首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Plasmid pJMC21 contains Escherichia coli chromosomal DNA encoding Lon protease, HU-beta (HU-1), and an unidentified 67,000-dalton protein. A kanamycin resistance cassette was used in the construction of insertion and deletion mutations in hupB, the gene encoding HU-beta on plasmid pJMC21. The reconstructed plasmids were linearized and used to introduce hupB chromosomal mutations into JC7623 (recBC sbcBC). These mutations, as expected, mapped in the 9.8-min region of the E. coli chromosome by P1 transduction (16% linkage to proC+). Southern blot hybridization of chromosomal fragments verified that hupB+ was replaced by the mutant allele, with no indication of gene duplication. All the mutant strains had growth rates identical to that of wild-type E. coli, were resistant to UV irradiation and nitrofurantoin, and supported the in vivo transposition-replication of bacteriophage Mu, Mu lysogenization, Tn10 transposition from lambda 1098, and lambda replication-lysogenization. The only observable phenotypic variation was a reduced Mu plaque size on the hupB mutant strains; however, the yield of bacteriophage Mu in liquid lysates prepared from the mutant strains was indistinguishable from the yield for the wild type.  相似文献   

2.
3.
Y Kano  M Wada  F Imamoto 《Gene》1988,69(2):331-335
  相似文献   

4.
Insertion and deletion mutations of the hupB and hupA genes, which encode the HU-1 and HU-2 proteins, respectively, of Escherichia coli, have been constructed in vitro and transferred to the hup loci on the bacterial chromosome. The mutations were constructed by inserting a gene encoding chloramphenicol resistance or kanamycin resistance into the coding region of the hupB or hupA gene, respectively. A complete deletion of the hupA gene was constructed by replacing the entire hupA coding region with the kanamycin resistance gene. Cells in which either the hupB or the hupA gene is defective grow normally, but cells in which both of the hup genes are defective exhibit phenotypes different from the wildtype strain. The hupA-hupB double mutants are cold-sensitive, although their growth rate is normal at 37 degrees C. Furthermore, the viability of the hupA-hupB double mutants is severely reduced when the cells are subjected to either cold shock or heat shock, indicating that the hup genes are essential for cell survival under some conditions of stress. The double mutants also exhibit filamentation when grown in the lower range of permissive growth temperature.  相似文献   

5.
Escherichia coli hupA hypB double mutants that lack HU protein have severe cellular defects in cell division, DNA folding, and DNA partitioning. Here we show that the sfiA11 mutation, which alters the SfiA cell division inhibitor, reduces filamentation and production of anucleate cells in AB1157 hupA hupB strains. However, lexA3(Ind-) and sfiB(ftsZ)114 mutations, which normally counteract the effect of the SfiA inhibitor, could not restore a normal morphology to hupA hupB mutant bacteria. The LexA repressor, which controls the expression of the sfiA gene, was present in hupA hupB mutant bacteria in concentrations half of those of the parent bacteria, but this decrease was independent of the specific cleavage of the LexA repressor by activated RecA protein. One possibility to account for the filamentous morphology of hupA hupB mutant bacteria is that the lack of HU protein alters the expression of specific genes, such as lexA and fts cell division genes.  相似文献   

6.
Subunit-specific phenotypes of Salmonella typhimurium HU mutants.   总被引:9,自引:4,他引:5       下载免费PDF全文
Salmonella hupA and hupB mutants were studied to determine the reasons for the high degree of conservation in HU structure in bacteria. We found one HU-1-specific effect; the F'128 plasmid was 25-fold less stable in hupB compared with hupA or wild-type cells. F' plasmids were 120-fold more unstable in hupA hupB double mutants compared with wild-type cells, and the double mutant also had a significant alteration in plasmid DNA structure. pBR322 DNA isolated from hupA hupB strains was deficient in supercoiling by 10 to 15% compared with wild-type cells, and the topoisomer distribution was significantly more heterogeneous than in wild-type or single-mutant strains. Other systems altered by HU inactivation included flagellar phase variation and phage Mu transposition. However, Mu transposition rates were only about fourfold lower in Salmonella HU double mutants. One reason that Salmonella HU double mutants may be less defective for Mu transposition than E. coli is the synthesis in double mutants of a new, small, basic heat-stable protein, which might partially compensate for the loss of HU. The results indicate that although either HU-1 or HU-2 subunit alone may accommodate the cellular need for general chromosomal organization, the selective pressure to conserve HU-1 and HU-2 structure during evolution could involve specialized roles of the individual subunits.  相似文献   

