations from entire catchments where suitable habitats were limiting. Salamanders coexisted with non-native fish in some catchments by using marginal quality, isolated (no inlet or outlet) habitats that remained fishless. They rarely coexisted with fish within individual water bodies and only where habitat quality was highest. Connectivity of water bodies via streams resulted in increased probability of fish invasion and consequently reduced probability of salamander occupancy. These results could be used to identify and prioritize catchments and water bodies where control measures would be most effective at restoring amphibian populations. Our approach could be useful as a framework for improved investigations into questions of persistence and extirpation of native species when non-native species have already become established.  相似文献   

3.
Aim The introduction of non‐native species into aquatic environments has been linked with local extinctions and altered distributions of native species. We investigated the effect of non‐native salmonids on the occupancy of two native amphibians, the long‐toed salamander (Ambystoma macrodactylum) and Columbia spotted frog (Rana luteiventris), across three spatial scales: water bodies, small catchments and large catchments. Location Mountain lakes at ≥ 1500 m elevation were surveyed across the northern Rocky Mountains, USA. Methods We surveyed 2267 water bodies for amphibian occupancy (based on evidence of reproduction) and fish presence between 1986 and 2002 and modelled the probability of amphibian occupancy at each spatial scale in relation to habitat availability and quality and fish presence. Results After accounting for habitat features, we estimated that A. macrodactylum was 2.3 times more likely to breed in fishless water bodies than in water bodies with fish. Ambystoma macrodactylum also was more likely to occupy small catchments where none of the water bodies contained fish than in catchments where at least one water body contained fish. However, the probability of salamander occupancy in small catchments was also influenced by habitat availability (i.e. the number of water bodies within a catchment) and suitability of remaining fishless water bodies. We found no relationship between fish presence and salamander occupancy at the large‐catchment scale, probably because of increased habitat availability. In contrast to A. macrodactylum, we found no relationship between fish presence and R. luteiventris occupancy at any scale. Main conclusions Our results suggest that the negative effects of non‐native salmonids can extend beyond the boundaries of individual water bodies and increase A. macrodactylum extinction risk at landscape scales. We suspect that niche overlap between non‐native fish and A. macrodactylum at higher elevations in the northern Rocky Mountains may lead to extinction in catchments with limited suitable habitat.  相似文献   

4.
1. The introduction of trout to montane lakes has negatively affected amphibian populations across the western United States. In northern California’s Klamath–Siskiyou Mountains, introduced trout have diminished the distribution and abundance of a native ranid frog, Rana (=Lithobates) cascadae. This is primarily thought to be the result of predation on frog larvae. However, if trout feed on larval aquatic insects that are available to R. cascadae only after emergence, then resource competition may also affect this declining native amphibian. 2. Stomach contents of R. cascadae were compared between lakes that contained trout and those from which introduced trout were removed. Total prey mass in stomach contents relative to frog body mass was not significantly different between lakes with fish and fish‐removal lakes, but in the former R. cascadae consumed a smaller proportion of adult aquatic insects. The stomach contents of fish included larvae of aquatic insects that are, as adults, eaten by R. cascadae. 3. Rana cascadae consumed fewer caddisflies (Trichoptera) and more grasshoppers (Orthoptera) at lakes with higher densities of fish. At lakes with greater aquatic habitat complexity, R. cascadae consumed more water striders (Hemiptera: Gerridae) and terrestrial spiders (Araneae). 4. We suggest that reductions in the availability of emerging aquatic insects cause R. cascadae to consume more terrestrial prey where trout are present. Thus, introduced trout may influence native amphibians directly through predation and, indirectly, through pre‐emptive resource competition.  相似文献   

