首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gas exchange parameters, water relations and Na+/Cl- content were measured on leaves of one-year-old sweet orange ( Citrus sinensis [L.] Osbeck cv. Hamlin) seedlings grown at increasing levels of salinity. Different salts (NaCl, KCl and NaNO3) were used to separate the effects of Cl and Na+ on the investigated parameters. The chloride salts reduced plant dry weight and increased defoliation. Accumulation of Cl in the leaf tissue caused a sharp reduction in photosynthesis and stomatal conductance. By contrast, these parameters were not affected by leaf Na+ concentrations of up to 478 m M in the tissue water. Leaf water potentials reached values near −1.8 MPa at high NaCl and KCl supplies. This reduction was offset by a decrease in the osmotic potential so that turgor was maintained at or above control values. The changes in osmotic potential were closely correlated with changes in leaf proline concentrations. Addition of Ca2+ (as calcium acetate) increased growth and halved defoliation of salt stressed plants. Furthermore, calcium acetate decreased the concentration of Cl and Na+ in the leaves, and increased photosynthesis and stomatal conductance. Calcium acetate also counteracted the reductions in leaf water and osmotic potentials induced by salinity. In addition, calcium acetate inhibited the accumulation of proline in the leaves which affected the reduction in osmotic potential. These results indicate that adverse effects of salinity in Citrus leaves are caused by accumulation of chloride.  相似文献   

2.
The transfer of cultured tomato cells (Lycopersicon esculentum cv VFNT-Cherry) to a low water potential environment resulted in an increased dry weight to fresh weight ratio accompanied by a rapid accumulation of proline. Proline content continued to increase as osmotic adjustment and growth occurred. The initial increase in proline concentration was accompanied by a drop in turgor. However, proline levels continued to increase with a gain in turgor during osmotic adjustment. Thus, the accumulation of proline depended not only on cell water potential, or on the initial loss of turgor but more closely on cell osmotic potential. The ultimate level of proline depended on the level of adaptation. Proline levels remained high after more than 100 cell generations in low water potential media, but declined rapidly after transfer to media with a less negative water potential. Addition of exogenous proline to the medium during water stress and during osmotic downshock alleviated the normally resulting inhibition of growth. The results suggest a positive role for proline accumulation in adaptation of cells to changing external water potentials.  相似文献   

3.
R. F. Grant 《Plant and Soil》1995,172(2):309-322
There is a need to establish how root water uptake should be calculated under saline conditions, and to test calculated uptake against experimental data recorded under documented site conditions. In this study, the ecosystem simulation model ecosys was expanded to include an ion transfer-equilibrium-exchange model used to calculated electrical conductivity and osmotic potential. This expanded model was tested against experimental data for maize growth and water use reported under different irrigation and salinity levels at four different sites in the western U.S. to determine if salinity effects on crop growth and water use could be modelled from the effects of salinity on soil osmotic potential. The model was able to reproduce reductions in water use and phytomass yields on salinized (10 g total salts kg–1 water) soils that ranged from 10 to 50% of those on non-salinized controls. In general, these reductions increased with increasing irrigation deficits. These reductions arose in the model from reduced canopy water potentials and conductances caused by reduced osmotic potentials in the saline soils. The hypothesis that salinity effects on crop growth and water use are caused by salinity effects on soil osmotic potential appear to be supported under the range of conditions included in this study. Models such as ecosys that are based on general hypotheses for the effects of salinity upon biological activity may be well adapted for general use in assessing the effects of salinity on crop growth and water use with different soils, managements and climates.  相似文献   

