首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Detection of 5-methylcytosine in DNA sequences.   总被引:42,自引:22,他引:20       下载免费PDF全文
Col E1 DNA has methylated cytosine in the sequence 5'-CC*(A/T)GG-3' and methylated adenine in the sequence 5'-GA*TC-3' at the positions indicated by asterisks(*). When the Maxam-Gilbert DNA sequencing method is applied to this DNA, the methylated cytosine (5-methylcytosine) is found to be less reactive to hydrazine than are cytosine and thymine, so that a band corresponding to that base does not appear in the pyrimidine cleavage patterns. The existence of the methylated cytosine can be confirmed by analyzing the complementary strand or unmethylated DNA. In contrast, the methylated adenine (probably N6-methyladenine) cannot be distinguished from adenine with standard conditions for cleavage at adenine.  相似文献   

2.
3.
A small percentage of the adenine bases in Hemophilus influenzae strain Rd DNA are methylated in the 6-amino position. The methyl groups are introduced specifically by at least four different DNA methylases (I, II, III and IV). A method is described for determining the 3′ and 5′ nearest-neighbor bases to methylated adenine so as to reveal the specificity of each methylase. Tritium-labeled methyl groups are introduced into the DNA. The DNA is then digested to dinucleotides using the Bacillus subtilis phage SP3 DNase, followed by removal of the terminal 5′-phosphoryl group with phosphatase to produce dinucleoside monophosphates. These are analyzed by Aminex A25 (Bio-Rad) chromatography. Dinucleoside monophosphate species containing the 3′ neighbor or the 5′ neighbor are resolved so that a trinucleotide is determined that contains the centrally placed methylated adenine. H. influenzae Rd DNA contains seven dinucleoside monophosphate species, about 80% representing GpmA and mApT in approximately equal amount. DNA methylases I, II, III and IV introduce methyl groups into sequences containing the trinucleotides CpmApC, PupmApC, NpmApA and GpmApT, respectively. The sequence methylated by NDA methylase II is consistent with the recognition site determined by Kelly and Smith (1970) for the H. influenzae restriction enzyme, endonuclease R.  相似文献   

4.
In murine cells expressing the PaeR7 endonuclease and methylase genes, the recognition sites (CTCGAG) of these enzymes can be methylated at the adenine residue by the PaeR7 methylase and at the internal cytosine by the mouse DNA methyltransferase. Using nonadecameric duplex deoxyoligonucleotide substrates, the specificity of the PaeR7 endonuclease for unmethylated, hemi-methylated, and fully methylated N6-methyladenine (m6A) and C5-methylcytosine (m5C) versions of these substrates has been studied. The Km, Kcat, and Ki values for these model substrates have been measured and suggest that fully or hemi-m6A-methylated PaeR7 sites in the murine genome are completely protected. However, the reactivity of fully or hemi-m5C-methylated PaeR7 sites is depressed 2900- and 100-fold respectively, compared to unmodified PaeR7 sites. The implications of the kinetic constants of the PaeR7 endonuclease for these methylated recognition sites as they occur in murine cells expressing this endonuclease gene are discussed.  相似文献   

5.
An analysis of the methylated constituents of L cell mRNA by a combination of chromatographic methods and enzymatic treatments indicates that they comprise both 2'-O-methyl nucleosides and N6-methyl adenine, and/or 1-methyl adenine, and suggests that the 2'-O-methyl nucleotides, Ym, are part of an unusual class of sequences forming the 5' terminus of mRNA. These sequences seem to contain two 2'-O-methyl residues and a terminal residue that is not phosphorylated but, nevertheless, is blocked with respect to polynucleotid kinase reactivity. A strong candidate is a sequence of the type XppY1mpY2mpZp..., where X represents a blocking group which is itself occasionally methylated. The sequences isolated from total poly(A)+ mRNA contain all four species of 2'-O-methylated nucleoside, indicating some variability among different mRNA species. The methylated sequences do not appear to be enriched in the mRNA which hybridizes with repetitive DNA. The average L cell mRNA molecule also contains three residues of N6-methyl adenine. These residues are not part of the poly(A) segment, but appear to be located internal to the poly(A) near the 3' end of the mRNA molecules.  相似文献   