5.
1. Little is known about native communities in naturally fishless lakes in eastern North America, a region where fish stocking has led to a decline in these habitats. 2. Our study objectives were to: (i) characterise and compare macroinvertebrate communities in fishless lakes found in two biophysical regions of Maine (U.S.A.): kettle lakes in the eastern lowlands and foothills and headwater lakes in the central and western mountains; (ii) identify unique attributes of fishless lake macroinvertebrate communities compared to lakes with fish and (iii) develop a method to efficiently identify fishless lakes when thorough fish surveys are not possible. 3. We quantified macroinvertebrate community structure in the two physiographic fishless lake types (n = 8 kettle lakes; n = 8 headwater lakes) with submerged light traps and sweep nets. We also compared fishless lake macroinvertebrate communities to those in fish‐containing lakes (n = 18) of similar size, location and maximum depth. We used non‐metric multidimensional scaling to assess differences in community structure and t‐tests for taxon‐specific comparisons between lakes. 4. Few differences in macroinvertebrate communities between the two physiographic fishless lake types were apparent. Fishless and fish‐containing lakes had numerous differences in macroinvertebrate community structure, abundance, taxonomic composition and species richness. Fish presence or absence was a stronger determinant of community structure in our study than differences in physical conditions relating to lake origin and physiography. 5. Communities in fishless lakes were more speciose and abundant than in fish‐containing lakes, especially taxa that are large, active and free‐swimming. Families differing in abundance and taxonomic composition included Notonectidae, Corixidae, Gyrinidae, Dytiscidae, Aeshnidae, Libellulidae and Chaoboridae. 6. We identified six taxa unique to fishless lakes that are robust indicators of fish absence: Graphoderus liberus, Hesperocorixa spp., Dineutus spp., Chaoborus americanus, Notonecta insulata and Callicorixa spp. These taxa are collected most effectively with submerged light traps. 7. Naturally fishless lakes warrant conservation, because they provide habitat for a unique suite of organisms that thrive in the absence of fish predation.  相似文献   

6.
1. Insects emerging from mountain lakes provide an important food source for many terrestrial predators. The amount of insect subsidy that emerges from lakes is influenced by predator composition, but predator effects could be ameliorated by greater habitat complexity. We conducted a replicated whole‐lake experiment to test the effects of introduced fish predators on the abundance and composition of aquatic insects within and emerging from the littoral zone of 16 mountain lakes in the Trinity Alps Wilderness in northwestern California. 2. Study treatments matched the fisheries management options being implemented in California’s wilderness areas: (i) continued stocking with non‐native trout, (ii) suspension of stocking, and (iii) suspension of stocking and removal of fish. We also included four naturally fishless ‘reference’ lakes. We compared abundances and biomass of emerging aquatic insects before treatments were initiated and for 3 years following their establishment. Abundances of benthic insects were also compared in the third year post‐treatment. 3. Trout removal rapidly increased abundances of mayflies, caddisflies, and insect predators, and overall insect biomass emerging from lakes. No significant differences were found between the suspension of stocking lakes and continued stocking lakes. Fish density was a more important predictor of aquatic insect emergence than habitat complexity. 4. Mayfly larvae responded positively to fish removal and caddisfly larvae tended to be more abundant in lakes without fish, but we did not detect effects on abundance of predatory insects. However, we found large insect predators in shallower water in lakes with fish compared to fish removal or fish‐free reference lakes. 5. These results provide insights into the continuing effects of past and current fish stocking practices on the flow of insect prey from mountain lakes into the neighbouring terrestrial environment. We also show that these consequences can rapidly be reversed by removing non‐native fishes.  相似文献   

7.
8.
1. Rainbow Trout (Oncorhynchus mykiss [Walbaum]) is commonly stocked as a sport fish throughout the world but can have serious negative effects on native species, especially in headwater systems. Productive fish‐bearing lakes represent a frequently stocked yet infrequently studied system, and effects of trout in these systems may differ from those in headwater lakes. 2. We used a Before‐After Control‐Impact (BACI) design to determine how stocked trout affected assemblage‐level and taxon‐level biomass, abundance and average length of littoral invertebrates in a stocked lake relative to three unstocked control lakes in the boreal foothills of Alberta, Canada. Lakes were studied 1 year before and for 2 years after stocking. Because characteristics of productive fish‐bearing lakes should buffer impacts of introduced fish, we predicted that trout would not affect assemblage‐level structure of littoral invertebrates but might reduce the abundance or average length of large‐bodied taxa frequently consumed by trout. 3. Relative to the unstocked control lakes, biomass, but not abundance, of the littoral invertebrate assemblage was affected indirectly by trout through increases of some taxa after trout stocking. At the individual taxon‐level, trout stocking did not affect most (23 of the 27) taxa, with four taxa increasing in abundance or biomass after stocking. Only one taxon, Chironomidae, showed evidence of size‐selective predation by trout, being consumed frequently by trout and decreasing significantly in average length after stocking. 4. Our results contrast with the strong negative effects of trout stocking on invertebrate assemblages commonly reported from headwater lakes. A combination of factors, including large and robust native populations of forage fish, the generalised diet of trout, overwinter aeration, relatively high productivity and dense macrophyte beds, likely works in concert to reduce potentially negative effects of stocked trout in these systems. As such, productive, fish‐bearing lakes may represent a suitable system for trout stocking, especially where native sport fish populations are lacking.  相似文献   