4.
The response of halophyte arrowleaf saltbush(Atriplex triangularis Willd)plants to a gradient of salt stress were investigatedwith hydroponically cultured seedlings.Under salt stress,both the Na~ uptake into root xylem and negative pressures inxylem vessels increased with the elevation of salinity(up to 500 mol/m~3)in the root environment.However,the increment innegative pressures in root xylem far from matches the decrease in the osmotic potential of the root bathing solutions,evenwhen the osmotic potential of xylem sap is taken into consideration.The total water potential of xylem sap in arrowleafsaltbush roots was close to the osmotic potential of root bathing solutions when the salt stress was low,but a progressivelyincreased gap between the water potential of xylem sap and the osmotic potential of root bathing solutions was observedwhen the salinity in the root environment was enhanced.The maximum gap was 1.4 MPa at a salinity level of 500 mol/m~3without apparent dehydration of the tested plants.This discrepancy could not be explained with the current theories inplant physiology.The radial reflection coefficient of root in arrowleaf saltbush decreased with the enhanced salt stress wasand accompanied by an increase in the Na~ uptake into xylem sap.However,the relative Na~ in xylem exudates based onthe corresponding NaCl concentration in the root bathing solutions showed a tendency of decrease.The results showedthat the reduction in the radial reflection coefficient of roots in the arrowleaf saltbush did not lead to a mass influx of NaClinto xylem when the radial reflection coefficient of the root was considerably small;and that arrowleaf saltbush could usesmall xylem pressures to counterbalance the salt stresses,either with the uptake of large amounts of salt,or with thedevelopment of xylem pressures dangerously negative.This strategy could be one of the mechanisms behind the highresistance of arrowleaf saltbush plants to salt stress.  相似文献   

5.
We examined the roles of turgor potential and osmotic adjustment in plant growth by comparing the growth of spring wheat ( Triticum aestivum cv. Siete cerrors) and sudangrass ( Sorghum vulgare var. Piper) seedlings in response to soil water and temperature stresses. The rates of leaf area expansion, leaf water potential and osmotic potential were measured at combinations of 5 soil water potentials ranging from −0.03 to −0.25 MPa and 6 soil temperatures ranging from 14 to 36°C. Spring wheat exhibited little osmotic adjustment while sudangrass exhibited a high degree of osmotic adjustment. However, the rate of leaf area growth for sudangrass was more sensitive to water stress than that of spring wheat. These results were used to evaluate the relationship between growth and turgor potential. The modified Arrhenius equation based on thermodynamic considerations of the growth process was evaluated. This equation obtains growth rate as a function of activation energy, enthalpy difference between active and inactive states of enzymes, base growth rate and optimum temperature. Analyses indicate that the modified Arrhenius equation is consistent with the Lockhart equation with a metabolically controlled cell wall extensibility.  相似文献   

6.
The response of halophyte arrowleaf saltbush (Atriplex triangularis Willd) plants to a gradient of salt stress were investigated with hydroponically cultured seedlings. Under salt stress, both the Na+ uptake into root xylem and negative pressures in xylem vessels increased with the elevation of salinity (up to 500 mol/m3) in the root environment. However, the increment in negative pressures in root xylem far from matches the decrease in the osmotic potential of the root bathing solutions, even when the osmotic potential of xylem sap is taken into consideration. The total water potential of xylem sap in arrowleaf saltbush roots was close to the osmotic potential of root bathing solutions when the salt stress was low, but a progressively increased gap between the water potential of xylem sap and the osmotic potential of root bathing solutions was observed when the salinity in the root environment was enhanced. The maximum gap was 1.4 MPa at a salinity level of 500 mol/m3 without apparent dehydration of the tested plants. This discrepancy could not be explained with the current theories in plant physiology. The radial reflection coefficient of root in arrowleaf saltbush decreased with the enhanced salt stress was and accompanied by an increase in the Na+ uptake into xylem sap. However, the relative Na+ in xylem exudates based on the corresponding NaCl concentration in the root bathing solutions showed a tendency of decrease. The results showed that the reduction in the radial reflection coefficient of roots in the arrowleaf saltbush did not lead to a mass influx of NaCl into xylem when the radial reflection coefficient of the root was considerably small; and that arrowleaf saltbush could use small xylem pressures to counterbalance the salt stresses, either with the uptake of large amounts of salt, or with the development of xylem pressures dangerously negative. This strategy could be one of the mechanisms behind the high resistance of arrowleaf saltbush plants to salt stress.  相似文献   