6.
Like in bacteria, DNA in these organisms is subjected to enzymatic modification (methylation) both at adenine and cytosine residues. There is an indirect evidence that adenine DNA methylation takes place also in animals. In plants m6A was detected in total, mitochondrial and nuclear DNAs; in plants one and the same gene (DRM2) can be methylated both at adenine and cytosine residues. ORF homologous to bacterial adenine DNA-methyltransferases are present in nuclear DNA of protozoa, yeasts, insects, nematodes, higher plants, vertebrates and other eukaryotes. Thus, adenine DNA-methyltransferases can be found in the various evolutionary distant eukaryotes. First N6-adenine DNA-methyltransferase (wadmtase) of higher eukaryotes was isolated from vacuolar fraction of vesicles obtained from aging wheat coleoptiles; in the presence of S-adenosyl-L-methionine this Mg2+ -, Ca2+ -dependent enzyme de novo methylates first adenine residue in TGATCA sequence in single- and double-stranded DNA but it prefers single-stranded DNA structures. Adenine DNA methylation in eukaryotes seems to be involved in regulation of both gene expression and DNA replication including replication of mitochondrial DNA. It can control persistence of foreign DNA in a cell and seems to be an element of R-M system in plants. Thus, in eukaryotic cell there are, at least, two different systems of the enzymatic DNA methylations (adenine and cytosine ones) and a special type of regulation of gene functioning based on the combinatory hierarchy of these interdependent genome modifications.  相似文献   

7.
KpnI DNA-(N(6)-adenine)-methyltransferase (KpnI MTase) is a member of a restriction-modification (R-M) system in Klebsiella pneumoniae and recognizes the sequence 5'-GGTACC-3'. It modifies the recognition sequence by transferring the methyl group from S-adenosyl-l-methionine (AdoMet) to the N(6) position of adenine residue. KpnI MTase occurs as a dimer in solution as shown by gel filtration and chemical cross-linking analysis. The nonlinear dependence of methylation activity on enzyme concentration indicates that the functionally active form of the enzyme is also a dimer. Product inhibition studies with KpnI MTase showed that S-adenosyl-l-homocysteine is a competitive inhibitor with respect to AdoMet and noncompetitive inhibitor with respect to DNA. The methylated DNA showed noncompetitive inhibition with respect to both DNA and AdoMet. A reduction in the rate of methylation was observed at high concentrations of duplex DNA. The kinetic analysis where AdoMet binds first followed by DNA, supports an ordered bi bi mechanism. After methyl transfer, methylated DNA dissociates followed by S-adenosyl-l-homocysteine. Isotope-partitioning analysis showed that KpnI MTase-AdoMet complex is catalytically active.  相似文献   

8.
9.
A method to separate the four major bases (cytosine, guanine, thymine and adenine) and the two minor modified bases (5-methylcytosine and 6N-methyladenine) in DNA has been developed. For optimal separation, several different buffer systems are available for isocratic elution. The 12 5-methylcytosine (5-mC) residues in the plasmid pBR322 can be determined with a deviation of less than 3% of the expected value and have been used for internal standardization. Formic acid hydrolysis of bases and probably of DNA does not lead to the deamination of cytosine or 5-mC and thus can be used routinely for DNA hydrolysis. Adenovirus or baculovirus DNA does not contain detectable amounts of 5-mC. The distribution of 5-mC in hamster cell DNA appears to be nonrandom in that different 5'-CpG-3'-containing restriction sites are methylated to different extents.  相似文献   

10.
Single-stranded M13mp18 phage DNA was methylated with dimethylsulfate (DMS), and further treated with alkali to ring-open N7-methylguanine residues and yield 2-6-diamino-4-hydroxy-5N-methylformamidopyrimidine (Fapy) residues. Nucleotide incorporation during in vitro DNA synthesis on methylated template using E. coli DNA polymerase Klenow fragment (Kf polymerase) was reduced compared to the unmethylated template. Additional treatment of the methylated template with NaOH to generate Fapy residues, further reduced in vitro DNA synthesis compared to the synthesis on methylated templates, which suggested that Fapy residues were a block to in vitro DNA synthesis. Analysis of the termination products on sequencing gels, assuming that synthesis stops one base before a blocking lesion, indicated that arrest of DNA synthesis upon direct alkylation of single-stranded DNA occurred 1 base 3' to template adenine residues in the case of Kf polymerase and 1 base 3' to adenine and cystosine residues for T4 polymerase. When the alkylated templates were treated with NaOH to produce a template which converted all the N7-methylguanine residues to Fapy residues, the blocks to DNA synthesis were still observed one base before adenine residues. In addition to the stops previously observed for the methylated templates, however, new stops occurred one base 3' to template guanine residues for synthesis using both Kf polymerase and T4 polymerase. Fapy residues, therefore, represent a potential lethal lesion which may also arrest in vivo DNA synthesis if not repaired.  相似文献   