9.
The introduction of salmonid fishes into naturally fishless lakes represents one of the most prevalent environmental modifications of aquatic ecosystems in western North America. Introduced fish may alter lake nutrient cycles and primary production, but the magnitude and variation of these effects have not been fully explored. We used bioenergetics modeling to estimate the contributions of stocked trout to phosphorus (P) cycles across a wide range of fish densities in lakes of the Sierra Nevada, California. We also assessed the larger effects of fish-induced changes in phosphorus cycling on primary production using paleolimnological analyses from lakes in the southern Canadian Rockies. Our analyses showed that total P recycling by fish was independent of fish density but positively related to fish biomass in the Sierra Nevada. In lakes with fish populations maintained by continued stocking, fish recycled P at over twice the rate of those in lakes where introduced fish populations are maintained by natural reproduction and stocking has been discontinued. We estimate that P regeneration by introduced fishes is approximately equivalent to atmospheric P deposition to these lakes. Paleolimnological analyses indicated that algal production increased substantially following trout introductions to Rocky Mountain lakes and was maintained for the duration of fish presence. The results of our modeling and paleolimnological analyses indicate that introduced trout fundamentally alter nutrient cycles and stimulate primary production by accessing benthic P sources that are not normally available to pelagic communities in oligotrophic mountain lakes. These effects pose a difficult challenge for managers charged with balancing the demand for recreational fisheries with the need to maintain natural ecosystem processes. Received 28 March 2000; accepted 4 January 2001.  相似文献   

10.
In freshwater streams, flooding is a typical source of natural disturbance that plays a key role in the dynamics of animal populations and communities. However, habitat degradation and fish stocking might increase the severity of its impact. We tested the effects of a flash flood on the abundance of three size classes of headwater dwelling Alpine bullhead, Cottus poecilopus, in the streams of the Carpathian Mountains in the Czech Republic, that are stocked with hatchery‐reared brown trout, Salmo trutta. We showed that the overall abundance of Alpine bullhead was highest at the sites with the least degraded habitat (i.e., natural habitat) and we caught almost no Alpine bullhead at the sites with the most degraded habitat. The flash flood had a strong negative effect on the abundance of the largest individuals of Alpine bullhead. Abundance of small and medium size Alpine bullhead was negatively affected by the abundance of adult stocked brown trout before as well as after the flash flood. However, negative effect of adult brown trout abundance on abundance of large Alpine bullhead was not significant before the flash flood, and it became significant after the flash flood. This could indicate an accumulation of negative impacts of trout stocking and flash flood on this size class. Overall, our results suggest that stocking of hatchery trout and habitat degradation can reinforce the impact of flash floods on the population of Alpine bullhead in the streams of the Carpathian Mountains.  相似文献   