7.
Water-use characteristics and potential salt accumulation rates were studied in three halophytes, Salicornia virginica, Balis marítima and Borrichia frutescens, inhabiting a salinity gradient in the high marsh. Xylem pressure potential (ψρ), leaf osmotic potential (ψπ) and leaf relative water content were measured seasonally in the three species. Species growing on the high end of the salinity gradient developed more negative xylem pressure potentials compared to species growing at lower soil salinities. This trend was also observed for leaf osmotic potentials. Low mean leaf ψπ (below –15 to –36 bars) and high ash contents (0.27–0.48 g NaCl/g DW) indicated salt accumulation in transpiring tissues. However, calculations of potential salt accumulation, based on rates of transpiration and substrate salinity, suggest that some mechanism of salt exclusion at the roots may be operating.  相似文献   

8.
Osmotic potentials and individual epidermal cell turgor pressures were measured in the leaves of seedlings of Suaeda maritima growing over a range of salinities. Leaf osmotic potentials were lower (more negative) the higher the salt concentration of the solution and were lowest in the youngest leaves and stem apices, producing a gradient of osmotic potential towards the apex of the plant. Epidermal cell turgor pressures were of the order of 0.25 to 0.3 MPa in the youngest leaves measured, decreasing to under 0.05 MPa for the oldest leaves. This pattern of turgor pressure was largely unaffected by external salinity. Calculation of leaf water potential indicated that the gradient between young leaves and the external medium was not altered by salinity, but with older leaves, however, this gradient diminished from being the same as that for young leaves in the absence of NaCl, to under 30% of this value at 400 mM NaCl. These results are discussed in relation to the growth response of S. maritima.  相似文献   

9.
盐胁迫对大豆根系木质部压力和Na+吸收的影响   总被引:1,自引:0,他引:1  
取栽培大豆的水培幼苗为材料,用木质部压力探针和原子吸收分光光度计测定了盐胁迫条件下其根木质部压力和伤流液中Na~+含量的变化,以分析大豆抗盐吸水的机制.结果表明:在25~150 mmol/L NaCl的浓度范围内,随着盐胁迫强度的增加,大豆根木质部负压力的绝对值逐渐增大,但相对负压力和根的径向反射系数则逐渐减小;木质部伤流液中Na~+含量逐渐增加,但Na~+的相对含量则逐渐降低.同时,虽然根系吸水所需的木质部负压力(压力势)及根木质部伤流液的渗透势随着盐胁迫强度的增加都有所下降,但两者共同作用使木质部水势下降的幅度远远小于根外溶液水势(渗透势)下降的幅度,即随着根外溶液盐浓度的升高,根木质部溶液的总水势逐渐高出根外溶液的水势.上述结果说明,在盐胁迫下大豆可以利用相对小的木质部负压力逆水势梯度吸水,且通过避免对Na~+的过量吸收来适应盐胁迫环境.  相似文献   

10.
Cultured cells of tomato, Lycopersicon esculentum Mill. cv VFNT-cherry, have been selected for resistance to water stress (low water potential) imposed by the addition of polyethylene glycol to the culture medium. The ability of nonselected cells to grow in media with low water potentials changes dramatically with the age of the cells (with respect to days following inoculation) whereas there is little effect of the age of selected cells on growth over the same media water potentials. The increased resistance of selected cells has limited stability in the absence of stress, indicating that resistance is established by a slow reversible adaptive process.

Increased resistance (growth) in the presence of water stress appears to result from considerable osmotic adjustment by the cells. Growth cycle-dependent changes in resistance of nonselected cells are correlated with osmotic potential changes which are associated with the normal cell growth pattern in culture. Lowered osmotic potential is maintained by selected cells throughout the entire growth cycle and may explain the growth cycle independence of growth of selected cells on polyethylene glycol-containing media. Osmotic adjustment of resistant cells at stationary phase can be as much as 40 bar. Turgor is maintained by resistant cells (as high as 21 bar) in media with low water potentials at least partly at the expense of cell expansion.

