首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Topology prediction of membrane proteins.   总被引:19,自引:3,他引:16       下载免费PDF全文
A new method is described for prediction of protein membrane topology (intra- and extracellular sidedness) from multiply aligned amino acid sequences after determination of the membrane-spanning segments. The prediction technique relies on residue compositional differences in the protein segments exposed at each side of the membrane. Intra/extracellular ratios are calculated for the residue types Asn, Asp, Gly, Phe, Pro, Trp, Tyr, and Val, preferably found on the extracellular side, and for Ala, Arg, Cys, and Lys, mostly occurring on the intracellular side. The consensus over these 12 residue distributions is used for sidedness prediction. The method was developed with a test set of 42 protein families, for which all but one were correctly predicted with the new algorithm. This represents an improvement over predictions based on the widely used "positive-inside rule" and other techniques, where at least six mispredictions were observed for the same data set. Further, application of this and other methods to 12 protein families not in the test set still showed the better performance of the present technique, which was subsequently applied to another set of membrane protein families where the topology has yet to be determined.  相似文献   

2.
We have developed a method to reliably identify partial membrane protein topologies using the consensus of five topology prediction methods. When evaluated on a test set of experimentally characterized proteins, we find that approximately 90% of the partial consensus topologies are correctly predicted in membrane proteins from prokaryotic as well as eukaryotic organisms. Whole-genome analysis reveals that a reliable partial consensus topology can be predicted for approximately 70% of all membrane proteins in a typical bacterial genome and for approximately 55% of all membrane proteins in a typical eukaryotic genome. The average fraction of sequence length covered by a partial consensus topology is 44% for the prokaryotic proteins and 17% for the eukaryotic proteins in our test set, and similar numbers are found when the algorithm is applied to whole genomes. Reliably predicted partial topologies may simplify experimental determinations of membrane protein topology.  相似文献   

3.
A theoretical and computational approach to ab initio structure prediction for polypeptides in water is described and applied to selected amino acid sequences for testing and preliminary validation. The method builds systematically on the extensive efforts applied to parameterization of molecular dynamics (MD) force fields, employs an empirically well-validated continuum dielectric model for solvation, and an eminently parallelizable approach to conformational search. The effective free energy of polypeptide chains is estimated from AMBER united atom potential functions, with internal degrees of freedom for both backbone and amino acid side chains explicitly treated. The hydration free energy of each structure is determined using the Generalized Born/Solvent Accessibility (GBSA) method, modified and reparameterized to include atom types consistent with the AMBER force field. The conformational search procedure employs a multiple copy, Monte Carlo simulated annealing (MCSA) protocol in full torsion angle space, applied iteratively on sets of structures of progressively lower free energy until a prediction of a structure with lowest effective free energy is obtained. Calibration tests for the effective energy function and search algorithm are performed on the alanine dipeptide, selected protein crystal structures, and united atom decoys on barnase, crambin, and six examples from the Rosetta set. Specific demonstration cases of the method are provided for the 8-mer sequence of Ala residues, a 12-residue peptide with longer side chains QLLKKLLQQLKQ, a de novo designed 16 residue peptide of sequence (AAQAA)3Y, a 15-residue sequence with a beta sheet motif, GEWTWDATKTFTVTE, and a 36 residue small protein, Villin headpiece. The Ala 8-mer readily formed an alpha-helix. An alpha-helix structure was predicted for the 16-mer, consistent with observed results from IR and CD spectroscopy and with the pattern in psi/straight phi angles of known protein structures. The predicted structure for the 12-mer, composed of a mix of helix and less regular elements of secondary structure, lies 2.65 A RMS from the observed crystal structure. Structure prediction for the 8-mer beta-motif resulted in form 4.50 A RMS from the crystal geometry. For Villin, the predicted native form is very close to the crystal structure, RMS values of 3.5 A (including sidechains), and 1.01 A (main chain only). The methodology permits a detailed analysis of the molecular forces which dominate various segments of the predicted folding trajectory. Analysis of the results in terms of internal torsional, electrostatic and van der Waals and the electrostatic and non-electrostatic contributions to hydration, including the hydrophobic effect, is presented.  相似文献   