11.
We report here a simple method of directly visualizing in automated DNA sequencing chromatograms DNA methylations of different types including cytosine methylations in Hpa II and dcm sites as well as adenine methylations in dam sites. This is made possible by the observation that the extent of incorporation of fluorescently labeled dideoxynucleotides is influenced by the methylated bases in template DNA. This simple approach involves routine automated DNA sequencing without any prior treatment of DNA specific for detecting DNA methylation.  相似文献   

12.
Arthrobacter viscosus DNA was resistance to digestion by restriction enzymes that are sensitive to methylation of the cytosine residue (but not of adenine) within the GATC recognition sequence. Restriction enzymes sensitive to methylation of cytosine in other recognition sequences were not affected. A. viscosus DNA thus appeared to contain methylated cytosine specifically at the GATC sequence.  相似文献   

13.
Two methods were used in an attempt to increase the efficiency and strand selectivity of methyl-directed mismatch repair of bacteriophage lambda heteroduplexes in E. coli. Previous studies of such repair used lambda DNA that was only partially methylated as the source of methylated chains. Also, transfection was carried out in methylating strains. Either of these factors might have been responsible for the incompleteness of the strand selectivity observed previously. In the first approach to increasing strand selectivity, heteroduplexes were transfected into a host deficient in methylation, but no changes in repair frequencies were observed. In the second approach, heteroduplexes were prepared using DNA that had been highly methylated in vitro with purified DNA adenine methylase as the source of methylated chains. In heteroduplexes having a repairable cI/+ mismatch, strand selectivity was indeed enhanced. In heteroduplexes with one chain highly methylated and the complementary chain unmethylated, the frequency of repair on the unmethylated chain increased to nearly 100%. Heteroduplexes with both chains highly methylated were not repaired at a detectable frequency. Thus, chains highly methylated by DNA adenine methylase were refractory to mismatch repair by this system, regardless of the methylation of the complementary chain. These results support the hypothesis that methyl-directed mismatch repair acts to correct errors of replication, thus lowering the mutation rate.  相似文献   

14.
Approximately 0.8% of the adenine residues in the macronuclear DNA of the ciliated protozoan Tetrahymena thermophila are modified to N 6-methyladenine. DNA methylation is site specific and the pattern of methylation is constant between clonal cell lines. In vivo, modification of adenine residues appears to occur exclusively in the sequence 5'-NAT-3', but no consensus sequence for modified sites has been found. In this study, DNA fragments containing a site that is uniformly methylated on the 50 copies of the macronuclear chromosome were cloned into the extrachromosomal rDNA. In the novel location on the rDNA minichromosome, the site was unmethylated. The result was the same whether the sequences were introduced in a methylated or unmethylated state and regardless of the orientation of the sequence with respect to the origin of DNA replication. The data show that sequence is insufficient to account for site-specific methylation in Tetrahymena and argue that other factors determine the pattern of DNA methylation.  相似文献   

15.
N Okawa  Y Suyama    A Kaji 《Nucleic acids research》1985,13(21):7639-7645
When the Maxam and Gilbert DNA sequencing method which is modified by Bencini et al. (Biotechniques Jan/Feb pp4-5, 1984) is applied to DNA containing methylated adenine in a GATC sequence, the cleavage reaction by sodium hydroxide is found to be greatly reduced in comparison to that of non-methylated adenine. Thus, a faint band in A greater than C reaction suggests a methyl adenine and can be used for its detection. That the faint band corresponds to a methyladenine was confirmed by Sanger sequencing of the same fragment and further by Maxam and Gilbert sequencing of the complementary strand of DNA, which was replicated in an E. coli strain either having or lacking methylation enzymes.  相似文献   