  相似文献   

11.
Leaf age and salinity influence water relations of pepper leaves   总被引:2,自引:0,他引:2  
Plant growth is reduced under saline conditions even when turgor in mature leaves is maintained by osmotic adjustment. The objective of this study was to determine if young leaves from salt-affected plants were also osmotically adjusted. Pepper plants (Capsicum annuum L. cv. California Wonder) were grown in several levels of solution osmotic potential and various components of the plants' water relations were measured to determine if young, rapidly growing leaves could accumulate solutes rapidly enough to maintain turgor for normal cell enlargement. Psychrometric measurements indicated that osmotic adjustment is similar for both young and mature leaves although osmotic potential is slightly lower for young leaves. Total water potential is also lower for young leaves, particularly at dawn for the saline treatments. The result is reduced turgor under saline conditions at dawn for young but not mature leaves. This reduced turgor at dawn, and presumably low night value, is possibly a cause of reduced growth under saline conditions. No differences in leaf turgor occur at midday. Porometer measurements indicated that young leaves at a given salinity level have a higher stomatal conductance than mature leaves, regardless of the time of day. The result of stomatal closure is a linear reduction of transpiration.  相似文献   

12.
Summary Growth responses of Frankia isolates to decreasing water potential were monitored in systems where potentials were controlled by KCl, NaCl and Polyethylene glycol. The highest potential tested was −2 bar (basal medium). The general pattern emerging was that isolates fromAlnus glutinosa, A. viridis andComptonia peregrina showed declining growth at potentials below −2 to −5 bar. AMyrica gale isolate showed declining growth with decreasing potential. All isolates were more sensitive to decreases in potential in a matric controlled than an osmotic controlled system. They all showed approximately 50 percent growth reduction at −5 to −8 bar, and meagre growth at −16 bar after 35 days. The Comptonia isolate was the most vigorous at low potentials. Nitrogen fixation ability was monitored for two isolates. Highest specific activities were observed between −3 and −5 bar for the Myrica isolate and between −5 and −7.5 bar for theA. glutinosa isolate.  相似文献   

13.
A model of the effects of water stress on seed advancement and germination   总被引:1,自引:0,他引:1  
A model of seed germination is proposed which uses a variable with the units of an osmotic potential (virtual osmotic potential) to integrate the effect of a constant or a varying water potential. This differs from existing models that describe the effects of fixed water potentials on germination, or the effects of fixed priming water potentials on the subsequent germination at a fixed water potential. When a seed is sown, the virtual osmotic potential is assumed to fall at a rate that depends on the ambient water potential, and on the difference between its current and a minimum value. Radicle growth is assumed to initiate when the difference between the ambient water potential and the virtual osmotic potential exceeds a threshold. The germination of carrot and onion seeds at various fixed potentials below 0 MPa was well described by the virtual osmotic potential model. The model was also used to simulate the results of experiments in which seeds were given a single step change in water potential.  相似文献   

14.
Cultivated tomato Lycopersicon esculentum (L.) Mill. cv. P-73 and its wild salt-tolerant relative L. pennellii (Correll) D'Arcy accession PE-47 growing on silica sand in a growth chamber were exposed to 0, 70, 140 and 210 m M NaCl nutrient solutions 35 days after sowing. The saline treatments were imposed for 4 days, after which the plants were rinsed with distilled water. Salinity in L. esculentum reduced leaf area and leaf and shoot dry weights. The reductions were more pronounced when sodium chloride was removed from the root medium. Reduction in leaf area and weight in L. pennellii was only observed after the recovery period. In both genotypes salinity induced a progressive reduction in leaf water potential and leaf conductance. During the recovery period leaf water potential (ψ1) and leaf conductance (g1) reached levels similar to those of control plants in wild and cultivated species, respectively. Leaf osmotic potential at full turgor (ψos) decreased in the salt treated plants of both genotypes, whereas the bulk modulus of elasticity was not affected by salinity. Leaf water potential at turgor loss point (ψtlp) and relative water content at turgor loss point (RWCtlp) appeared to be controlled by leaf osmotic potential at full turgor (ψos) and by bulk modulus of elasticity, respectively. At lowest salinity, the wild species carried out the osmotic adjustment based almost exclusively on Cl and Na+, with a marked energy savings. Under highest salinity, this species accommodate the stress through a higher expenditure of energy due to the contribution of organic solutes to the osmotic adjustment. The domesticated species carried out the osmotic adjustment based always on an important contribution of organic solutes.  相似文献   