4.
Transmembrane helices predicted at 95% accuracy.   总被引:27,自引:1,他引:27       下载免费PDF全文
We describe a neural network system that predicts the locations of transmembrane helices in integral membrane proteins. By using evolutionary information as input to the network system, the method significantly improved on a previously published neural network prediction method that had been based on single sequence information. The input data were derived from multiple alignments for each position in a window of 13 adjacent residues: amino acid frequency, conservation weights, number of insertions and deletions, and position of the window with respect to the ends of the protein chain. Additional input was the amino acid composition and length of the whole protein. A rigorous cross-validation test on 69 proteins with experimentally determined locations of transmembrane segments yielded an overall two-state per-residue accuracy of 95%. About 94% of all segments were predicted correctly. When applied to known globular proteins as a negative control, the network system incorrectly predicted fewer than 5% of globular proteins as having transmembrane helices. The method was applied to all 269 open reading frames from the complete yeast VIII chromosome. For 59 of these, at least two transmembrane helices were predicted. Thus, the prediction is that about one-fourth of all proteins from yeast VIII contain one transmembrane helix, and some 20%, more than one.  相似文献   

5.
When experimental protein NMR data are too sparse to apply traditional structure determination techniques, de novo protein structure prediction methods can be leveraged. Here, we describe the incorporation of NMR restraints into the protein structure prediction algorithm BCL::Fold. The method assembles discreet secondary structure elements using a Monte Carlo sampling algorithm with a consensus knowledge‐based energy function. New components were introduced into the energy function to accommodate chemical shift, nuclear Overhauser effect, and residual dipolar coupling data. In particular, since side chains are not explicitly modeled during the minimization process, a knowledge based potential was created to relate experimental side chain proton–proton distances to Cβ–Cβ distances. In a benchmark test of 67 proteins of known structure with the incorporation of sparse NMR restraints, the correct topology was sampled in 65 cases, with an average best model RMSD100 of 3.4 ± 1.3 Å versus 6.0 ± 2.0 Å produced with the de novo method. Additionally, the correct topology is present in the best scoring 1% of models in 61 cases. The benchmark set includes both soluble and membrane proteins with up to 565 residues, indicating the method is robust and applicable to large and membrane proteins that are less likely to produce rich NMR datasets. Proteins 2014; 82:587–595. © 2013 Wiley Periodicals, Inc.  相似文献   

6.
Rohl CA  Strauss CE  Chivian D  Baker D 《Proteins》2004,55(3):656-677
A major limitation of current comparative modeling methods is the accuracy with which regions that are structurally divergent from homologues of known structure can be modeled. Because structural differences between homologous proteins are responsible for variations in protein function and specificity, the ability to model these differences has important functional consequences. Although existing methods can provide reasonably accurate models of short loop regions, modeling longer structurally divergent regions is an unsolved problem. Here we describe a method based on the de novo structure prediction algorithm, Rosetta, for predicting conformations of structurally divergent regions in comparative models. Initial conformations for short segments are selected from the protein structure database, whereas longer segments are built up by using three- and nine-residue fragments drawn from the database and combined by using the Rosetta algorithm. A gap closure term in the potential in combination with modified Newton's method for gradient descent minimization is used to ensure continuity of the peptide backbone. Conformations of variable regions are refined in the context of a fixed template structure using Monte Carlo minimization together with rapid repacking of side-chains to iteratively optimize backbone torsion angles and side-chain rotamers. For short loops, mean accuracies of 0.69, 1.45, and 3.62 A are obtained for 4, 8, and 12 residue loops, respectively. In addition, the method can provide reasonable models of conformations of longer protein segments: predicted conformations of 3A root-mean-square deviation or better were obtained for 5 of 10 examples of segments ranging from 13 to 34 residues. In combination with a sequence alignment algorithm, this method generates complete, ungapped models of protein structures, including regions both similar to and divergent from a homologous structure. This combined method was used to make predictions for 28 protein domains in the Critical Assessment of Protein Structure 4 (CASP 4) and 59 domains in CASP 5, where the method ranked highly among comparative modeling and fold recognition methods. Model accuracy in these blind predictions is dominated by alignment quality, but in the context of accurate alignments, long protein segments can be accurately modeled. Notably, the method correctly predicted the local structure of a 39-residue insertion into a TIM barrel in CASP 5 target T0186.  相似文献   