11.
Predicting the locations of naturally fishless lakes   总被引:1,自引:1,他引:0  
1. Fish have been introduced into many previously fishless lakes throughout North America over the past 100+ years. It is difficult to determine the historical distribution of fishless lakes, however, because these introductions have not always been well‐documented. 2. Due to its glacial history and low human population density, the state of Maine (U.S.A.) may host the greatest number of naturally fishless lakes in the northeastern United States. However, less than one‐quarter of Maine’s 6000+ lakes have been surveyed for fish presence, and no accurate assessments of either the historical or current abundance and distribution of fishless lakes exist. 3. We developed methods to assess the abundance and distribution of Maine’s naturally fishless lakes (0.6–10.1 ha). We hypothesized that the historical distribution of fishless lakes across a landscape is controlled by geomorphic and geographic conditions. 4. We used ArcGIS to identify landscape‐scale geomorphic and geographic factors (e.g. connectivity, surrounding slope) correlated with fish absence in two geomorphic regions of Maine – the western and interior mountains and the eastern lowlands and foothills. By using readily available geographic information systems data our method was not limited to field‐visited sites. We estimated the likelihood that a particular lake is fishless with a stepwise logistic regression model developed for each region. 5. The absence of fish from western lakes is related to altitude (+), minimum percent slope in the 500 m buffer (+), maximum percent slope in the 500 m buffer (+) and percent cover of herbaceous‐emergent wetland in 1000 m buffer (?). The absence of fish from eastern lakes is related to the lack of a stream within 50 m of the lake. 6. The models predict that a total of 4% (131) of study lakes in the two regions were historically fishless, with the eastern region hosting a greater proportion than the western region. 7. We verified the model predictions with two complementary approaches. First we visited 21 lakes predicted to be fishless and assessed current fish presence with gillnetting. Second, we used paleolimnological techniques based on the abundance of Chaoborus americanus mandibles in the bottom segments of sediment cores. Fifteen of the 21 lakes predicted to be fishless currently contain fish. Paleolimnological evidence, however, suggests that nine of the 15 lakes were historically fishless and thus were subject to undocumented fish introductions. 8. Our approach efficiently predicts the distribution Maine’s naturally fishless lakes, and our results indicate that these habitats have declined due to fish introductions. Our method could be applied to other regions with similar geographic and geomorphic constraints on fish distributions as a tool to enhance conservation of a limited resource that provides habitat for unique biological communities.  相似文献   

12.
Introduced fish reduce the abundance and diversity of native aquatic fauna, but the effect can be reduced in complex habitats. We manipulated fish populations in forested mountain lakes to determine whether or not fish affected benthic macroinvertebrate composition across lakes with differing habitat complexity. We compared abundance, biomass, body-length, and community structure of benthic macroinvertebrates from 16 lakes with three treatments (fish stocked, suspended stocking, fish removed) and unstocked fishless “controls”. Over 4 years, we assessed the relative importance of fish and environmental variables influencing the composition of benthic macroinvertebrates. Control lakes had the greatest overall abundance of macroinvertebrates when chironomid midges were excluded. Abundances of insects in the clinger/swimmer functional group and caddisflies were greatest in the control lakes but were primarily influenced by habitat variables including the availability of aquatic vegetation and wood. Total biomass and mean body length of macroinvertebrates were not affected by treatment. Taxon richness of macroinvertebrates was about 40% greater in the control lakes compared to the treatment lakes but did not differ among treatments. Our results suggest that fish reduce susceptible macroinvertebrate richness and abundances, but that changes associated with alterations of fish composition are confounded by other factors in complex lake habitats.  相似文献   

13.
Aquatic insect assemblages were sampled in 2 sets of 18 small lakes in 2 regions of northeastern Ontario. Both sets included lakes with and without fish. In the set near Sudbury, fishless lakes were acidic. Using a standardized sweep net procedure, fishless lakes in both areas were found to have a greater abundance and richness of insects than lakes with fish. Irrespective of pH, fishless lakes supported a similar aquatic insect assemblage which was characterized by an abundance of nekton, especially Notonectidae, Corixidae, Graphoderus liberus (Dytiscidae) and Chaoborus americanus (Chaoboridae). Those taxa were typically absent from lakes with fish, which often had a marked abundance of Gerridae. It is concluded that fish predation is the most immediate factor structuring such aquatic insect assemblages, and is responsible for their change coincident with lake acidification.  相似文献   