7.
8.
M Wada  K Kutsukake  T Komano  F Imamoto  Y Kano 《Gene》1989,76(2):345-352
The closely related Escherichia coli genes hupA and hupB each encode a bacterial histone-like protein HU. We report here that DNA inversion mediated by hin, gin, pin and rci but not by cin is blocked in a hupA hupB double mutant, although inversions in these systems occur in the hupA or hupB single mutant as efficiently as in the wild-type strain. These findings show that HU protein participates in site-specific DNA inversion in E. coli and that only one subunit, either HU-1 or HU-2, is sufficient for this inversion.  相似文献   

9.
In bacteria, the complex nucleoid structure is folded and maintained by negative superhelical tension and a set of type II DNA-binding proteins, also called histonelike proteins. The most abundant type II DNA-binding protein is HU. Southern blot analysis showed that Salmonella typhimurium contained two HU genes that corresponded to Escherichia coli genes hupA (encoding HU-2 protein) and hupB (encoding HU-1). Salmonella hupA was cloned, and the nucleotide sequence of the gene was determined. Comparison of hupA of E. coli and S. typhimurium revealed that the HU-2 proteins were identical and that there was high conservation of nucleotide sequences outside the coding frames of the genes. A 300-member genomic library of S. typhimurium was constructed by using random transposition of MudP, a specialized chimeric P22-Mu phage that packages chromosomal DNA unidirectionally from its insertion point. Oligonucleotide hybridization against the library identified one MudP insertion that lies within 28 kilobases of hupA; the MudP was 12% linked to purH at 90.5 min on the standard map. Plasmids expressing HU-2 had a surprising phenotype; they caused growth arrest when they were introduced into E. coli strains bearing a himA or hip mutation. These results suggest that IHF and HU have interactive roles in bacteria.  相似文献   

10.
A 15-kb DNA fragment containing a cluster of hup genes has been identified and cloned from Anabaena sp. strain PCC7120. These genes are located upstream of the hupL gene in the adjacent fragment in the Anabaena chromosome. Sequence analysis of a 3.5-kb HindIII fragment showed the sequence of hupEAB and a part of the hupD gene, all of which showed high sequence similarity with hyp genes of Escherichia coli and hup genes of several nitrogen-fixing bacteria. These genes are oriented in one direction, as are the hup genes of other organisms. Although the Anabaena hupDEAB genes are in the same cluster as the hypABCDE cluster of E. coli, the relative positions of the genes differ and there is no hupC in Anabaena on either side of hupA or hupB. Unlike several other organisms, hupD and hupE are not closely linked or translationally coupled in Anabaena, but are separated by an intergenic space of 453 bp. RT-PCR analysis of RNA obtained from vegetative cells and heterocysts of Anabaena showed that the hupB gene is expressed only in heterocyst-induced cultures. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

11.
Mapping of the lipoprotein signal peptidase gene (lsp)   总被引:4,自引:1,他引:3       下载免费PDF全文
A pBR322 plasmid which contains a fragment of Escherichia coli DNA encoding the lipoprotein signal peptidase gene was used to transform Hfr polA1 strains. Ampr transformants were used as donors in conjugation experiments, and the location of the plasmid amp gene adjacent to the chromosomal lsp gene was determined to be near the thr ara loci of the E. coli chromosome. P1 transduction experiments established that the location of the lsp gene is closely linked to that of dapB , at 0.5 to 0.6 min on the E. coli genetic map. The position of the lsp gene was further determined to be between ileS and dapB by complementation analysis of an E. coli mutant showing temperature-sensitive prolipoprotein signal peptidase activity.  相似文献   