7.
A specific treatment of recurrent structural motifs that represent the local bias information has been proven to be an important ingredient in de novo protein structure predication. Significant majority of methods for local structure are based on building blocks, which still suffer from its inherent discrete nature. Instead of using building blocks, this work presents a new protocol framework for local structural motifs prediction based on the direct locating along protein sequence and probabilistic sampling in a continuous (φ, ψ) space. The protein sequence was first scanned by an algorithm of sliding window with variable length of 7 to 19 residues, to match local segments to one of 82 motifs patterns in the fragment library. Identified segments were then labeled and modeled as the correlations of backbone torsion angles with mixture of bivariate cosine distributions in continuous (φ, ψ) space. 3D conformations of corresponding segments were finally sampled by using a backtrack algorithm to the hidden Markov model with single output of (φ, ψ). For local motifs in 50 proteins of testing set, about 62% of eight-residue segments located with high confidence value were predicted within 1.5 ? of their native structures by the method. Majority of local structural motifs were identified and sampled, which indicates the proposed protocol may at least serve as the foundation to obtain better protein tertiary structure prediction.  相似文献   

8.
9.
The increasing protein sequences from the genome project require theoretical methods to predict transmembrane helical segments (TMHs). So far, several prediction methods have been reported, but there are some deficiencies in prediction accuracy and adaptability in these methods. In this paper, a method based on discrete wavelet transform (DWT) has been developed to predict the number and location of TMHs in membrane proteins. PDB coded as 1KQG is chosen as an example to describe the prediction process by this method. 80 proteins with known 3D structure from Mptopo database are chosen at random as data sets (including 325 TMHs) and 80 sequences are divided into 13 groups according to their function and type. TMHs prediction is carried out for each group of membrane protein sequences and obtain satisfactory result. To verify the feasibility of this method, 80 membrane protein sequences are treated as test sets, 308 TMHs can be predicted and the prediction accuracy is 96.3%. Compared with the main prediction results of seven popular prediction methods, the obtained results indicate that the proposed method in this paper has higher prediction accuracy.  相似文献   

10.
We have developed reliability scores for five widely used membrane protein topology prediction methods, and have applied them both on a test set of 92 bacterial plasma membrane proteins with experimentally determined topologies and on all predicted helix bundle membrane proteins in three fully sequenced genomes: Escherichia coli, Saccharomyces cerevisiae and Caenorhabditis elegans. We show that the reliability scores work well for the TMHMM and MEMSAT methods, and that they allow the probability that the predicted topology is correct to be estimated for any protein. We further show that the available test set is biased towards high-scoring proteins when compared to the genome-wide data sets, and provide estimates for the expected prediction accuracy of TMHMM across the three genomes. Finally, we show that the performance of TMHMM is considerably better when limited experimental information (such as the in/out location of a protein's C terminus) is available, and estimate that at least ten percentage points in overall accuracy in whole-genome predictions can be gained in this way.  相似文献   

11.
Membrane-binding peripheral proteins play important roles in many biological processes, including cell signaling and membrane trafficking. Unlike integral membrane proteins, these proteins bind the membrane mostly in a reversible manner. Since peripheral proteins do not have canonical transmembrane segments, it is difficult to identify them from their amino acid sequences. As a first step toward genome-scale identification of membrane-binding peripheral proteins, we built a kernel-based machine learning protocol. Key features of known membrane-binding proteins, including electrostatic properties and amino acid composition, were calculated from their amino acid sequences and tertiary structures, which were then incorporated into the support vector machine to perform the classification. A data set of 40 membrane-binding proteins and 230 non-membrane-binding proteins was used to construct and validate the protocol. Cross-validation and holdout evaluation of the protocol showed that the accuracy of the prediction reached up to 93.7% and 91.6%, respectively. The protocol was applied to the prediction of membrane-binding properties of four C2 domains from novel protein kinases C. Although these C2 domains have 50% sequence identity, only one of them was predicted to bind the membrane, which was verified experimentally with surface plasmon resonance analysis. These results suggest that our protocol can be used for predicting membrane-binding properties of a wide variety of modular domains and may be further extended to genome-scale identification of membrane-binding peripheral proteins.  相似文献   