14.
Two pairs of neighboring subalpine lakes located in the Northern Calcareous Alps of Austria were investigated. Each pair comprised a deeper lake containing European minnows (Phoxinus phoxinus ), and a corresponding shallower lake harboring Alpine newts (Triturus alpestris ) as top predators. Plankton successions within fish and amphibian lakes differed markedly from each other. Throughout the year rotifers numerically dominated within the minnow lakes, while pigmented copepods (Genera Heterocope, Acanthodiaptomus , Arctodiaptomus , Mixodiaptomus ) and Daphnia were prominent in the amphibian lakes, at least early during the ice‐free period. We argue that size‐selective predation by minnows was the ultimate reason for this predominance of smaller zooplankton. While one of the minnow lakes was characterized by a succession of spatially and temporally segregated rotifer species, the other minnow lake permitted the development of populations of small‐sized Bosmina and Ceriodaphnia during summer, probably due to the existence of a strong oxycline allowing zooplankton crustaceans to avoid predation from shore‐based shoals of minnows. Once trout were introduced into this lake, minnows were visibly reduced in abundance. Bosmina and Ceriodaphnia disappeared and Daphnia together with a predacious copepod (Heterocope ) emerged either from egg banks or arrived from nearby source populations. We argue that the crustacean communities within the fishless lakes were adapted to the comparatively weak predation rates of Alpine newts. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
Nearly all mountain lakes in the western United States were historically fishless, but most now contain introduced trout populations. As a result of the impacts of these introductions on ecosystem structure and function, there is increasing interest in restoring some lakes to a fishless condition. To date, however, the only effective method of fish eradication is the application of rotenone, a pesticide that is also toxic to nontarget native species. The objective of this study was to assess the effectiveness of intensive gill netting in eradicating the trout population from a small subalpine lake in the Sierra Nevada, California. We removed the resident trout population and a second trout population accidentally stocked into the study lake within 18 and 15 gill net sets, respectively. Adult trout were highly vulnerable to gill nets, but younger fish were not readily captured until they reached approximately 110 mm. To determine the utility of gill netting as a fish eradication technique in other Sierra Nevada lakes, we used morphometry data from 330 Sierra Nevada lakes to determine what proportion had characteristics similar to the study lake (i.e., small, isolated lakes with little spawning habitat). We estimated that gill netting would be a viable eradication method in 15–20% of the high mountain lakes in the Sierra Nevada. We conclude that although gill netting is likely to be more expensive and time consuming than rotenone application, it is a viable alternative under some conditions and should be the method of choice when sensitive native species are present.  相似文献   

16.
1. Knowledge of the influence of predatory fish in detritus‐based stream food webs is poor. We tested whether larval abundance of the New Zealand leaf‐shredding caddisfly, Zelandopsyche ingens (family Oeconesidae), was affected by the presence of predatory brown trout, Salmo trutta and the abundance of their primary detrital resource (Nothofagus leaves). 2. The density of Z. ingens and the biomass of leaves were determined in seven fishless streams and four trout streams in the Cass region, central South Island, on four occasions spanning 5 years. 3. Physicochemical conditions were similar in trout and fishless streams, but ancova indicated that Z. ingens numbers were positively related to leaf biomass and that caddisfly numbers were significantly greater in fishless streams than trout streams for any given biomass of leaf. The cases of trout stream larvae were also heavier per unit length than those in fishless streams. 4. Our results provide evidence for both top‐down and bottom‐up influences on a detritus‐based stream food web. Although stream detritivores may benefit from a habitat that provides both food and a degree of protection from predators, top‐down effects of predators on detritivore population abundance were still important. Thus, detrital resource availability may determine maximum attainable population size, whereas predation is likely to reduce the population to a level below that.  相似文献   

17.
Studies on resource sharing and partitioning generally consider species that occur in the same habitat. However, subsidies between linked habitats, such as streams and riparian zones, create potential for competition between populations which never directly interact. Evidence suggests that the abundance of riparian consumers declines after fish invasion and a subsequent increase in resource sharing of emerging insects. However, diet overlap has not been investigated. Here, we examine the trophic niche of native fish, invasive fish, and native spiders in South Africa using stable isotope analysis. We compared spider abundance and diet at upstream fishless and downstream fish sites and quantified niche overlap with invasive and native fish. Spider abundance was consistently higher at upstream fishless sites compared with paired downstream fish sites, suggesting that the fish reduced aquatic resource availability to riparian consumers. Spiders incorporated more aquatic than terrestrial insects in their diet, with aquatic insects accounting for 45–90% of spider mass. In three of four invaded trout rivers, we found that the average proportion of aquatic resources in web‐building spider diet was higher at fishless sites compared to fish sites. The probability of web‐building and ground spiders overlapping into the trophic niche of invasive brown and rainbow trout was as high as 26 and 51%, respectively. In contrast, the probability of spiders overlapping into the trophic niche of native fish was always less than 5%. Our results suggest that spiders share resources with invasive fish. In contrast, spiders had a low probability of trophic overlap with native fish indicating that the traits of invaders may be important in determining their influence on ecosystem subsidies. We have added to the growing body of evidence that invaders can have cross‐ecosystem impacts and demonstrated that this can be due to niche overlap.  相似文献   