15.
Abstract. Growth rates and levels of minerals, Na+, K+, Mg++, Ca++, and water were measured in dicotyledonous halophytes grown along a salinity gradient from fresh water to 720 mol m−3 NaCl in a controlled environment greenhouse. Ten test species from the families Chenopodiaceae, Aizoaceae, and Batidaceae exhibited growth stimulation by 180 mol m−3 NaCl and were classified as euhalophytes. Ten others from the families Chenopodiaceae, Aizoaceae, Asteraceae, Brassicaceae, Polygonaceae, Boraginaceae, Malvaceae, and Plumbaginaceae showed their best growth on fresh water and were classified miohalophytes. Salt, and particularly sodium, accumulated in all halophytes but to a significantly greater extent among euhalophytes than miohalophytes. The water content of most species increased when grown on 180 mol m−3 NaCl compared to fresh water; but at higher salinities some of the species underwent dehydration. Dehydration of the succulent S. europaca was not coupled to a proportional decrease in growth. Water content and cation accumulation in euhalophytes appeared to be coordinated to produce a constant osmotic potential gradient within the shoot tissues relative to the external salinity. In contrast, miohalophytes did not appear to regulate osmotic potential as closely as euhalophytes.  相似文献   

16.
Ramirez ML  Chulze SN  Magan N 《Mycologia》2004,96(3):470-478
Studies were conducted to determine the effect of osmotic (NaCl, glycerol) and matric (PEG 8000) water stress on temporal germination and growth of two F. graminearum strains over the water potential range of -0.7 to -14.0 MPa at 15 and 25 C. The effect on endogenous water potentials and accumulation of sugars and sugar alcohols also were measured. For both strains, germination occurred rapidly over the same range of osmotic or matric potential of -0.7 to -5.6 MPa after 4-6 h incubation. At lower osmotic and matric potentials (-7.0 to -8.4 MPa), there was a lag of up to 24 h before germination. Optimum germ-tube extension occurred between -0.7 and -1.4 MPa for both strains but varied with the solute used. Growth was optimal at -1.4 MPa and 25 C in response to matric stress, with the minimum being about -8.0 and -11.2 MPa at 15 and 25 C, respectively. In contrast, F. graminearum grew fastest at -0.7 MPa and was more tolerant of solute stress modified with either glycerol or NaCl with a minimum of about -14.0 MPa at 15 and 25 C. A decrease in the osmotic/matric water potential of the media caused a large decrease in the mycelial water potential (Ψ(c)) as measured by thermocouple psychrometry. In general, the concentration of total sugar alcohols in mycelia increased as osmotic and matric potential were reduced to -1.2 MPa. However, this increase was more evident in mycelia from glycerol-amended media. The quality of the major sugar alcohol accumulated depended on the solute used to generate the water stress. The major compounds accumulated were glycerol and arabitol on osmotically modified media and arabitol on matrically modified media. In response to matric stress, the concentration of trehalose in colonies generally was higher in the case of osmotic stress. In each water-stress treatment there was a good correlation between Ψ(c) and total sugar alcohol content.  相似文献   

17.
Soil water cotent and salinity levels are seldom uniform inthe field, particularly with the use of micro-irrigation systemsthat may water only a portion of the root zone. For studyingnon-uniform salinity, a split-root experiment was designed toevaluate growth and water relations when half of the root systemof sour orange (Citrus aurantium) seedlings was stressed withsodium chloride (NaCl) or polyethylene glycol (PEG). This studyalso determined if non-stressed portions of the root systemcompensated for the decrease in water uptake by the stressedportions. One or both halves of the root system were treated for fourmonths with nutrient solution adjusted with NaCl or PEG to osmoticpotentials of –0.10, –0.20, or –0.35 MPa.Shoot dry weight was reduced by only 9% when half of the rootsystem was irrigated with saline solution at –0.10 MPa,but with both halves of the root system at –0.10 MPa,shoot and root dry weights were reduced as much as 45%. Similarly,leaf water and osmotic potentials were also more disturbed underuniform salinity than under non-uniform salinity conditions. Plant growth, leaf water potential, osmotic potential, stomatalconductance, and evapotranspiration decreased with increasingNaCl and PEG concentrations in the nutrient solution. Turgorpotential and leaf thickness increased in response to NaCl treatments.Microscopic examination showed that the increase in leaf thicknesswas due to the development of larger cells in the spongy mesophyll. Shoot growth did not correlate with the average osmotic potentialof the two root halves. Seedlings with one stressed half-rootsystem had shoot dry weight and leaf water potential valuescloser to those of the non-stressed control than to those withthe completely stressed root system. Key words: Non-uniform salinity, water relations, citrus  相似文献   