12.
While helical transmembrane (TM) region prediction tools achieve high (>90%) success rates for real integral membrane proteins, they produce a considerable number of false positive hits in sequences of known nontransmembrane queries. We propose a modification of the dense alignment surface (DAS) method that achieves a substantial decrease in the false positive error rate. Essentially, a sequence that includes possible transmembrane regions is compared in a second step with TM segments in a sequence library of documented transmembrane proteins. If the performance of the query sequence against the library of documented TM segment-containing sequences in this test is lower than an empirical threshold, it is classified as a non-transmembrane protein. The probability of false positive prediction for trusted TM region hits is expressed in terms of E-values. The modified DAS method, the DAS-TMfilter algorithm, has an unchanged high sensitivity for TM segments ( approximately 95% detected in a learning set of 128 documented transmembrane proteins). At the same time, the selectivity measured over a non-redundant set of 526 soluble proteins with known 3D structure is approximately 99%, mainly because a large number of falsely predicted single membrane-pass proteins are eliminated by the DAS-TMfilter algorithm.  相似文献   

13.
Fold assignments for proteins from the Escherichia coli genome are carried out using BASIC, a profile-profile alignment algorithm, recently tested on fold recognition benchmarks and on the Mycoplasma genitalium genome and PSI BLAST, the newest generation of the de facto standard in homology search algorithms. The fold assignments are followed by automated modeling and the resulting three-dimensional models are analyzed for possible function prediction. Close to 30% of the proteins encoded in the E. coli genome can be recognized as homologous to a protein family with known structure. Most of these homologies (23% of the entire genome) can be recognized both by PSI BLAST and BASIC algorithms, but the latter recognizes an additional 260 homologies. Previous estimates suggested that only 10-15% of E. coli proteins can be characterized this way. This dramatic increase in the number of recognized homologies between E. coli proteins and structurally characterized protein families is partly due to the rapid increase of the database of known protein structures, but mostly it is due to the significant improvement in prediction algorithms. Knowing protein structure adds a new dimension to our understanding of its function and the predictions presented here can be used to predict function for uncharacterized proteins. Several examples, analyzed in more detail in this paper, include the DPS protein protecting DNA from oxidative damage (predicted to be homologous to ferritin with iron ion acting as a reducing agent) and the ahpC/tsa family of proteins, which provides resistance to various oxidating agents (predicted to be homologous to glutathione peroxidase).  相似文献   

14.
The MexA,B-OprM efflux pump assembly of Pseudomonas aeruginosa consists of two inner membrane proteins and one outer membrane protein. The cytoplasmic membrane protein, MexB, appears to function as the xenobiotic-exporting subunit, whereas the MexA and OprM proteins are supposed to function as the membrane fusion protein and the outer membrane channel protein, respectively. Computer-aided hydropathy analyses of MexB predicted the presence of up to 17 potential transmembrane segments. To verify the prediction, we analyzed the membrane topology of MexB using the alkaline phosphatase gene fusion method. We obtained the following unique characteristics. MexB bears 12 membrane spanning segments leaving both the amino and carboxyl termini in the cytoplasmic side of the inner membrane. Both the first and fourth periplasmic loops had very long hydrophilic domains containing 311 and 314 amino acid residues, respectively. This fact suggests that these loops may interact with other pump subunits, such as the membrane fusion protein MexA and the outer membrane protein OprM. Alignment of the amino- and the carboxyl-terminal halves of MexB showed a 30% homology and transmembrane segments 1, 2, 3, 4, 5, and 6 could be overlaid with the segments 7, 8, 9, 10, 11, and 12, respectively. This result suggested that the MexB has a 2-fold repeat that strengthen the experimentally determined topology model. This paper reports the structure of the pump subunit, MexB, of the MexA,B-OprM efflux pump assembly. This is the first time to verify the topology of the resistant-nodulation-division efflux pump protein.  相似文献   

15.
The prediction of a protein's structure from its amino acid sequence has been a long-standing goal of molecular biology. In this work, a new set of conformational parameters for membrane spanning alpha helices was developed using the information from the topology of 70 membrane proteins. Based on these conformational parameters, a simple algorithm has been formulated to predict the transmembrane alpha helices in membrane proteins. A FORTRAN program has been developed which takes the amino acid sequence as input and gives the predicted transmembrane alpha-helices as output. The present method correctly identifies 295 transmembrane helical segments in 70 membrane proteins with only two overpredictions. Furthermore, this method predicts all 45 transmembrane helices in the photosynthetic reaction center, bacteriorhodopsin and cytochrome c oxidase to an 86% level of accuracy and so is better than all other methods published to date.  相似文献   