16.
A set of four individual DNA-adenine methylases differing in pI (isoelectric point) values (MMbu4.2, MMbu6.4, MMbu7.3, and MMbu8.7), and a sole methylating enzyme with the same base specificity (MSso9.5) are present in M. smegmatis (butyricum) and Sh. sonnei 47 cells, respectively. The sequence specificity of each of those was studied 'in vitro' by a combined approach that comprised isostich (purine tract) analysis and identification of the immediate neighbourhood of the methylated base within the sequence methylated. The MSso9.5 recognition site has been established as the hexanucleotide 'palindromic' 5'-G-A-A-T-T-C-3' sequence which is structurally similar to the analogous MEco RI recognition site. However, in contrast to MEco RI, MSso9.5 methylates the 5'-end adenine residue in the sequence and thus it appears to be an isometimer of MEco RI. By means of the same approach, the partial nucleotide sequences methylated by each of the four individual M. butyricum enzymes were determined. MMbu7.3 and MMbu8.7 exhibit the identical sequence specificity upon methylation of the degenerative trinucleotide 5'-Py-A-Py-3' sequence and thus these enzymes are assumed to represent the different molecular forms of the methylase. MMbu4.2 methylates the 5'-G-G-A-3' sequence and thus it is of a great value as the tool for negating effects of the RBam HI and RAva II-type restriction. MMbu6.4 is of a particular interest on account of its unique DNA methylation pattern which is distinguished in the pronounced clustering of purine bases in the 5'-Pu-Pu-Pu-Pu-Pu-3' sequence methylated.  相似文献   

17.
Methylation Pattern of Lambda Deoxyribonucleic Acid   总被引:1,自引:0,他引:1       下载免费PDF全文
Deoxyribonucleic acid (DNA) extracted from phage lambda grown on Escherichia coli K-12 strain W4032 had 113 +/- 10 5-methylcytosine residues and 215 +/- 20 6-methyl adenine residues per genome, as determined by three independent methods. These methylated nucleotides were distributed equally among the two strands of lambda DNA. Shearing of double-stranded DNA to half-length fragments revealed a slight deficiency of 5-methyl cytosine in the 55% guanine plus cytosine half. Shearing the DNA to fragments of smaller length showed that the distribution of methylated nucleotides along the double helix was uniform with the exception of an undermethylated fragment arising from the center of the lambda DNA molecule. The implication of these results for the function of methylated nucleotides in the lambda DNA molecule is discussed.  相似文献   

18.
The rate of reaction of chloroacetaldehyde (0.039 M) with the "free" adenine residue in deoxyadenosine-5'-phosphate (dAMP) at pH 6.5 has been found to be nearly equal to that at pH 4.5. Practically 100% of the adenine is converted to a fluorescent product (epsilon-adenine residue) on incubation for 60 h at 37 degrees C and pH 6.5. Of the adenine residues in "single-stranded" DNA, however, only 14% react with chloroacetaldehyde (0.039 M) under the same incubation conditions. The reaction rate of this 14% is nearly equal to that of dAMP, but the fluorescence of the product is appreciably quenched; the quantum yield is only 0.45 times that of the "free" adenine residue. In "double-helical" DNA, on the other hand, no adenine residue has been found to react with chloracetaldehyde. Possible application of these findings to structural studies of DNA is suggested.  相似文献   

19.
The DNA adenine methylation status on specific 5'-GANTC-3' sites and its change during the establishment of plant-microbe interactions was demonstrated in several species of alpha-proteobacteria. Restriction landmark genome scanning (RLGS), which is a high-resolution two dimensional DNA electrophoresis method, was used to monitor the genomewide change in methylation. In the case of Mesorhizobium loti MAFF303099, real RLGS images obtained with the restriction enzyme MboI, which digests at GATC sites, almost perfectly matched the virtual RLGS images generated based on genome sequences. However, only a few spots were observed when the restriction enzyme HinfI was used, suggesting that most GANTC (HinfI) sites were tightly methylated and specific sites were unmethylated. DNA gel blot analysis with the cloned specifically unmethylated regions (SUMs) showed that some SUMs were methylated differentially in bacteroids compared to free-living bacteria. SUMs have also been identified in other symbiotic and parasitic bacteria. These results suggest that DNA adenine methylation may contribute to the establishment and/or maintenance of symbiotic and parasitic relationships.  相似文献   

20.
We have cloned two DNA fragments containing 5'-GATC-3' sites at which the adenine is methylated in the macronucleus of the ciliate Tetrahymena thermophila. Using these cloned fragments as molecular probes, we analyzed the maintenance of methylation patterns at two partially and two uniformly methylated sites. Our results suggest that a semiconservative copying model for maintenance of methylation is not sufficient to account for the methylation patterns we found during somatic growth of Tetrahymena. Although we detected hemimethylated molecules in macronuclear DNA, they were present in both replicating and nonreplicating DNA. In addition, we observed that a complex methylation pattern including partially methylated sites was maintained during vegetative growth. This required the activity of a methylase capable of recognizing and modifying sites specified by something other than hemimethylation. We suggest that a eucaryotic maintenance methylase may be capable of discriminating between potential methylation sites to ensure the inheritance of methylation patterns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号