12.
Y Kano  N Goshima  M Wada  F Imamoto 《Gene》1989,76(2):353-358
The closely related Escherichia coli genes hupA and hupB each encode a bacterial histone-like protein HU. We report here that mutator phage Mucts62 was unable to replicate in a hupA hupB double mutant, although it could replicate in hupA or hupB single mutant as efficiently as in the wild-type strain. Mucts62 was able to lysogenize the double mutant at 30 degrees C; cell killing occurred when the lysogen was incubated at 42 degrees C, but did not result in phage production. High-frequency non-replicative integration of Mu into host genomic DNA soon after infection could not be detected in the hupAB double mutant. These results provide the evidence that HU protein is essential for replicative transposition of Mu phage in E. coli, and also participates in high-frequency conservative integration.  相似文献   

13.
The gene for leader peptidase, termed lep, was mapped to the region between purI and nadB at min 54 to 55 on the Escherichia coli chromosome. Mapping involved (i) cloning the gene into the plasmid pBR322, (ii) transforming the plasmid into a polA strain where it cannot replicate autonomously, (iii) selecting by ampicillin resistance the rare cell in which the plasmid had recombined into the chromosome, and (iv) mapping the chromosomal site of drug resistance (and thus plasmid integration) by Hfr matings and P1 transduction. The map position was confirmed by an assay of the enzyme content of cells bearing an F' factor which covered that region of the chromosome.  相似文献   

14.
Mapping and complementation studies of the gene for release factor 1.   总被引:17,自引:8,他引:9       下载免费PDF全文
In Escherichia coli the release factor 1 protein (RF1) recognizes and terminates translation at UAG and UAA codons. Using the technique of ColE1 plasmid integration in polA strains, we have mapped the cloned gene for RF1 to 27 min on the E. coli chromosome. This is the same location as that of the uar gene in which temperature-sensitive mutations increase the suppression of UAG and UAA alleles. In this study we proved that the uar mutation lies in the gene for RF1 by complementation of the uar phenotype with plasmids carrying the RF1 gene and by cloning the uar allele onto the RF1 plasmid by means of homologous recombination. In addition, complementation and P1 mapping data suggest that sueB is also a mutation in the same position as the RF1 gene. We propose that the gene for RF1 be named prfA after protein release factor.  相似文献   

15.
The Escherichia coli gene murZ was recently shown to encode UDP-N-acetylglucosamine enolpyruvyl transferase, which catalyzes the first committed step of peptidoglycan biosynthesis (J. L. Marquardt, D. A. Siegele, R. Kolter, and C. T. Walsh, J. Bacteriol. 174:5748-5752, 1992). The map position of murZ (69.3 min) differed from that determined for murA (90 min), a gene which had been previously proposed to encode the same activity (P.S. Venkateswaran and H. C. Wu, J. Bacteriol. 110:935-944, 1972). Here we describe the construction of a chromosomal deletion of murZ and a plasmid containing murZ under arabinose control. Growth of cells containing the murZ deletion was dependent on the expression of murZ from the plasmid. We conclude that murZ is an essential gene and encodes the sole UDP-N-acetylglucosamine enolpyruvyl transferase of E. coli. To simplify the nomenclature, we recommend that murA be used to designate the gene at 69.3 min that encodes this activity and that the designation murZ be abandoned.  相似文献   

16.
The fbp locus at 96 min on the Escherichia coli chromosome governs fructose bisphosphatase (fructose-1,6-P2 1-phosphatase). We have cloned and subcloned fbp on vector pBR322 to obtain strains with high levels of the enzyme. In vivo mutagenesis of the clone was used to show that fbp is the structural gene. The gene was deleted on the plasmid in vitro, and the chromosomal wild-type locus was replaced with this deletion by a method involving stabilization of a heterozygous intermediate resulting from plasmid integration, followed by segregation of the wild-type gene.  相似文献   