18.
Greenhouse experiments were conducted to assess the effects of soil salinity on emergence, growth, water status, proline content and mineral accumulation of seedlings of Avicennia marina (Forssk.) Vierh. NaCl was added to the soil and salinity was maintained at 0.2, 2.5, 5.1, 7.7, 10.3, 12.6, 15.4, 17.9, 20.5, 23.0, 25.6 and 28.2 psu. A negative relationship between seedling emergence and salt concentration was obtained. Nevertheless, this mangrove is highly salt tolerant during germination. Growth of seedlings was significantly promoted by low salinity and optimum growth was obtained at 15.4 psu. Higher salinities inhibited plant growth. Growth and dry matter accumulation in tissues followed the same optimum curve. Water potential of tissues became significantly more negative with increasing salinity, and proline content significantly increased. Moreover, water potential and proline content of tissues displayed an S-curve with the inflection point below ∼10 psu. The concentration of Na in tissues increased significantly, whereas K, Ca, Mg, N and P content decreased.  相似文献   

19.
R. F. Meyer  J. S. Boyer 《Planta》1972,108(1):77-87
Summary The response of cell division and cell elongation to low cell water potentials was studied in etiolated, intact soybean hypocotyls desiccated either by withholding water from seedlings or by subjecting hypocotyls to pressure. Measurements of hypocotyl water potential and osmotic potential indicated that desiccation by withholding water resulted in osmotic adjustment of the hypocotyls so that turgor remained almost constant. The adjustment appeared to involve transport of solutes from the cotyledons to the hypocotyl and permitted growth of the seedlings at water potentials which would have been strongly inhibitory had adjustment not occurred. Growth was ultimately inhibited in hypocotyls due to inhibition of cell division and cell elongation to a similar degree. The inhibition of cell elongation appeared to result from a change in the minimum turgor necessary for growth. On the other hand, when intact hypocotyls were exposed to pressure for 3 h, osmotic adjustment did not occur, turgor decreased, and the sensitivity of growth to low cell water potentials increased, presumably due to inhibition of cell elongation. Thus, although cell division was sensitive to low cell water potentials in soybean hypocotyls, cell elongation had either the same sensitivity or was more sensitive, depending on whether the tissue adjusted osmotically. Osmotic adjustment of hypocotyls may represent a mechanism for preserving growth in seedlings germinating in desiccated soil.Supported by a grant from the Illinois Agricultural Experiment Station, University of Illinois and grant 1-T1-GM-1380 from the United States Public Health Service.  相似文献   

20.
Primary and secondary induction requirements for flowering of Festuca rubra   总被引:3,自引:0,他引:3  
Root and shoot temperatures were varied independently to determine the importance of root temperature during cold acclimation. Spinach ( Spinacia oleracea L. cvs Harbin and Bloomsdale) plants were subjected to 20/20°C. 20/5°C, 5/20°C, and 5/5°C (shoot/root) temperature treatments. Leaf freezing tolerance, water potential, stomatal resistance, osmotic potential, and water content were measured at 0.25. 1.25, 3.25, and 7.25 days of treatment. There was no change in freezing tolerance or the water relations of the 20/20°C treated plants during the course of the experiment. Freezing tolerance was increased by the 5°C shoot temperature treatments, but was not enhanced by water stress induced by the low root temperature. Leaf water potential and water content decreased and stomatal resistance increased within 6 h in the 20/5°C plants. By day 3, osmotic potential began decreasing in the 20/5°C plants. Leaf water content, osmotic potential, and water potential decreased more gradually in plants grown with 5°C shoot temperature, irrespective of root temperature. Decreased water content and osmotic potential were not correlated with increased freezing tolerance as reported for other herbaceous crop plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号