18.
Small, shallow lakes and ponds are often the dominant landscape features in many regions, but are comparably less studied than larger lakes. Shallow lakes are more likely to lack fish populations; however, it is often difficult to ascertain whether these sites were naturally fishless or lost their fish populations due to anthropogenic or natural stressors. We examined the distributional abundances of four Chaoborus species by identifying and enumerating their larval mandibles in the surface sediments of 146 randomly selected lakes from northwestern Ontario, Canada, to determine the key environmental gradients influencing chaoborid distributions. Chaoborus mandibles were encountered at 110 lakes and, in 65% of those lakes, total counts were ≥10. Direct gradient analyses were then used to show that lakewater total aluminum concentrations (negatively correlated with pH), lakewater sodium concentrations, lake surface area, and maximum water depth were significant predictors of the distributional abundances of Chaoborus. Generalized linear models indicated that Chaoborus species varied in their responses to significant environmental factors. C. (Sayomyia) was not significantly associated with any environmental variable and the abundances of larger chaoborids may be an important biotic factor affecting this taxon. Chaoborus americanus, an indicator of fishless lakes, was significantly correlated with all five key variables and demonstrated a clear threshold of occurrence in relatively small lakes (i.e., <10 ha in surface area). Furthermore, based on the occurrence and abundance of C. americanus, we estimated that 20% of the lakes we surveyed are currently fishless. These lakes significantly differ in several geomorphic and water-chemistry measures compared to the other study lakes.  相似文献   

19.
Fish introduction may have marked effects on the trophic dynamics and ecological state of former fishless lakes, but due to scarcity of historical data this can seldom be documented. We used remains of cladoceran, chironomid and pigment assemblages in the sediment archive to unravel the effect of introduction of carp (Cyprinus carpio), rainbow trout (Oncorhynchus mykiss) and a cyprinid (Chondrostoma oligolepis) in Lake Fogo, the Azores (Portugal). The stratigraphical record showed two major shifts in community assemblage coinciding with the time of introduction of carp (AD ca. 1890) and trout (AD 1941), respectively. Carp introduction was followed by an abrupt and major decline in the abundance of chironomids, a shift in the cladoceran community from a benthic to a more pelagic dominated community, and Daphnia size was significantly reduced. Pigment assemblages also indicated a shift from a benthic to a pelagic dominated ecosystem, as cryptophytes became markedly more abundant at the expense of benthic diatoms. Trout introduction was followed by a return to a more benthic cladoceran and benthic algae (pigments) dominated state, which we attribute to trout predation on carp leading to improved water clarity. A steady increase in the abundance of pigments and cladoceran remains followed, suggesting enhanced productivity, which may be attributed to enhanced atmospheric nitrogen deposition and introduction of C. oligolepis. We conclude that fish introduction has profoundly altered the trophic dynamics and the relative importance of benthic and pelagic production in this species poor and natural fishless lake in the Azores, and likely in most others lakes at the archipelago islands as fish stocking has been a widespread practice.  相似文献   

20.
Amphibians are currently experiencing a severe worldwide decline. Several factors, such as habitat alteration, climate change, emerging diseases or the introduction of exotic species, have been signalled as being responsible for the reduction of amphibian populations. Among these, the introduction of fish predators has been repeatedly indicated as a factor affecting the distribution of many species. The present study was developed to examine the effect of fish presence and other environmental factors on the distribution and abundance of amphibian species in mountain lakes of the Cantabrian Range in northern Spain. We found no effect of salmonid presence on the distribution and abundance of two widespread anuran species Bufo bufo and Alytes obstetricans , whereas Rana temporaria showed a non-significant tendency to be absent from salmonid-occupied lakes. However, the presence of introduced salmonids was the main negative factor explaining the distribution of the newt species Triturus helveticus , Triturus alpestris and Triturus marmoratus . The effect on these species is likely to be due to increased larval mortality, as adult and egg predation by fish, or oviposition avoidance by female newts has rarely been recorded. Fish removal and the creation of alternative breeding habitats for amphibians are proposed as conservation measures to recover amphibian populations in the vicinity of fish-stocked lakes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号