17.
A family of shuttle plasmids was constructed for genetic transformation of Escherichia coli and of ruminal Bacteroides strains AR20 and AR29. Plasmids were based on the replicon from Bacteroides plasmid pBI191 and were designed for studies of chromosomal integration (pBA), for the identification and study of Bacteroides gene promoters (pPPR) and for the expression of heterologous genes in Bacteroides (pBAC). Electroporation efficiency of Bacteroides was up to 10(5) transformants/microg plasmid, depending on the source of the DNA. The largest plasmid, pBA, was maintained at approximately 8 copies per cell in AR20 and did not measurably alter in vitro growth of transformed cells. In the current work, pBA did not integrate into the chromosomes of AR20 or AR29. The ability of plasmid pPPR to select promoter sequences was demonstrated by removal and replacement of promoters that activate the clindamycin resistance gene. The suitability of pBAC for expression of heterologous genes was demonstrated by expression of the Moraxella species fluoroacetate dehalogenase gene H1 to give intracellular activity of 7 nmol fluoride released/min/mg soluble protein in AR20 and 4 nmol/min/mg in AR29. Spontaneous loss of pBAC under non-selective conditions was 0.11-0.165% per generation, significantly less than loss of the native Bacteroides plasmid pBI191, which was lost at 0.53% per generation.  相似文献   

18.
Random TnphoA and TnlacZ translational fusions were introduced into an Escherichia coli strain with a deletion of the multiple antibiotic resistance (mar) locus, complemented in trans by a temperature-sensitive plasmid bearing the mar locus with a constitutively expressed mar operon. Five gene fusions (two with lacZ and three with phoA) regulated by the mar operon were identified by increased or decreased marker enzyme activity following loss of the complementary plasmid at the restrictive temperature. Expression of LacZ from both lacZ fusions increased in the presence of the mar operon; expression from the three phoA fusions was represented by the mar operon. The lacZ fusions were mapped at 31.5 and 14 min on the Escherichia coli chromosome. One of the phoA fusions was located at 51.6 min while the two others mapped at 77 min. Cloning and sequencing of a portion of the fused genes showed all of them to be different. The phoA fusions at 77 min were located in a recently identified gene, slp, a lipoprotein of unknown function (D.M. Alexander and A. C. St. John, Mol. Microb. 11:1059-1071, 1994). The others showed no homology with any known genes of E. coli. The insertions caused small but reproducible changes in the antibiotic susceptibility profile. This approach has enabled the identification of new genes in E. coli which are regulated by the marRAB operon and involved in the Mar phenotype.  相似文献   

19.
The sppA gene codes for protease IV, a signal peptide peptidase of Escherichia coli. Using the gene cloned on a plasmid, we constructed an E. coli strain carrying the ampicillin resistance gene near the chromosomal sppA gene and an sppA deletion strain in which the deleted portion was replaced by the kanamycin resistance gene. Using these strains, we mapped the sppA gene at 38.5 min on the chromosome, the gene order being katE-xthA-sppA-pncA. Although digestion of the signal peptide that accumulated in the cell envelope fraction was considerably slower in the deletion mutant than in the sppA+ strain, it was still significant, suggesting the participation of another envelope protease(s) in signal peptide digestion.  相似文献   

20.
The Clarke and Carbon bank of Col El - Escherichia coli DNa hybrid plasmids was screened for complementation of d-xylose negative mutants of E. coli. Of several obtained, the smallest, pRM10, was chosen for detailed study. Its size was 16 kilobases (kb) and that of the insert was 9.7 kg. By transformation or F'-mediated conjugation this plasmid complemented mutants of E. coli defective in either D-xylose isomerase or D-xylulose kinase activity, or both. The activity of D-xylulose kinase in E. coli transformants which bear an intact chromosomal gene for this enzyme was greater than that for the host, due to a gene dosage effect. The plasmid also complemented D-xylose negative mutants of Salmonella typhimurium by F'-mediated conjugation between E. coli and S. typhimurium. Salmonella typhimurium mutants complemented were those for D-xylose isomerase and for D-xylulose kinase in addition to pleiotropic D-xylose mutants which were defective in a regulatory gene of the D-xylose operon. In addition, the plasmid complemented the glyS mutation in E. coli and S. typhimurium. The glyS mutant of E. coli was temperature sensitive, indicating that the plasmid carried the structural gene for glycine synthetase. The glyS mutation in E. coli maps at 79 min, as do the xyl genes. The behaviour of the plasmid is consistent with the existence of a d-xylose operon in E. coli. The data also suggest that the plasmid carries three of the genes of this operon, specifically those for D-xylose isomerase, D-xylulose kinase, and a regulatory gene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号