16.
Most proteins found in the outer membrane of gram-negative bacteria share a common domain: the transmembrane β-barrel. These outer membrane β-barrels (OMBBs) occur in multiple sizes and different families with a wide range of functions evolved independently by amplification from a pool of homologous ancestral ββ-hairpins. This is part of the reason why predicting their three-dimensional (3D) structure, especially by homology modeling, is a major challenge. Recently, DeepMind's AlphaFold v2 (AF2) became the first structure prediction method to reach close-to-experimental atomic accuracy in CASP even for difficult targets. However, membrane proteins, especially OMBBs, were not abundant during their training, raising the question of how accurate the predictions are for these families. In this study, we assessed the performance of AF2 in the prediction of OMBBs and OMBB-like folds of various topologies using an in-house-developed tool for the analysis of OMBB 3D structures, and barrOs. In agreement with previous studies on other membrane protein classes, our results indicate that AF2 predicts transmembrane β-barrel structures at high accuracy independently of the use of templates, even for novel topologies absent from the training set. These results provide confidence on the models generated by AF2 and open the door to the structural elucidation of novel transmembrane β-barrel topologies identified in high-throughput OMBB annotation studies or designed de novo.  相似文献   

17.
随机森林方法预测膜蛋白类型   总被引:2,自引:0,他引:2  
膜蛋白的类型与其功能是密切相关的,因此膜蛋白类型的预测是研究其功能的重要手段,从蛋白质的氨基酸序列出发对膜蛋白的类型进行预测有重要意义。文章基于蛋白质的氨基酸序列,将组合离散增量和伪氨基酸组分信息共同作为预测参数,采用随机森林分类器,对8类膜蛋白进行了预测。在Jackknife检验下的预测精度为86.3%,独立检验的预测精度为93.8%,取得了好于前人的预测结果。  相似文献   

18.
Secondary structure and membrane topology of cytochrome P450s   总被引:1,自引:0,他引:1  
The secondary structure prediction of 19 microsomal cytochrome P450s from two different families was made on the basis of their amino acid sequences. It was shown that there is structural similarity between the heme-binding sites in these enzymes and those in the bacterial P450cam. An average predicted secondary structure of cytochrome P450 proteins with 70% accuracy contains about 46% alpha-helices, 12% beta-sheets, 9% beta-turns, and 33% random coils. In the region of residues 35-120 in microsomal P450s two adjacent beta alpha beta-units (the Rossmann domain), were recognized and may be available to interact with the NADPH-cytochrome P450 reductase. Using the procedure for identification of hydrophobic and membrane-associated alpha-helical segments, only one N-terminal transmembrane anchor was predicted. Also the heme-binding site may include the surface-bound helix. A model for vertebrate microsomal P450s having an amphipathic membrane protein located on the cytoplasmic side of the endoplasmic reticulum membrane, with their active center lying outside or on the bilayer border, is proposed.  相似文献   

19.
在基因组数据中,有20%~30%的产物被预测为跨膜蛋白,本文通过对膜蛋白拓扑结构预测方法进行分析,并评价其结果,为选择更合适的拓扑结构预测方法预测膜蛋白结构。通过对目前已有的拓扑结构预测方法的评价分析,可以为我们在实际工作中提供重要的参考。比如对一个未知拓扑结构的跨膜蛋白序列,我们可以先进行是否含有信号肽的预测,参考Polyphobius和SignalP两种方法,若两种方法预测结果不一致,综合上述对两种方法的评价,Polyphobius预测的综合能力较好,可取其预测的结果,一旦确定含有信号肽,则N端必然位于膜外侧。然后结合序列的长度,判断蛋白是单跨膜还是多重跨膜,即可参照上述评价结果,选择合适的拓扑结构预测方法进行预测。  相似文献   

20.
An algorithm is presented for the fast and accurate definition of protein structural domains from coordinate data without prior knowledge of the number or type of domains. The algorithm explicitly locates domains that comprise one or two continuous segments of protein chain. Domains that include more than two segments are also located. The algorithm was applied to a nonredundant database of 230 protein structures and the results compared to domain definitions obtained from the literature, or by inspection of the coordinates on molecular graphics. For 70% of the proteins, the derived domains agree with the reference definitions, 18% show minor differences and only 12% (28 proteins) show very different definitions. Three screens were applied to identify the derived domains least likely to agree with the subjective definition set. These screens revealed a set of 173 proteins, 97% of which agree well with the subjective definitions. The algorithm represents a practical domain identification tool that can be run routinely on the entire structural database. Adjustment of parameters also allows smaller compact units to be identified in proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号